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Much of the intellectual tradition of modern epidemiology stems from efforts to understand and combat chronic dis-
eases persisting through the 20th century epidemiologic transition of countries such as theUnitedStates andUnitedKing-
dom. After decades of relative obscurity, infectious disease epidemiology has undergone an intellectual rebirth in recent
years amid increasing recognition of the threat posed by both new and familiar pathogens. Here, we review the emerging
coalescence of infectious disease epidemiology around a core set of study designs and statistical methods bearing little
resemblance to the chronic disease epidemiology toolkit. We offer our outlook on challenges and opportunities facing the
field, including the integration of novelmolecular and digital information sources into disease surveillance, the assimilation
of such data intomodels of pathogen spread, and the increasing contribution of models to public health practice.We next
consider emerging paradigms in causal inference for infectiousdiseases, ranging fromapproaches to evaluating vaccines
and antimicrobial therapies to the task of ascribing clinical syndromes to etiologic microorganisms, an age-old problem
transformed by our increasing ability to characterize human-associated microbiota. These areas represent an increas-
ingly important component of epidemiology training programs for future generations of researchers and practitioners.

infectious diseases; methods; modeling; surveillance

Abbreviation: EBOV, Ebola virus.

The priority afforded to infectious diseases within epide-
miologic research has been fluid over the past 200 years or
longer. Despite the lasting prominence of early investigations
into measles, cholera, plague, typhoid fever, malaria, and yel-
low fever (1–6), the intellectual tradition of modern epidemi-
ology stems largely from studies of chronic diseases dating to
the post-WorldWar II era, when such conditions came to sur-
pass infectious diseases in morbidity and mortality in high-
income countries amid improvements in living conditions and
the introduction of numerous antibiotics and vaccines. This
epidemiologic transition co-occurred with a shift in focus for
epidemiologic research (and training programs) toward the
multifactorial etiology of chronic conditions (7). In parallel,
early 20th-century work on the “dependent happenings” of
communicable diseases (8–11) yielded to the development
of today’s core biostatistical methods for chronic diseases, pre-
mised on the independence of outcomes among subjects (12–14).

Since the late 20th century, the emergence of human immuno-
deficiency virus and acquired immunodeficiency syndrome and
other infections has renewed interest in infectious diseases and

their health, economic, and security implications (15). Outbreaks
of severe acute respiratory syndrome, pandemic influenza A
H1N1, Ebola virus (EBOV), and Zika virus have prompted inter-
national responses, whereas influenza A H7N9 and H5N1,
Lassa fever virus, Nipah virus, and Middle East respiratory syn-
drome coronavirus, among other agents, have been a source
of regional concern. The incidence and endemic range of “ne-
glected” infections, including dengue and cholera (16, 17),
have expanded, and antimicrobial resistance has threatened
to derail the control of tuberculosis, typhoid, malaria, gonorrhea,
yaws, and invasive bacterial infections (18–23). Although
highly effective vaccines are available, measles and yellow fever
have resurged onmultiple continents, due to gaps in vaccine cov-
erage (24, 25), while short-lived vaccine-induced protection has
facilitated unexpected resurgences in diseases once on the path to
elimination, such as pertussis andmumps (26, 27).

After decades of relative obscurity in the mid-20th century,
infectious disease epidemiology has experienced an intellectual
rebirth in response to disease emergence. Repopulation of this
field by scientists trained not only in clinical medicine but
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ecology, demography, and quantitative sciences has led to the
adoption of methods scarcely addressed in traditional public
health training programs. Cluster-randomized trial designs,
for example, have become commonplace for evaluating infec-
tious disease interventions, quantifying indirect effects resulting
from contagion (28). Classical models of ecological dynamics
have been adapted to address the transmission and control of
infectious agents, while our expanding ability to integrate such
models with epidemiologic data through Bayesian statistics has
enhanced their relevance to policymaking (29–31).Most recently,
sequencing and phylogenetic analysis have afforded an unprece-
dented view into the population structure and dynamics of
pathogens (32, 33).

Here, we review developments in infectious disease epidemi-
ology together with their implications for research and practice,
and for the training of future epidemiologists. We first consider
the role of epidemiologic surveillance in the context of patho-
gen emergence and the integration of surveillance data into
quantitative studies of transmission. Next, we discuss challenges
in causal inference, including the evaluation of public health
interventions against emerging pathogens and the difficulties
of attributing clinical syndromes to microbial agents.

