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ABSTRACT Cross-validation of methods is an essential component of genome-enabled prediction of complex
traits. We develop formulae for computing the predictions that would be obtained when one or several cases are
removed in the training process, to become members of testing sets, but by running the model using all
observations only once. Prediction methods to which the developments apply include least squares, best linear
unbiased prediction (BLUP) of markers, or genomic BLUP, reproducing kernels Hilbert spaces regression with
single or multiple kernel matrices, and any member of a suite of linear regression methods known as “Bayesian
alphabet.” The approach used for Bayesian models is based on importance sampling of posterior draws. Proof of
concept is provided by applying the formulae to a wheat data set representing 599 inbred lines genotyped for
1279 markers, and the target trait was grain yield. The data set was used to evaluate predictive mean-squared
error, impact of alternative layouts on maximum likelihood estimates of regularization parameters, model com-
plexity, and residual degrees of freedom stemming from various strengths of regularization, as well as two forms
of importance sampling. Our results will facilitate carrying out extensive cross-validation without model retraining
for most machines employed in genome-assisted prediction of quantitative traits.
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Whole-genome-enabled prediction, introduced by Meuwissen et al.
(2001), has received much attention in animal and plant breeding
(e.g., Van Raden 2008; Crossa et al. 2010; Lehermeier et al. 2013),
primarily because it can deliver reasonably accurate predictions of
the genetic worth of candidate animals or plants at an earlier time in
the context of artificial selection. It has also been suggested for pre-
diction of complex traits in human medicine (e.g., de los Campos et al.
2011; Makowsky et al. 2011; Vázquez et al. 2012; López de Maturana
et al. 2014; Spiliopoulou et al. 2015)

An important contribution of Utz et al. (2000) and of Meuwissen
et al. (2001) was implanting cross-validation (CV) in plant and animal

breeding as a mechanism for comparing prediction models, typically
multiple linear regressions on molecular markers. In retrospect, it is
perplexing that the progression of genetic prediction models, e.g., from
simple “sire” or “family” models in the late 1960s (Henderson et al.
1959) to complex multivariate and longitudinal specifications (Mrode
2014), proceededwithout CV, as noted byGianola andRosa (2015). An
explanation, at least in animal breeding, is the explosion of best linear
unbiased prediction, BLUP (Henderson 1973, 1984). The power and
flexibility of the linear mixed model led to the (incorrect) belief that a
bigger model is necessarily better, simply because of extra explanatory
power from an increasing degree of complexity. However, a growing
focus on predictive inference and on CV has altered such perception. A
simple prediction model may produce more stable, and even better,
results than a complex hierarchical model (Takezawa 2006; Wimmer
et al. 2013), and the choice can bemade via CV. Today, CV is a sine qua
non part of studies comparing genome-assisted prediction methods.

Most often, CV consists of dividing a data set with n cases (each
including a phenotypic measurement and a vector of genomic covari-
ables) into a number of folds (K) of approximately equal size. Data in
K 2 1 folds are used for model training, and to effect predictions of
phenotypes in the testing fold, given the realized values of the genomic
covariables. The prediction exercise is repeated for each fold, and the
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overall results are combined; this is known as a K-fold CV (Hastie
et al. 2009). A loss function, such as mean-squared error (MSE) or
predictive correlation is computed to gauge the various predictive
machines compared. However, the process must be repeated a num-
ber of times, with folds reconstructed at random (whenever possi-
ble) to obtain measures of CV uncertainty (e.g., Okut et al. 2011;
Tusell et al. 2014). CV is computationally taxing, especially when
Bayesian prediction models with a massive number of genomic
covariates and implemented via Markov chain Monte Carlo (MCMC)
are involved in the comparison.

Stylized formulae (e.g., Daetwyler et al. 2008) suggest that the
expected predictive correlation (“accuracy”) in genome-enabled pre-
diction is proportional to training sample size (n). On intuitive
grounds, more genetic variability ought to be spanned as a training
sample grows, unless additional cases bring redundant information.
With larger n, it is more likely that genomic patterns appearing in a
testing set are encountered in model training. Although the formulae
do not always fit real data well (Chesnais et al. 2016), it has been
observed that a larger n tends to be associated with larger predictive
correlations (Utz et al. 2000; Erbe et al. 2010).

Arguably, there is no better expectation than what is provided by a
CV conducted under environmental circumstances similar to those
under which the prediction machine is going to be applied. When n is
small, the largest possible training set sample size is attained in a leave-
one-out (LOO) CV, e.g., Ober et al. (2015) with about 200 lines of
Drosophila melanogaster. In LOO CV, n 2 1 cases are used for model
training, to then predict the single out-of-sample case. Model training
involves n implementations, each consisting of a training sample of size
n 2 1 and a testing set of size 1.

It is not widely recognized that it is feasible to obtain CV results by
running the model only once, which is well known for least-squares
regression (e.g., Seber and Lee 2003). Here, we show that this idea
extends to other prediction machines, such as ridge regression (Hoerl
and Kennard 1970), genome-based best linear unbiased prediction
(GBLUP; Van Raden 2008), and reproducing kernel Hilbert spaces
regression (RKHS; Gianola et al. 2006; Gianola and van Kaam 2008).
It is also shown that the concept can be applied in a MCMC context to
any Bayesian hierarchical model, e.g., members of the “Bayesian alpha-
bet” (Meuwissen et al. 2001; Gianola et al. 2009; Gianola 2013). This
manuscript reviews available results for least-squares based CV, and
shows how CV without actually doing CV can be conducted for ridge
regression, BLUP of marker effects, GBLUP, and RKHS for any given
kernel matrix. It is described how importance sampling can be used to
produce Bayesian CV by running MCMC only once, which has great
advantage in view of the intensiveness of MCMC computations. Illus-
trations are given by using a well characterized data set containing
wheat grain yield as phenotype and 1279 binary markers as regressors,
and the paper concludes with a Discussion. Most technical results are
presented in a series of Appendices, to facilitate reading the main body
of the manuscript.

CROSS-VALIDATION WITH ORDINARY LEAST-SQUARES

Setting
A linear model used for regressing phenotypes on additive codes at
biallelicmarker loci (21, 0, 1 for aa,Aa andAA, respectively), such as in
a genome-wide association study, is

y ¼ Xbþe: (1)

Here, y is the n · 1 vector of phenotypic measurements, X ¼ fxijg is
the n· pmarker matrix, and xij is the number of copies of a reference

allele at locus j observed in individual i; b is a p · 1 vector of fixed
regressions on marker codes, known as allelic substitution effects.
Phenotypes and markers are often centered; if an intercept is fitted,
the model is expanded by adding b0 as an effect common to all
phenotypes. The residual vector is assumed to follow the distribution
e � Nð0; Is2

e Þ;where I is an n · n identity matrix, and s2
e is a variance

parameter common to all residuals.
The basic principles set here carry to the other prediction methods

discussed in this paper. In this section, we assume rankðXÞ ¼ p, n so
that ordinary least-squares (OLS) or maximum likelihood under the
normality assumption above can be used. The OLS estimator of b is
b̂ ¼ ðX9XÞ21X9y, and the fitted residual for datum i is êi ¼ yi 2 xi9 b̂,
where xi9 is the ith row of X: Assuming the model holds, Eðb̂Þ ¼ b, so
the estimator is unbiased. A review of the pertinent principles is given
in Appendix A, from which we extract results.

It is shown in Appendix A that the uncertainty of a prediction, as
measured by variance, increases with p (model complexity), and de-
creases with the size of the testing set, ntest . Two crucial matters in
genome-enabled prediction must be underlined. First, if the model is
unnecessarily complex, prediction accuracy (in the MSE sense) de-
grades unless the increase in variance is compensated by a reduction
in prediction bias. Second, if the training set is made large at the
expense of the size of the testing set, prediction mean squared error
will be larger than otherwise. The formulae of Daetwyler et al. (2008)
suggest that expected prediction accuracy, as measured by predictive
correlation (not necessarily a good metric; González-Recio et al. 2014),
increases with n. However, the variability of the predictions would
increase, as found by Erbe et al. (2010) in an empirical study of Holstein
progeny tests with alternative CV layouts. Should one aim at a higher
expected predictive correlation or at a more stable set of predictions at
the expense of the former? This question does not have a simple
answer.

Leave-one-out (LOO) cross-validation
LOO is often usedwhenn is small and there is concern about the limited
size of the training folds. LetX½2i� beX with its ith row ðxi9Þ removed, so
that its order is ðn2 1Þ · p: Since

X9X ¼
Xn

i¼1
xix9i;

X9½2i�X½2i�¼ X9X2 xix9i;     i ¼ 1; 2; . . . ; n; (2)

are p · p matrices. Likewise, if y½2i� is y with its ith element removed,
the OLS right-hand sides in LOO are

X9½2i�y½2i� ¼
Xn

i¼1
xiy2 xiyi ¼ X9y2 xiyi (3)

Making use of (81) in Appendix B, the least-squares estimator of b
formed with the ith observation deleted from the model is expressible
as

b̂½2i� ¼
�
X9½2i�X½2i�

�21
X9½2i�y½2i�

¼
"�

X9X
�21 þ

�
X9X

�21
xixi9

�
X9X

�21

12 xi9ðX9XÞ21xi

#�
X9y2 xiyi

�
: (4)

Employing Appendix C, the estimator can be written in the form

b̂½2i� ¼ b̂2

�
X9X

�21
xiêi

12 hii
; (5)
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where hii ¼ xi9ðX9XÞ21xi and êi ¼ yi 2 xi9b̂ is the fitted residual us-
ing all n observations in the analysis; the fitted LOO residual is

yi 2 xi9b̂½2i� ¼
yi 2 xi9b̂
12 hii

: (6)

Hence, the LOO estimator and prediction error can be computed
directly from the analysis carried out with the entire data set: no need
for n implementations.

Making use of (6), the realized LOO CV mean squared error of
prediction is

PMSEð1Þ ¼ 1
n

Xn

i¼1

�
yi2xi9b̂
12hii

�2

; (7)

and the expected mean squared error of prediction is given by

EyjX½PMSEð1Þ� ¼ 1
n
E

"Xn

i¼1

�
yi2xi9b̂
12hii

�2
#

¼ 1
n

n
d9Ddþ tr½DVarðy2Xb̂Þ�

o
(8)

where D ¼ fð12hiiÞ22g is an n· n diagonal matrix. As shown in Ap-
pendix A the LOO expected PMSE gives an upper bound for the expected
squared error in least-squares based CV. The extent of overstatement of
the error depends on the marker matrix X (via the h9s) and on the
prediction biases di:Hence, LOOCV represents a conservative approach,
with the larger variance of the prediction resulting from the smallest
possible testing set size ðntest ¼ 1Þ If the prediction is unbiased, the
d2 terms vanish, and it is clear that observations with h2 values closer
to 1 contribute more to squared prediction error than those with smaller
values, as themodel is close to overfitting the former type of observations.

Leave-d-out cross-validation
The preceding analysis suggests that reallocation of observations from
training into testing sets is expected to reduce PMSE relative to the LOO
scheme.Most prediction-oriented analyses useK2 fold CV, whereK is
chosen arbitrarily (e.g., K ¼ 2; 5; 10) as mentioned earlier; the decision
of the number of folds is usually guided by the number of samples
available. Here, we address this type of scheme generically by removing
d out of the n observations available for training, and declaring the
former as members of the testing set. Let X½2d� be X with d of its rows
removed, and y½2d� be the data vector without the d corresponding data
points. As shown in Appendix D,

b̂½2d� ¼ b̂2
�
X9X

�21
X9½d�ðI2HdÞ21ê½d�; (9)

where Hd ¼ X½d�ðX9XÞ21X9½d�; note that ðI2HdÞ21 does not always
exist but canbe replacedby a generalized inverse, and b̂½2d� will be invariant
to the latter if p, n2 d. Predictions are invariant with respect to the
generalized inverse used. The similaritywith (5) is clear: ðI2HdÞ21 appears
in lieu of 12 hii; X9½d� of order p · d contains (in columns) the rows ofX
being removed, and ê½d� ¼ y½d� 2X½d�b̂ are the residuals corresponding to
the left out d2 plet obtained when fitting the model to the entire data set.

The error of prediction of the d phenotypes entering into the testing
set is

y½d� 2X½d�b̂½2d� ¼ y½d� 2X½d�

�
b̂2

�
X9X

�21
X9½d�ðI2HdÞ21

·
�
y½d� 2X½d�b̂

�	
¼ ðI2HdÞ21ê½d�: (10)

The mean-squared error of prediction of the d observations left out
(testing set) becomes

PMSEðdÞ ¼ 1
d

�
y½d�2X½d�b̂½2d�

�
9
�
y½d� 2X½d�b̂½2d�

�
¼ 1

d
ê9½d�ðI2HdÞ22ê½d�: (11)

The prediction bias obtained by averaging over all possible data sets is

Ey½d�;yj;X;X½d�

�
y½d� 2X½d�b̂

�
¼ Imd 2X½d�

�
X9X

�21
X9m ¼ dd; (12)

where md is a d · 1 vector of true means of the distribution of obser-
vations in the testing sets. After algebra,

Vary½d�;yj;X;X½d�

�
y½d� 2X½d�b̂

�
¼ ðI2HdÞs2

e : (13)

and

Ey½d�;yj;X;X½d� ½PMSEðdÞ� ¼ 1
d

n
d9dðI2HdÞ22dd þ tr


ðI2HdÞ21�s2
e

o
:

(14)

Observe that the term in brackets is a matrix counterpart of (76) in
Appendix A, withHd playing the role of hii in the expression. The two
terms in the equation above represent the contributions and bias and
(co) variance to expected squared prediction error.