SURVEILLANCEOF EMERGING INFECTIONS

Public health practice

Surveillance justifiably has been seen as a core public health
function, with its important role articulated by Langmuir in
1963 (34). In the United States and elsewhere, surveillance for
diverse infectious (and noninfectious) diseases has typically
relied on an essentially passive system of reporting by health-
care providers or laboratories, often mandated by public health
laws. Although such passive systems of disease reporting have
proven invaluable, their limitations, such as incomplete, often
inconsistent detection of cases and delayed detection of out-
breaks, are well documented (35). As a result, active surveillance
systems that do not depend on providers and laboratories to
report have been developed and promoted.

The Centers for Disease Control and Prevention–funded
Emerging Infections Program and its components (e.g., Foodnet,
ABCs), initiated in 1994, is 1 notable example of such a system,
as are international versions promoted through the Centers for
Disease Control and Prevention’s Global Health Security initia-
tive (36). Such systems, while expensive to develop and main-
tain, are of great value, especially when they collect biological
specimens (e.g., isolates of bacterial and viral pathogens) for
typing and support analytic epidemiologic studies (e.g., case-
control studies of vaccine effectiveness (37)). Nevertheless,
these systems, too, may have limitations, particularly in their abil-
ity to detect in a timely fashion outbreaks caused by novel micro-
bial agents, prompting interest in alternative methods. In this
article, we consider proposed alternatives, highlighting their
benefits and challenges.

Surveillance for disease emergence

Beyond efforts to quantify the incidence of infectious dis-
eases of known etiology, disease surveillance has been advo-
cated as a means of mitigating the threat posed by novel

pathogens. Large-scale efforts to identify pathogens with the
potential to spill over from animals to humans have received
notable investment, for instance from the US Agency for Interna-
tional Development Emerging Pandemic Threats program (38).
More recently, metagenomic sequencing has enabled the number
of known viruses to be multiplied in such studies (39). The aim
of those working on the Global Virome Project, launched in 2018,
to characterize within 10 years all 1.6 million viruses thought
to exist (40).

However, the pathway for translating data sets produced by
such activities into actionable threat-reduction programs remains
unclear. That only approximately 250 viruses are known to infect
humans (and an even smaller handful to cause major epidemics)
may constrain the value of large-scale virus discovery for
identifying high-risk pathogens, as well as viral determinants of
pathogenic potential (41). Spillover events causing recent epi-
demics—including H1N1 in Mexico, Middle East respiratory
syndrome in Saudi Arabia, and EBOV in West Africa—have
been poorly predicted by factors long believed to drive disease
emergence (42). Accordingly, interest in expanding our cata-
logue of potential pathogens should be weighed against our
persisting need to enhance the detection and control of outbreaks
of known pathogens (43). For instance, 2 EBOV epidemics in
the Democratic Republic of the Congo in 2018 took weeks to be
identified, with dozens of suspected cases having already accu-
mulated (44, 45).

Serological studies have received increasing enthusiasm
for monitoring emerging pathogens of significance to hu-
mans (41, 46). The prevalence of antibodies indicating previous
exposure may provide valuable information about the frequency
of animal-human spillover events and the potential for person-to-
person spread, overcoming reporting biases that favor detection
of large outbreaks under traditional surveillance. Moreover, the
low cost of multiplex assays makes integrated surveillance of
multiple pathogens plausible. Although serosurveys have bol-
stered recent efforts to understand the geographic range and
clinical spectrum of EBOV and Zika virus infections (47, 48),
the enhancement of dengue hemorrhagic fever risk by prior ex-
posure (49), and the role of immunologic history in influenza sus-
ceptibility and vaccine response (50), there remain few examples
of public health programs undertaking serological studies for rou-
tine surveillance, at least in civilian populations (51).

Emerging data and analytics

Outside of laboratory-based surveillance, the increasing avail-
ability of passively collected “Big Data” on the health and beha-
viors of individuals has prompted enthusiasm about enhancing
disease surveillance through alternative data streams. Initiatives
such as the ProMED-mail network andHealthMap (52, 53) com-
pile and disseminate news about outbreaks frommedia and other
sources, aiming to trigger investigation by public health organiza-
tions. Data such as emergency department visits, medication
sales, online search queries, and social media postings have
also been suggested as real-time indicators of outbreak activity,
although their integration into public health responses remains
a subject of debate (54–56). The need to overcome reporting
biases is a central challenge, because observations may be too
nonspecific to distinguish between meaningful and spurious
signals in settings with high technological capacity while also
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being insensitive to even high-risk events in resource-poor set-
tings (57, 58). Although nontraditional data sources have, in
some applications, supported inferences about epidemic
dynamics (59), limited information about cases from such
sources remains a barrier. For instance, models fitted from
news reports of recent measles and mumps outbreaks have
yielded considerable underestimates of vaccine coverage
(60–62), underscoring the importance of field investigations.