The next section illustrates how the preceding logic carries to
regression models with shrinkage of estimated allelic substitution
effects ðb̂Þ:

CROSS-VALIDATION WITH SHRINKAGE OF REGRESSION
COEFFICIENTS

BLUP of markers (ridge regression)
Assume again that phenotypes andmarkers are centered.Marker effects
b are now treated as random variables and assigned the normal
Nð0; Is2

bÞ distribution, where s2
b is a variance component. The BLUP

of b (Henderson 1975) is given by

br ¼
�
X9X þ Il

�21
X9y; (15)

where l ¼ s2
e

s2
b

is a shrinkage factor taken as known. BLUP has the
same mathematical form as the ridge regression estimator (Hoerl
and Kennard 1970), developed mainly for tempering problems
caused by colinearity among columns of X in regression models
where p, n; and with all regression coefficients likelihood-identified.
The solution vectorbr can also be assigned a Bayesian interpretation
as a posterior expectation in a linear model with Gaussian residuals,
and Nð0; Is2

bÞ used as prior distribution, with variance components
known (Dempfle 1977; Gianola and Fernando 1986). A fourth view
of br is as a penalized maximum likelihood estimator under an L2
penalty (Hastie et al. 2009). Irrespective of its interpretation, br provides
a “point statistic” of b for the n, p situation. In BLUP, or in Bayesian
inference, it is not a requirement that the regression coefficients are
likelihood identified. There is one formula with four interpretations
(Robinson 1991).

Given a testing set with marker genotype matrix Xtest; the point
prediction of yet to be observed phenotypes is Xtestb

r: We consider
LOO CV because subsequent developments assume that removal of a
single case has a mild effect on s2

e and s2
b. This assumption is
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reasonable for animal and plant breeding data sets where n is large, so
removing a single observation should have a minor impact on, say,
maximum likelihood estimates of variance components. If l is kept
constant, it is shown in Appendix E that

br
½2i� ¼ br 2

C21xiê
r
i

12 hrii
; (16)

where C ¼ X9X þ Il, hrii ¼ x9iC21xi and êri ¼ yi 2 x9ib
r is the re-

sidual from ridge regression BLUP applied to the entire sample. A
similar expression for leave-d-out cross-validation using the same set
of variance components is also in Appendix E. If d=n is smaller and n
is reasonably large, the error resulting from using variance compo-
nents estimated from the entire data set should be small.

The error of predicting phenotype i is now yi 2 x9ib
r
½2i� and is

expressible as

yi 2 x9ib
r
½2i� ¼

�
yi 2 x9ibr�
12 hrii

; (17)

similar to that LOO OLS. Letting dr ¼ fEðyi 2 x9ib
rÞg be a vector of

prediction biases, Dr ¼ fð12hriiÞ22g and Mr ¼ I2XC21X9; the
expected prediction MSE is

EyjX;s2
e ;s

2
b
½PMSErð1Þ� ¼ 1

n
d9rDrdr þ s2

e

n
tr
h
DrMr

�
XX9l21 þ I

�
Mr

i
:

(18)

The first term is the average squared prediction bias, and the second is
the prediction error variance. As s2

b/0, (18) tends to the least-
squares PMSEð1Þ:

Genomic BLUP
Oncemarker effects are estimated asbr , a representation of genomic
BLUP (GBLUP) for n individuals is the n · 1 vector g ¼ Xbr with its
ith element being ĝi ¼ x9ib

r . In GBLUP, “genomic relationship ma-
trices” are taken as proportional to XX9 (where X often has centered
columns); various genomic relationship matrices are in, e.g., Van
Raden (2008), Astle and Balding (2009) and Rincent et al. (2014).
Using (16) LOO GBLUP (i.e., excluding case i from the training
sample) is

ĝ½2i� ¼ X½2i�br
½2i� ¼ X½2i�br 2

X½2i�C21xi
�
yi 2 x9ibr�

12 hii
: (19)

The formula above requires finding br; given l; the procedure entails
solving p equations on p unknowns and finding the inverse of C is
impossible or extremely taxing when p is large. A simpler alternative
based on the well-known equivalence between BLUP of marker ef-
fects and of additive genotypic value is used here.

If g ¼ Xb is a vector of marked additive genetic values and
b � Nð0; Is2

bÞ; then g � Nð0;XX9s2
bÞ: Many genomic relationship

matrices are expressible as G ¼ XX9
c for some constant c; so that

g � Nð0;Gs2
gÞ ands2

g ¼ cs2
b is called “genomic variance” or “marked

additive genetic variance” if X encodes additive effects; clearly, there is
no loss of generality if c ¼ 1 is used, thus preserving the l employed for
BLUP of marker effects. The model for the “signal” g becomes

y ¼ Xbþ e ¼ gþ e: (20)

Letting C ¼ Iþ G21l, then BLUPðgÞ ¼ ĝ ¼ fĝig ¼ C21y is GBLUP
using all data points. Appendix F shows how LOO GBLUP and d-out

GBLUP can be calculated indirectly from elements or blocks ofC; and
elements of y:

RKHS regression
In RKHS regression (Gianola et al. 2006; Gianola and van Kaam 2008),
input variables, e.g., marker codes, can be transformed nonlinearly,
potentially capturing both additive and nonadditive genetic effects
(Gianola et al. 2014a, 2014b), as further expounded by Jiang and Reif
(2015) and Martini et al. (2016). When a pedigree or a genomic re-
lationship matrix is used as kernel, RKHS yields pedigree-BLUP and
GBLUP, respectively, as special cases (Gianola and de los Campos 2008;
de los Campos et al. 2009, 2010).

The standard RKHS model is

y ¼ gþ e ¼ Kaþ e; (21)

with g ¼ Ka (and therefore gi ¼ ki9a); K is an n· n positive (semi)-
definite symmetric matrix so that K ¼ K9; a ¼ K21g when the in-
verse is unique, and a � Nð0;K21s2

aÞ: BLUPðaÞ can be obtained by
solving the system  

K2 þ K
s2
e

s2
a

!
â ¼ Ky; (22)

with solution (since K9K ¼ K2 and K is invertible)

â ¼
 
Kþ I

s2
e

s2
a

!21

y: (23)

The BLUP of g under a RKHS model is

BLUPKðgÞ ¼ BLUPKðKaÞ

¼ K

�
Kþ I

s2
e

s2
a

�21

y ¼ �Iþ K21lK
�21

y; (24)

where K stands for “kernel,” and lK ¼ s2
e

s2
a

: Putting
C21
K ¼ ðIþ K21lRKHSÞ21; the RKHS solution ĝK ¼ C21

K y has the
same form as BLUPðgÞ ¼ ĝ ¼ C21y; as given in the preceding sec-
tion. Using Appendix F, it follows that

~gd;K ¼
�
I2Cdd

K

�21�
ĝd;K 2Cdd

K yd

�
; (25)