Forecasting the incidence of diseases has been a more suc-
cessful application of these emerging data streams and data-
analytic approaches. Although the acknowledged failure of
Google Flu Trends—a prediction approach based on Internet
search behavior—yielded important lessons about nonmecha-
nistic forecasts, approaches based onmachine learning and crowd-
sourced human judgment have provided the most accurate
within-season predictions of US influenza activity in recent
comparisons (63–65). Given expanding interest in forecasting
among researchers, funding agencies, and other stakeholders,
there is a clear and compelling need to evaluate whether such
forecasts can enhance the success and efficiency of public
health response efforts.

UNDERSTANDING TRANSMISSIONDYNAMICS

Model-data integration for emerging diseases

Mathematical modeling as a means to understanding infec-
tious disease spread dates to studies by Sir Ronald Ross (8).
Although the use of models to connect data such as age of
infection to transmission dynamics of endemic infections has
longstanding precedent (66, 67), assimilation of outbreak data
for near-term assessments of control priorities is a compara-
tively recent phenomenon. Integration of modeling with the
public health response to epidemics of bovine spongiform
encephalopathy and foot-and-mouth disease in the United
Kingdom and the severe acute respiratory syndrome epi-
demic (68–73) has led to expectations for near real-time
modeling studies during major outbreaks. In recent experi-
ence, models of the spread of pandemic influenza A H1N1
(74), cholera (75), Middle East respiratory syndrome (76),
EBOV (77, 78), Chikungunya virus (79), Zika virus (80, 81),
yellow fever (82), and plague (83) have all been publishedwithin
weeks of the respective outbreak notifications.

Although the circumstances of particular epidemics dictate
what data may be available and pertinent, methods for fitting
models to data have generally focused on exponential growth
rates in cases (84) or the distribution of the serial interval (85).
Methods based on the latter class of data offer the advantage
of illustrating real-time changes in reproductive numbers (86);
however, the requisite information from patient line lists is sel-
dom available. Reliance instead on ecological data exposes
models to numerous vulnerabilities, notably the inability to
discern individual risk factors (and thus the population mean-
ingfully at risk). These shortcomings may prevent models
from predicting reductions in transmission before depletion
of the susceptible population.

A challenge thus lies ahead in determining the role of models
in outbreak response and the best practices for communicating
modeling results. Although the ability of models to evaluate pro-
phylactic strategiesmay be considered a benefit, recommendations

to act against remote future risks have sometimes triggered resis-
tance among stakeholders (87). During the West African EBOV
epidemic, for example, attention to worst-case model-based
projections prompted some to question the reliability of the
models (88), reflecting an important discrepancy between pub-
lic understanding of modeling as a forecasting tool and the in-
tended uses of models for scenario-based comparisons (89, 90).
This use of modeling has been better understood in attempts to
communicate the impact of interventions after the fact (91).

Microbial sequencing

The ease of sequencing pathogen genomes has afforded a new
view into transmission during outbreaks. Use of sequence data to
identify transmission clusters in the presence of unsure epidemio-
logic links dates to the early years of the human immunodefi-
ciency virus and acquired immunodeficiency syndrome epidemic
(92). In recent years, sequencing has aided efforts to track the
sources of unexplained epidemics of cholera in Haiti (93) and
EBOV in West Africa (94), and has shown increasing utility for
reconstructing the geographic spread of pathogens (95, 96). A
particular advantage of phylogenetic analysis is the possibility
of estimating unobserved epidemiologic quantities, such as the re-
porting fraction (97) and reproductive numbers for subcritical
transmission (98),which remain difficult to assess from traditional
case-notification data.

Beyond reconstructing the demographic history of pathogen
lineages, recent years have seen progress toward joint analysis of
epidemiologic and sequencing data (99). Such “phylodynamic”
approaches have shown particular relevance for emerging infec-
tions, including distinguishing the role of repeated introductions
and subsequent local transmission (100–103). Whereas most ap-
plications have been tailored to specific data sets and assump-
tions, the development of generalizedmethods for joint inference
of epidemiologic and phylogenetic parameters remains a priority
(104) to support real-time analysis.

EVALUATIONOF INFECTIOUSDISEASE
INTERVENTIONS

Efficacy evaluations in emergencies

The ability to rapidly develop and deploy countermeasures to
mitigate the threat posed by emerging infections has received
increasing recognition as a component of public health pre-
paredness. However, outbreaks are difficult environments in
which to evaluate interventions. During the West African
EBOV epidemic, the feasibility of a new paradigm for develop-
ment and evaluation of interventions in emergencies was dem-
onstrated by accelerated vaccine safety, immunogenicity, and
efficacy studies(105). The Coalition for Epidemic Preparedness
Innovations was established in 2017, with an initial focus on
vaccines against Nipah virus,Middle East respiratory syndrome
coronavirus, and Lassa fever virus, in addition to adaptable vac-
cine platforms for novel threats (106).

Lessons learned in EBOVvaccine trialswill have an influential
bearing on evaluations during future emergencies. Despite efforts
to accelerate evaluation of candidate vaccines, incidence had
reached low levels by the time phase III efficacy trials were ready
to begin, posing a threat to their statistical power: A planned trial
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in Liberia was canceled due to declining transmission (107), and
no cases of disease occurred in a second trial in Sierra Leone
(108), preventing efficacy assessments. In a stepped-wedge trial
in Guinea, clusters of primary and secondary contacts of EBOV
disease cases were randomly assigned to immediate or delayed
vaccination; no cases were reported among vaccine recipients
during the trial (109) or in subsequent field deployments of the
vaccine, supporting a conclusion of near 100%vaccine efficacy.

Debates surrounding design of these trials highlight meth-
odological questions requiring additional attention. In the Gui-
nean trial, a “ring” vaccination scheme helped maximize
power by enrolling contacts of known cases (110). However,
the choice of individual- or cluster-level randomization within
rings was debated. Because members of a vaccinated cluster are
exposed to direct protection through vaccination and indirect
protection due to reduced transmission within their clusters
(28), cluster-randomized trials have weaker statistical power
than individually randomized trials of the same size (111).
Moreover, the direct effect measured in individually random-
ized studies may be a preferred, transportable efficacy measure
(112). Uses of simulation helped in planning vaccine trials tai-
lored to the real-world circumstances of the EBOV outbreak
(113) and enabled trialists to compare alternative designs in
terms of ethical mandates (114). Simulation-guided design fur-
ther presents the opportunity for applying adaptive trial meth-
ods (115) in the context of infectious disease outbreaks, where
dynamic trends in incidence may highlight the benefits of such
approaches.

Observational designs

In addition to efficacy trials for new interventions, observa-
tional studies are needed to assess licensed interventions against
evolving and re-emerging pathogens. Most commonly applied
in evaluations of influenza vaccines, test-negative designs have
become popular in routine (116) and exploratory (117) studies
of vaccine effectiveness. By measuring vaccine effectiveness
from the exposure odds ratio of vaccination among individuals
seeking care who test positive or negative for a pathogen of
interest, this design seeks to overcome associations of health-care
seeking with vaccination status (118). However, it is uncertain
whether health-care seeking and other sources of confounding are
appropriately controlled for, and whether measures accu-
rately capture vaccine direct effects (119, 120). Uncertainty
about the validity of estimates that routinely inform vaccine
policy-making demonstrates the need for formal evaluations of
such studies and strategies to reduce bias.

Time series analyses of public health surveillance data pro-
vide another approach to measuring the real-world impact of
vaccination on disease incidence, with the advantage of identi-
fying the overall effect of a vaccination program resulting from
direct and indirect protection (28). Although the ecological
nature of such designs permits the introduction of biases from
changes in diagnostic practices or health-care seeking, such
studies nonetheless have offered important insights where
other approaches failed. Limited reductions in influenza-related
deaths among elderly persons amid increases in influenza vac-
cine coverage during the 1990s provided an important indica-
tion that the “healthy vaccinee” effect accounted for astonishing
and implausible protection against all-cause mortality among

elderly influenza vaccine recipients in cohort and case-control
studies (121–123). Newer methods continue to improve public
health inferences obtained from time-series data. In a recent
evaluation of invasive pneumococcal disease incidence, trends
expected under continued use of 7-valent pneumococcal conju-
gate vaccine provided a counterfactual condition for measuring
the impact of the switch to a 13-valent vaccine targeting emerg-
ing serotypes (124). Bayesian averaging of models encoding
differing pre- and postvaccination trends and change points pro-
vides a generalized strategy for defining such counterfactual
comparisons (125). Other signals of transmission intensity in
surveillance data, such as age of infection and sub- or multiann-
ual periodicity, may provide additional insights while reducing
sensitivity to fluctuations in reporting effort (126, 127).