~ed;K ¼ yd 2 ~gd;K ¼
�
I2Cdd

K

�21�
yd 2 ĝd;K

�
; (26)

and

PMSEKðdÞ ¼
~e9d;K~ed;K

d
: (27)

The previous expressions reduce to the LOO CV situation by setting
d ¼ 1:

BAYESIAN CROSS-VALIDATION

Setting
ManyBayesian linear regressiononmarkersmodelshavebeenproposed
for genome-assisted prediction of quantitative traits (e.g., Meuwissen
et al. 2001; Heslot et al. 2012; de los Campos et al. 2013; Gianola 2013).
All such models pose the same specification for the Bayesian sampling
model (a linear regression), but differ in the prior distribution assigned
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to allelic substitution effects. Implementation is often via MCMC,
where computations are intensive even in the absence of CV; shortcuts
and approximations are not without pitfalls. Is it possible to do CV by
running an MCMC implementation only once? What follows applies
both to LOO and d2 out CV situations as well as to anymember of the
Bayesian alphabet (Gianola et al. 2009; Gianola 2013)

Suppose some Bayesianmodel has been runwithMCMC, leading
to S samples collected from a distribution with posterior density
pðujy;HÞ; here, u are all unknowns to be inferred and H denotes
hyper-parameters arrived at in a typically subjective manner, e.g.,
arbitrary variances in a four-component mixture distribution
assigned to substitution effects (MacLeod et al. 2014). In CV, the
data set is partitioned into y ¼ ðytest ; ytrainÞ, training and testing sets
are chosen according to the problem in question, and Bayesian
learning is based on the posterior distribution ½ujytrain;H�. Predic-
tions are derived from the predictive distribution of the testing set
data

p
�
ytest

��ytrain;H� ¼
Z

p
�
ytest

��u�p�ujytrain;H�du; (28)

the preceding assumes that ytest is independent of ytrain given u, a
standard assumption in genome-enabled prediction. The point pre-
dictor chosen most often is the expected value of the predictive
distribution

E
�
ytest

��ytrain;H� ¼
Z Z

ytestp
�
ytest

��u�p�ujytrain;H�dudytest
¼
Z Z

ytestp
�
ytest ; ujytrain;H

�
dudytest (29)

¼
Z

E
�
ytest

��u�p�ujytrain;H�du (30)

In the context of sampling, representation (29) implies that one can
explore the “augmented” distribution ½ytest ; ujytrain;H�, and estimate
Eðytest

��ytrain;HÞ by ergodic averaging of ytest samples. Representation
(30) uses Rao-Blackwellization: if Eðytest

��uÞ can be written in closed
form, as is the case for regression models ðXtestbÞ, the Monte Carlo
variance of an estimate of Eðytest

��ytrain;HÞ based on (30) is less than,
or equal to, that of an estimate obtained with (29).

We describe Bayesian LOOCV, but extension to a testing set of size
d is straightforward. In LOO, the data set is partitioned as y ¼ ðyi; y2iÞ;
i ¼ 1; 2; . . . ; n; where yi is the predictand and y2i is the vector con-
taining all other phenotypes in the data set. A brute force process
involves running the Bayesian model n times, producing the posterior
distributions ½ujy2i;H�; i ¼ 1; 2; . . . ; n: Since LOO CV is computa-
tionally formidable in anMCMC context, procedures based on drawing
samples from ½ujy;H� and converting these into realizations from
½ujy2i;H� can be useful (e.g., Gelfand et al. 1992; Gelfand 1996;
Vehtari and Lampinen 2002). Use of importance sampling, and of
sampling importance resampling (SIR), algorithms for this purpose is
discussed next. Cantet et al. (1992) andMatos et al. (1993) present early
applications of importance sampling to animal breeding.

Importance sampling
Weseek toestimate themeanof thepredictivedistributionof the left-out
data point Eðyi

��y2i;HÞ: Since ei � Nð0;s2
e Þ is independent of y2i, one

has

E
�
yi
��y2i;H

� ¼ xi9E
�
bjy2i;H

�
: (31)

As shown in Appendix G

E
�
bjy2i;H

� ¼ Ebjy;H ½wiðbÞb�
Ebjy;H ½wiðbÞ� ; i ¼ 1; 2; . . . ; n: (32)

Here, wiðbÞ ¼ pðbjy2i;HÞ
pðbjy;HÞ is called an “importance sampling” weight

(Gelfand et al. 1992; Albert 2009). Expression (32) implies that the
posterior mean of b in a training sample can be expressed as the ratio
of the posterior means of wðbÞb, and of wðbÞ taken under a Bayesian
run using the entire data set. It is shown in Appendix F that, given

draws bðsÞ; s2ðsÞ
e ðs ¼ 1; 2; . . . ; SÞ from the full-posterior distribution,

the posterior expectation can in equation (32) be estimated as

Ê
�
bjy2i;H

� ¼XS
s¼1

wi;sb
ðsÞ;   i ¼ 1; 2; . . . ; n; (33)

where

wi;s ¼
p21
�
yi
��bðsÞ;s2ðsÞ

e

�
XS
s¼1

p21
�
yi
��bðsÞ;s2ðsÞ

e

�;   i ¼ 1; 2; . . . ; n;     s ¼ 1; 2; . . . ; S:

(34)

Bymaking reference to (31), it turns out that aMonteCarlo estimate of
themean of the predictive distribution of datum i in the Bayesian LOO
CV is given by

Ê
�
yi
��y2i;H

� ¼ xi9
XS
s¼1

wi;sb
ðsÞ;   i ¼ 1; 2; . . . ; n: (35)

This type of estimator holds for any Bayesian linear regression model
irrespective of the prior adopted, i.e., it is valid for any member of the

Figure 1 Predictive mean squared error (PMSE) of ordinary least-squares
for seven cross-validation (CV) layouts, each replicated 300 times at
random. Training sets had size 599 – d (d = 2,3,. . .,7, and 8). Hori-
zontal line is PMSE for leave-one-out CV.
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“Bayesian alphabet” (Gianola et al. 2009; Gianola 2013). In d2 out
CV, the prediction is

Ê
�
yd
��y½2d�;H

�
¼ Xd

XS
s¼1

wdb
ðsÞ; (36)

where

wd ¼
p21
�
yd
��bðsÞ;s2ðsÞ

e

�
XS
s¼1

p21
�
yd
��bðsÞ;s2ðsÞ

e

�; (37)

where p
�
yd
��bðsÞ;s2ðsÞ

e

�
¼
Yd
j¼1

p21
�
yj
��bðsÞ;s2ðsÞ

e

�
for j being a mem-

ber of the d2 plet of observations forming the testing set.
The importance sampling weights are the reciprocal of conditional

likelihoods; this specific mathematical representation can produce
imprecise estimates of posterior expectations, especially if the posterior
distributionwith all data hasmuch thinner tails than the posterior based
on the training set. Vehtari andLampinen (2002) calculate the “effective
sample size” for a LOO CV as

Seff ;i ¼
1XS

s¼1

w2
i;s

¼ 1

S
h
VarðwiÞ þ �wi

2
i : (38)

If all weights are equal over samples, the weight assigned to any draw
is S21; and the variance of the weights is 0; yielding Seff ;i ¼ S; on the
other hand, Seff ;i can be much smaller than S if the variance among
weights is large, e.g., when some weights are much larger than
others.