The re-emergence of pathogens against which vaccines are
widely deployed, such as varicella, pertussis, and mumps in the
United States, poses additional challenges for conducting vac-
cine effectiveness studies. Situational factors may undermine
researchers’ ability to establish the extent to which cases owe to
primary or secondary vaccine failure in all or certain vaccine re-
cipients, and whether emerging pathogen lineages are escaping
vaccine-driven immune pressure. For instance, high compli-
ance with vaccine schedules may limit variation in individuals’
vaccination status and exposures, necessitating large samples to
detect factors influencing vaccine performance (128). Because
re-emergence most likely reflects the expansion of 1 or several
pathogen clades, limited pathogen diversity may hinder the
application of conventional approaches to identifying microbial
determinants of vaccine escape (129, 130). Novel methods to
distinguish null from vaccine-driven mutations in antigen-
coding regions (102, 131) may streamline efforts to identify
vaccine escape, while mathematical modeling provides a basis
for comparing candidate hypotheses with observations (26, 27).

Vaccine safety

Because vaccine studies are typically powered for primary
clinical endpoints, long-term observational studies are needed
to monitor for rare vaccine-attributable adverse events. Such
studies have been crucial to identifying safety concerns such
as intussusception after rotavirus vaccination (132) and to refut-
ing spurious links, such as autism onset after measles-mumps-
rubella vaccination (133). However, unique challenges arise in
vaccine safety studies; at the individual level, vaccination and
adverse-event detection may be confounded due to health-care–
seeking behavior, whereas at the population level, age-related
confounding may occur when vaccine recommendations are
based on the individual’s age.

Ecological designs taking advantage of natural experiments
have proven useful in numerous studies of vaccine safety (134,
135) but inconclusive for certain classes of rare events, including
those that also result from the vaccine-targeted infection (136,
137). Recent years have seen growing interest in case-onlymeth-
ods offering the ability to reduce or rule out individual-level
sources of confounding. Case-crossover methods are common
among such approaches (138, 139) and resemble matched
case-control studies by sampling “control” periods from the
person-time contributed by case individuals before an adverse
event. Self-controlled case-series methods similarly benefit
from the use of cases as their own controls, following a cohort
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logic in estimating the relative incidence of adverse events
after vaccination within specified risk periods (140); with ade-
quate sample size, researchers may be able to use such analy-
ses to eliminate or greatly reduce potential time- or age-related
confounding.

Antimicrobial drugs

In response to the growing threat posed by antimicrobial
resistance, the World Health Organization and national gov-
ernments have prioritized bringing novel antimicrobial drugs
to market (141). These plans will necessitate phase III trials in
which the efficacy of new therapeutic agents is addressed and
possibly phase IV studies, in which the optimal use of new
and existing drugs, either singly or in combination, can be
determined. Whereas patients traditionally have been enrolled
in antimicrobial treatment studies on the basis of target bacterial
species infections or clinical syndromes, it is uncertain within
what strata such trials may yield transportable inferences. Rather
than merely the infecting pathogen’s baseline resistance or sus-
ceptibility phenotype, strata may be defined by factors such as
pathogen lineage, mutational barriers to resistance development
(142), and presence of horizontally transferable resistance ele-
ments in cocolonizing agents or environmental sources (143).
Stratification based on interpatient and even intrapatient tumor
heterogeneity is an emerging feature of cancer therapy trials and
may provide a template for such designs (144).

In addition to clinical endpoints, carriage of susceptible and
resistant bacteria, including commensal agents not purposefully
targeted by treatment, can inform the impact of treatment on resis-
tance selection in targeted and bystander species (145). Whereas
between-group differences in the absolute prevalence of coloniza-
tion with resistant organisms (146) are tested for routinely, strati-
fied measurements (see the reports of Shrag et al. (147) and
Feikin et al. (148), for example) of the effect of treatment on
acquisition and clearance of susceptible and resistant patho-
gens are more informative of the underlying biology (149) and
may detect signals of selection masked by simpler between-
group comparisons (150, 151).