The SIR algorithm described by Rubin (1988), Smith and Gelfand
(1992) and Albert (2009) can be used to supplement importance

sampling; SIR can be viewed as a weighted bootstrap. Let the sampled
values and the (normalized) importance sampling weights be bðsÞ and
wi;s; respectively, for i ¼ 1; 2; . . . ; n and s ¼ 1; 2; . . . ; S: Then, obtain
a resample of size S by sampling with replacement overbð1Þ;bð2Þ; . . . ;bðSÞ

with unequal probabilities proportional to wi;1;wi;2; . . . ;wi;S; respec-
tively, obtaining realizations bð1Þ

rep;b
ð2Þ
rep; . . . ;b

ðSÞ
rep: Finally, average re-

alizations for estimating Eðbjy2i;HÞ in (31).

The special case of “Bayesian GBLUP”
The term “BayesianGBLUP” is unfortunate but has become entrenched
in animal and plant breeding. It refers to a linear model that exploits
genetic or genomic similaritymatrix among individuals (as in GBLUP),
but where the two variance components are unknown and learned
in a Bayesian manner. Prior distributions typically assigned to vari-
ances are scale inverted chi-square processes with known scale and
degrees of freedom parameters (e.g., Pérez and de los Campos
2014). The model is y ¼ gþ e; with e � Nð0; Is2

e Þ; the hierarchical
prior is gjs2

g � Nð0;Gs2
gÞ; s2

g

���S2g ; ng and s2
e

��S2e ; ne, where the hyper-
parameters areH ¼ ðS2g ; ng ; S2e ; neÞ. A Gibbs sampler iteratively loops
over the conditional distributions

gjELSE � N
�
ĝ;VgjELSE

�
;

s2
g

���ELSE �
�
g9G21gþ S2gng

�
x22
nþng

;

s2
e

��ELSE �
h
ðy2gÞ9ðy2 gÞ þ S2ene

i
x22
nþne

:

(39)

Above, ELSE denotes the data plus H and all other parameters other
than the ones being sampled in a specific conditional posterior dis-
tribution; x22

df indicates the reciprocal of a draw from a central chi-
square distribution on df degrees of freedom. The samples of g are
drawn from amultivariate normal distribution of order n: Its mean, ĝ;
is GBLUP computed at the current state of the variance ratio, which
varies at random from iteration to iteration; the covariance matrix is

Figure 2 Maximum likelihood estimates of l ¼ s2
e

s2
b

for each of 599 leave-
one-out settings; s2

e ¼ residual variance, s2
b ¼ variance of marker ef-

fects. The bottom panel gives the empirical distribution function of
the estimates.

Figure 3 Maximum likelihood estimates of l ¼ s2
e

s2
b

for each of seven

CV settings, each replicated 100 times at random. Training sets had
size 599 – d; d = 10, 50, 100, 200, 300, 400, and 500.
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VgjELSE ¼ C21s2
e : The current GBLUP is calculated as ĝ ¼ C21y ¼

ðIþ G21lÞ21y; in this representation,G21 must exist. If it does not, a
representation of GBLUP that holds is

ĝ ¼ GðGþ IlÞ21y ¼ By; (40)

whereB is an n · nmatrix of regression coefficients of g on y. Likewise

VgjELSE ¼ GðGþ IlÞ21s2
e ¼ Bs2

e : (41)

Once theGibbs sampler has been run and burn-in iterations discarded,
S samples become available for posterior processing, with sample s
consisting of fgðsÞ1 ; gðsÞ2 ; . . . ; gðsÞn ;s

2ðsÞ
g ;s

2ðsÞ
e g: In a leave-d-out CV, the

posterior expectation of gj (the point predictor of the future pheno-
type of individual j) is estimated as

Ê
�
gj
���y½2d�;H

�
¼
XS
s¼1

wj;sg
ðsÞ
2 ; j ¼ 1; 2; . . . ; n; (42)

where

wj;s ¼
p21
�
yd
��gðsÞd ;s

2ðsÞ
e

�
PS
s¼1

p21
�
yd
��gðsÞd ;s

2ðsÞ
e

�;       i ¼ 1; 2; . . . ; n;       s ¼ 1; 2; . . . ; S;

(43)

and

p
�
yd
��gðsÞd ;s2ðsÞ

e

�
¼
Y

d2Test

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðsÞ

e

q exp

2
642
�
yd2gðsÞd

�2
2s2ðsÞ

e

3
75; (44)

with the product of the normal densities taken over members of the
testing set. Sampling weights may be very unstable if d is large.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

EVALUATION OF METHODOLOGY
Themethodsdescribedherewereevaluatedusing thewheatdataavailable in
packageBGLR(Pérez andde losCampos 2014).This data set iswell curated
andhas also been used by, e.g., Crossa et al. (2010), Gianola et al. (2011) and

Long et al. (2011). The data originated in trials conducted by the Interna-
tional Maize andWheat Improvement Center (CIMMYT), Mexico. There
are 599 wheat inbred lines, each genotyped with 1279 DArT (Diversity
Array Technology) markers and planted in four environments; the target
trait was grain yield in environment 1. Sample size was then n ¼ 599 with
p ¼ 1279 being the number of markers. These DArT markers are binary
ð0; 1Þ and denote presence or absence of an allele at a marker locus in a
given line. There is no information on chromosomal location of markers.
The objective of the analysis was to illustrate concepts, as opposed to in-
vestigate a specific genetic hypothesis. The data set ofmoderate size allowed
extensive replication and reanalysis under various settings.

LOO vs. leave-d-out CV: ordinary least-squares
The linear model had an intercept and regressions on markers
301 through 500 in the data file; markers were chosen arbitrarily. Here,
p ¼ 201 and n ¼ 599; ensuring unique OLS estimates of substitution
effects, i.e., there was no rank deficiency in X.

SevenCV layouts were constructed inwhich testing sets of sizes 2, 3,. . .,
7, or 8 lines were randomly drawn (without replacement) from the 599 in-
bred lines. Training set sizes decreased accordingly, e.g., for d ¼ 7; training
sample size was 599 – 7= 592. Larger sizes of testing sets were not con-
sidered because ðI2HdÞ in (9) became singular as d increased beyond
that point. The training-testing process was repeated 300 times at random,
to obtain an empirical distribution of prediction mean squared errors.

For LOOCV, regression coefficientswere calculated using (5), and the
predictivemean squared errorwas computed as in (7). For the leave-d-out
CV, regressions and PMSE were computed with (9) and (11), respec-
tively. Figure 1 shows that the median PMSE for leave-d-out CV was
always smaller than the LOO PMSE (horizontal line), although it tended
toward the latter as d increased, possibly due to the increasingly smaller
training sample size. PMSE in LOOwas 1.12, while it ranged from 0.80 to
1.04 for testing sets containing two or more lines. An increase in testing
set size at the expense of some decrease in training sample size produced
slightly more accurate but less variable predictions (less spread in the
distribution of PMSE); this trend can be seen in the box plots depicted in
Figure 1. Differences were small but LOO was always less accurate.

BLUP of marker effects
Thedevelopments for ridge regressionorBLUPofmarkereffectsdepend
on assuming that allocation of observations into testing sets, with a
concomitant decrease in training set size, does not affect the ratio of
variance components appreciably.

First, we examined consequences of removing each of the 599 lines at
a time on maximum likelihood estimates (MLE) of marker ðs2

bÞ and

Figure 4 Empirical distribution function
of maximum likelihood estimates of
l ¼ s2

e
s2
b

for each of four CV settings each

replicated 100 times at random;   s2
e ¼

residual variance, s2
b ¼ variance of

marker effects. Training set sizes were
599 – d; d = 10, 100, 200, and 500.
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residual ðs2
e Þ variances. The model was as in (1), without an intercept

(phenotypes were centered), assuming b � Nð0; Is2
bÞ and

e � Nð0; Is2
e Þwere independently distributed, andwith all 1279markers

used when forming XX9: An eigen-decomposition of XX9 coupled with
the R function optim (G. de los Campos, personal communication) was
used for computingMLE. It was assumed that convergence was always to
a global maximum, as it was not practical to monitor the 599 implemen-
tations for convergence in each case. MLE of l ¼ s2

e
s2
b

were found by
replacing the unknown variances by their corresponding estimates.

With all lines used in the analysis,MLEðlÞ ¼ 189:9: Figure 2 displays
the 599 estimates of l, and the resulting empirical cumulative distribution
functionwhen LOOwas used. Removal of a single line producedMLEofl
ranging from 174.5 to 195.6 (corresponding to estimates of s2

b spanning
the range 5:12 5:7 · 1023); the 5 and 95 percentiles of the distribution of
the LOO estimates of l were 185.9 and 192.7, respectively. Model com-
plexity (Ruppert et al. 2003; Gianola 2013) was gauged by evaluating the
“effective number of parameters” as peff ¼ tr½XðX9X þ IlÞ21X9�; the
“effective degrees of freedom” are ne ¼ n2 peff : For the entire data set
with n ¼ 599 and p ¼ 1279; variation of l from 174.5 to 195.6 was
equivalent to reducing peff from 164.2 to 155.3, with ne ranging from
435.8 to 443.7. These metrics confirm that the impact of removing a single
line from the training process was fairly homogeneous across lines.

Next, we excluded d ¼ 10, 50, 100, 200, 300, 400, and 500 lines from
the analysis, while keeping p ¼ 1279 constant. The preceding was done
by sampling with replacement the appropriate number of rows from
the entire data matrix ðy;XÞ; and removing these rows from the anal-
ysis; the procedure was repeated 100 times at random for each value of
d; to obtain an empirical distribution of theMLE. Figure 3 and Figure 4
depict the distributions of estimates. As d increased (training sample
size decreased) the median of the estimates and their dispersion in-
creased. Medians were 192.0 ðd ¼ 10Þ; 196.3 ðd ¼ 50Þ; 192.7
ðd ¼ 100Þ; 201.7 ðd ¼ 200Þ; 212.5 ðd ¼ 300Þ, 222.0 ðd ¼ 400Þ, and
234.3 ðd ¼ 500Þ: The increase of medians as training sample size de-
creased can be explained as follows: (a) stronger shrinkage (larger l)

must be exerted on marker effects to learn signal from 1279 markers as
sample size decreases. (b) MLE of variance components have a finite
sample size bias, which might be upwards for l here; bias cannot be
measured, so the preceding is conjectural.

In short, it appears that keeping l constant in a LOO setting is
reasonable; however, the estimated variance ratio was sensitive with re-
spect to variation in training set size when 100 or more lines, i.e., 15% or
more of the total number of cases, were removed for model training.

To assess the impact on PMSE of number of lines removed from
training and allocated to testing, 300 testing sets for each of
d ¼ 10; 20; . . . ; 80; 90 lines were formed by randomly sampling (with
replacement) from the 599 lines. The regression model was trained on
the remaining lines using the entire battery of 1279 markers with
l ¼ 190. Figure 5 shows the distribution of PMSE for each of the
layouts. A comparison with Figure 1 shows that the PMSEs for BLUP
were smaller than for OLS; this was expected because, even though
training set sizes were smaller than those used for OLS, BLUP predic-
tions with l ¼ 190 are more stable and the model was more complex,
since 1279 markers were fitted jointly. As testing set size increased,
median PMSE was 0.68 ðd ¼ 10Þ 0.70 ðd ¼ 20Þ and 0.72–0.73 for
the other testing set sizes. For LOO, PMSE was 0.72. As in the case
of OLS, the distribution of PMSE over replicates became narrower as
d grew. As anticipated, decreases in training set size produced a mild
deterioration in accuracy of prediction (in anMSE sense) but generated
a markedly less variable CV distribution. Testing sets of about 10% of
all lines produced a distribution of PMSE with a similar spread to what
was obtained with larger testing sets without sacrificing much in mean
accuracy. We corroborated that attaining the largest possible training
sample is not optimal if done at the expense of testing set size, because
predictions are more variable.

Testing sets of size d ¼ 100 to d ¼ 500 (in increments of 50 lines)
were evaluated as in the preceding case, again using 300 replicates for
each setting and with l ¼ 190: Comparison of Figure 6 with Figure 5
indicates that a marked deterioration in PMSE ensued, which may be

Figure 5 PMSE of BLUP of markers (ridge regression) for 300 testing
sets in each of nine CV settings of sizes d = 10, 20, 30, 40, 50, 60, 70,
80, and 90; training set size was 599 – d.

Figure 6 PMSE of BLUP of markers (ridge regression) for 300 testing
sets in each of nine CV settings of sizes d = 100, 150, 200, 250, 300,
350, 400, 450, and 500; training set size was 599 – d.
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due to insufficient regularization or overfitting from the decrease in
training set size. For example, a testing set of size 500 implies that the
model with 1279markers was trained using only 99 inbred lines. In this
case, stronger regularization (shrinkage of regression coefficients to-
ward 0) may be needed than what is effected by l ¼ 190: To examine
whether overfitting or insufficient regularization was the source of
degradation in PMSE, the effective residual degrees of freedom

ne ¼ n2 d2 tr

�
X½2d�

�
X9½2d�X½2d� þ Il

�21
X9½2d�

�
(45)

were calculated for each of 70 combinations of
d ¼ ð50; 100; . . . ; 450; 500Þ and l ¼ ð100; 150; . . . ; 350; 400Þ; each
combination was replicated 50 times by sampling with replacement
from ðy;XÞ and extracting the appropriate number of rows: The ne
values were averaged over the 50 replications. Figure 7 displays ne
plotted against training set size (n2 d ¼ 99, 149,. . .,499, 549): the
impact of variations in l on ne was amplified in absolute and relative
terms as training set size increased. For instance, for n2 d ¼ 99, each
observation in the training set contributed 0.48 and 0.74 residual
degrees of freedom when l varied from 100 to 400; when
n2 d ¼ 549; the corresponding contributions were 0.64 and 0.82.
Figure 8 shows how ne varied with l for each of the training set sizes.
Overfitting did not seem to be the cause of degradation in PMSE
because the models “preserved” a reasonable number of degrees of
freedom in each case considered.