Studies are also needed to address optimal deployment of
new and existing antimicrobial drugs in clinical practice. The
tradeoff between maximizing a drug’s impact and minimizing
resistance selection has led policymakers to ration certain new
drugs as last-resort treatments. However, in recent experience,
such decisions have ignited ethical debates (152). Coupling
mathematical modeling with field-based studies has proven
useful for understanding the effectiveness of antimicrobial use
policies, as highlighted in recent evaluations of the risk of
resistance under population-wide access of the tuberculosis
drug bedaquiline (153, 154) and antimicrobial cycling to limit
resistance selection in hospital settings (155, 156).

ETIOLOGIC UNDERSTANDING

Whereas certain efforts we have discussed have been made to
identify novel microorganisms able to cause human infection
(40, 157), most epidemics caused by emerging pathogens have
been recognized first by clusters of anomalous syndromes—such
as cardiopulmonary syndrome caused byNewWorld hantaviruses,
severe acute respiratory syndrome caused by a coronavirus,

and congenital abnormalities caused by Zika virus —before the
role or even existence of the etiologic microorganism had been
characterized. The problem of ascribing a clinical syndrome to
an etiologic agent is among the oldest in epidemiology, dating at
least to the 19th century, when Robert Koch laid out criteria for
such inference (i.e., Koch’s, or more correctly, Henle-Koch’s,
postulates (158)). However, these postulates have long been rec-
ognized as inadequate, particularly for illnesses caused by
viruses, and thus of largely historical interest (159); for instance,
the notion that a pathogen should be absent from healthy indivi-
duals is incompatible with the prominence of carriage and
asymptomatic infection in the natural history of numerous
pathogens. A growing appreciation of the complexity of
the human microbiome, and the likelihood that intricate mix-
tures of microorganisms at diverse body sites may be either the
cause or consequence of both detrimental and beneficial physi-
ological states, has further highlighted the difficulty of linking a
given health outcome to infection by a single microorganism.

The now-recognized critically important role of persistent
infection and the inflammation it can produce in diverse can-
cers and possibly other chronic diseases has further dimin-
ished the relevance of Koch’s postulates and the age-old
distinction between infectious and chronic diseases, as illus-
trated in the well-known example of human papillomavirus
causing cervical, anal, and oral cancers (160). The best causal
understanding of such relationships has come from random-
ized trials demonstrating that infection-preventing interven-
tions are efficacious against downstream chronic illness, such
as peptic ulcers due to Helicobacter pylori and chronic wheeze
due to respiratory syncytial virus (161, 162). Natural experiments
following the same intuition have provided additional evidence of
such relationships, such as measles-induced immunosuppression
(163), malnutrition and stunting due to enteric infection (164),
and complex or chronic otitis media due to tissue damage from
acute early-life disease (165). Such relationships have proven diffi-
cult to probe in the absence of a randomized or natural experiment,
because of the likelihood that confounding factors influence indivi-
duals’ risk for initial infection as well as chronic sequelae. New
paradigms for ascribing an etiologic role to microorganisms and
resulting host responses are clearly needed andmay prove impor-
tant in efforts to quantify the health impacts of infectious disease
interventions.

SUMMARY

The recognition in the 1970s and 1980s that infectious diseases
were not, in fact, disappearing as important causes of morbidity
and mortality in human populations has been followed by re-
newed interest in these conditions, especially in the emergence
or re-emergence of diverse infectious diseases and in the role
of infection in various chronic diseases. At the same time, ad-
vances in epidemiologic and statistical methods, together with the
growing availability of data from diverse sources, have provided
new tools and approaches for studying infectious diseases. The
infectious disease epidemiologists of the future will need a solid
grounding in the biology of infection and the host immune
response, as well as training in the increasingly sophisticated ap-
proaches to causal inference; the manipulation and analysis of
large-scale data sets, including pathogen genome sequences; and
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mathematical modeling, together with the behavioral and social
determinants of health. Integration of these elements into epidemi-
ology training programs (e.g., through coursework in Bayesian
statistics and phylogenetics) represents an increasingly important
consideration for academic departments.
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