These results reinforce the point that, in shrinkage-based methods,
such as GBLUP or any member of the “Bayesian alphabet” (Gianola
et al. 2009; Gianola 2013), there is an interplay between sample size,
model complexity, and strength of regularization. The effective
number of parameters in the training process is given by n2 d2 ne;
and here it varied from 25.64 ðn2 d ¼ 99; l ¼ 400Þ to 198.73

ðn2 d ¼ 549; l ¼ 100Þ: Even though p ¼1279 markers were fitted,
the model was not able to estimate beyond about 200 linear com-
binations of marker effects. This illustrates that the “prior” (i.e., the
distribution assigned to marker effects) matters greatly when
n � p . In other words, there were � 1079 estimates of marker
effects that are statistical artifacts from regularization, and which
should not be construed as sensible estimates of marker locus ef-
fects, as pointed out by Gianola (2013). Bayesian learning would
gradually improve over time if n would grow faster than p; which
seems unlikely given a tendency toward overmodeling as sequence
and postgenomic data accrue.

Genomic BLUP
Standard GBLUP, ĝðlÞ; of genotypic values of the 599 lines
ðĝ i;   i ¼ 1; 2; . . . ; 599Þ was computed with l ¼ 190. Subsequently,
ĝ½2i�ðlÞ was obtained for each of the 599 lines, i.e., the GBLUP of all
lines after removing line i in the training process. Euclidean distances
between ĝðlÞ and ĝ½2i�ðlÞ were calculated as

diðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ĝðlÞ2ĝ½2i�ðlÞ

�
9
�
ĝðlÞ2 ĝ½2i�ðlÞ

�r
; (46)

this metricmeasures the extent to which removal of line i influences
model training. The minimum and maximum absolute distances
were 3 · 1024 and 1.082, respectively, and the coefficient of varia-
tion of distances was about 80%. An observation was deemed in-
fluential when diðlÞ≧0.83, the 99-percentile of the empirical
distribution. Figure 9 (top panel) shows a scatter plot of the
diðlÞ; influential lines (28, 440, 461, 503, 559, and 580) correspond
to points on top of the horizontal line. The relationship between
the phenotype of the line excluded in the LOO CV is shown in the
bottom panel: larger phenotypes tended to be associated with
larger distances.

Figure 7 Effective residual degrees of freedom against training sets
sizes (n – d = 99, 149, 199, 249, 299, 349, 399, 449, 499, and 549) at
selected values of the regularization parameter (l = 100,150, 200,
250, 300, 350, and 400). Values are averages of 50 random replica-
tions.

Figure 8 Effective residual degrees of freedom against the regulari-
zation parameter (l = 100, 150, 200, 250, 300, 350, and 400) at var-
ious training sets sizes (n – d = 99, 149, 199, 249, 299, 349, 399, 449,
499, 549). Values are averages of 50 random replications.
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Using data from all lines, GBLUP is ĝ ¼ C 21y; the influence of
phenotype of line j ¼ 1; 2; . . . ; 599 on GBLUP of line i is element ij of
the matrix @ĝ

@y9 ¼ C 21: Observe that

C21 ¼ Covðg; yÞVar21ðyÞ ¼ �Iþ G21l
�21

(47)

is as a matrix of n· n regression coefficients; its ith row contains the
regression of the genotype of line i on the n phenotypes. A measure of
overall influence (leverage) of line j is the average of values (or abso-
lute values) of elements in column j of C 21: Clearly, leverages depend
on relatedness structure and on l but not on phenotypes. Figure 10
depicts plots of LOESS regressions (Cleveland 1979) of Euclidean
distance between GBLUP calculated with all lines, and LOO GBLUP
on two measures of leverage: the average of absolute values of C 21

over rows for each line (leverage 1), and the average of elements of
C 21 over rows, by line (leverage 2). LOESS fits (span parameter
equal to 0.50) indicated that leverage 1 informs about the impact of
removing a specific line in LOO: the larger the leverage 1 of a line, the
larger the effect of its removal from the training process.

RKHS
We built a kernel matrix K with typical element (ranging between
0 and 1)

kij ¼ w1   exp

"
2h1

dij
max

�
dij
�
#
þ w2   exp

"
2h2

dij
max

�
dij
�
#

þ w3   exp

"
2h3

dij
max

�
dij
�
#
; (48)

dij ¼ ðxi2xjÞ9ðxi 2 xjÞ for i; j ¼ 1; 2:::; 599: Here xi is the 1279 · 1
vector of marker genotypes in line i; h1; h2, and h3 are bandwidth
parameters tuned to establish “global,” “regional” and “local” simi-
larities between individuals (as h increases, similarity decreases);

w1;w2, and w3 are weights assigned to the three sources of similarity,

such that 0,wi , 1 and
P3
i¼1

wi ¼ 1: We arbitrarily chose h1 ¼ 1
2;

h2 ¼ 2, and h3 ¼ 4; and w1 ¼ 0:5; w2 ¼ 0:30, and w3 ¼ 0:20. From
Kwe created three additional kernels by placingwi ¼ 1 for i ¼ 1; 2; 3;
leading tomatricesK1;K2, andK3:Mean off-diagonal elements of the
four kernel matrices were 0.73 ðK1Þ, 0.29 ðK2Þ, 0.09 ðK3Þ, and 0.47
ðKÞ; these values can be interpreted as correlations between pairs of
individuals. Hence, K1 and K3 produced the highest and lowest de-
grees of correlation, respectively; complexity of the models increases
from kernel 1 to kernel 3 because the fit to the data increases with h
(de los Campos et al. 2009, 2010).

The four no-intercept RKHS models had the basic form

y ¼ Kaþ e;a � N
�
0;K21s2

a

�
; e � N

�
0; Is2

e

�
;Cov

�
a; e9

� ¼ 0;

(49)

where K was either as in (48) or Ki ¼ 1; 2; 3: Variance components
were estimated by maximum likelihood, producing as estimates of
l ¼ s2

e
s2
a
: l1 ¼ 0:16; l2 ¼ 0:30, l3 ¼ 0:32, and lK ¼ 0:21: The effec-

tive number of parameters was calculated (e.g., kernel 1) as
p1 ¼ trðIþ K21l1Þ21; yielding 224.5, 319.2, and 376.3 for kernel
matrices 1, 2, and 3, respectively; for K the effective number of pa-
rameters fitted was 330.3. As expected, model complexity increased as
the model became more “local.”

Wefitted the fourRKHSmodels to all 599 lines, and conducted aLOO
CVfor eachmodel. In thefittingprocess, the correspondingregularization
parameter was employed; e.g., forK2; l2 ¼ 0:30. For each of themodels,
RKHS predictions of genotypic values were calculated as

ĝiðli; h;wÞ ¼
�
Iþ K21

i li
�21

y;   i ¼ 1; 2; 3;K: (50)

The implicit dependence of predictions on bandwidths ðhÞ and
weights ðwÞ is indicated in the notation above, but not used herein-
after. In LOO (line j left out in the training process), predictions and

Figure 9 Euclidean distances between genomic BLUP (GBLUP) with
all observations and leave-one-out (LOO) GBLUP, by line removed
from training in the CV. Bottom panel depicts the association between
phenotype left out in training and distances. The regularization
parameter used was l ¼ s2

e

s2
b

¼ 190.

Figure 10 Nonparametric (LOESS) fits of Euclidean distance between
GBLUP with all observations and LOO GBLUP on two measures of
influence (leverage) a line has on model training. Leverage 1 is the
average of absolute values of the regression of all lines on the pheno-
type of a given line; leverage 2 is the average of such regressions.

3116 | D. Gianola and C.-C. Schön



predictive mean-squared errors are calculated as for LOO GBLUP,
that is,

~gij ¼
�
12c jji

�21�
ĝ ij 2 c jji yj

�
;   j ¼ 1; 2; . . . ; n; (51)

where c jj
i is the jth diagonal element of ðIþ K21

i liÞ21; and

PMSEið1Þ ¼ 1
n

Xn
j¼1

�
yj2~gij

�2
: (52)

Predictive MSEs were 0.6795 ðK1Þ; 0.6446 ðK2Þ; 0.6555 ðK3Þ, and
0.6439 ðKÞ; predictive correlations were 0.566, 0.597, 0.591, and
0.598. Differences between kernels with respect to the criteria
used were nil, but the model combining three kernels conveying
differing degrees of locality had a marginally smaller MSE and a
slightly larger correlation. LOO prediction errors plotted against
line phenotypes are shown in Figure 11 for the four kernels used.
Prediction errors were larger in absolute value for lines with
lowest and highest grain yields, suggesting that the model may
benefit by accounting for possibly heterogeneous residual vari-
ances. K2 and K3 captured some substructure in the distribution
of fitted residuals. The more global kernel ðK1Þ; arguably captur-
ing mostly additive effects, did not suggest any substructure,
which reemerged when the three kernels were combined into K:
The preceding exercise illustrates that predictive correlations and
PMSE do not fully describe the performance of a prediction
machine.

Bayesian GBLUP with known variance components
BayesianGBLUPwithknownvarianceshasaclosedformsolution:using
all data, the posterior distribution is gjy;s2

e ;s
2
g � Nðĝ;C21s2

e Þ; where

ĝ ¼ C21y and C21 ¼ ðIþ G21lÞ21. Set G ¼ XX9; l ¼ 190, and
s2
e ¼ 0:54; X is centered.
This problem was attacked (with Monte Carlo error) by drawing

independent samples from the 599-variate normal posterior distribu-
tion; noMCMC is needed.Using (34), the importance samplingweights
for LOO are

wi;s ¼
p21
�
yi
��gðsÞi ; 0:54

�
PS
s¼1

p21
�
yi
��gðsÞi ; 0:54

�;     i ¼ 1; 2; . . . ; n;     s ¼ 1; 2; . . . ; S;

(53)

where gðsÞi is sample s for line i; gðsÞ is drawn from Nðĝ;C210:54Þ. The
importance sampling weight becomes

wi;s ¼
exp

"
ðyi2gðsÞi Þ2

1:08

#

XS
s¼1

exp

2
64
�
yi2gðsÞi

�2
1:08

3
75
: (54)

Observe that the likelihood that yi confers to gðsÞi is inversely pro-
portional to wi;s: Hence, samples in which the phenotype removed
ðyiÞ confers little likelihood to the gi receive more weight.

We took S ¼15,000 independent samples fromNðĝ;C210:54Þ: The
effective number of weights per line, calculated with (38) ranged from
76.4 to 14,983.5; the median (mean) weight was 10,991.0 (9789.2), and
the first and third quartiles of the distributionwere 6826.1 and 14,983.5,
respectively. On average, 1.54 independent samples were required for
drawing an effectively independent LOO posterior sample. Figure 12

Figure 11 LOO prediction errors (testing set) of four
reproducing kernel Hilbert spaces (RKHS) regression
models against line phenotypes.
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illustrates the variability among some arbitrarily selected lines of the
mean number of importance weights. A phenotype having a small
mean importance weight would be “surprising” with respect to the
model. However, there are theoretical and numerical issues with the
weights used here, a point retaken in the discussion.

Figure 13 shows that GBLUP using the entire sample of size n fitted
closely. Correlations between predictors were 0.91 in all cases. Mean-
squared errors were 0.40 (GBLUP, entire sample), 0.73 (Bayes LOO),
and 0.73 (LOO GBLUP). The correlation between predictions and
phenotypes was 0.81 forGBLUP (entire sample), 0.52 for LOOGBLUP,
and 0.51 for Bayes LOO.

The importance sampling scheme worked well. Ionides (2008) sug-
gested a modification of the importance ratio assigned to sample s and
data point i; ri;s ¼ p21ðyi

��bðsÞ;s2ðsÞ
e Þ, as follows

r9i;s ¼ min
�
ri;s;

ffiffiffi
S

p
�ri
�
; (55)

where �ri is the average (over samples) importance sample ratio for
line i in the context of the wheat data set. Ionides (2008) argued that
truncation of large importance sampling weights (TIS) would be less
sensitive with respect to the importance sampling density function
used (the posterior distribution using all data points in our case) than
IS. We converted the IS weights into normalized TIS weights using
rule (55) applied to the normalized IS weights. As mentioned earlier,
the effective number of normalized IS weights ranged between 76.4
and 14983.5; for normalized TIS weights, the effective number
spanned from 691.9 to 13,970. TIS produced more stable weights
than standard IS. However, truncation of weights introduces a bias,
which may affect predictive performance adversely (Vehtari et al.
2016). However, it may be that TIS made the weights “too homoge-
neous,” thus creating a bias toward the posterior distribution obtained
with all data points. If all weights were equal to a constant, IS or TIS
would retrieve the full posterior distribution.

DISCUSSION
Cross-validation (CV) has become an important tool for calibrating
prediction machines in genome-enabled prediction (Meuwissen et al.
2001), and is often preferred over resampling methods such as boot-
strapping. It gives a means for comparing and calibrating methods and
training sets (e.g., Isidro et al. 2015). Typically, CV requires dividing
data into training and testing folds, and the models must be run many
times. An extreme form of CV is LOO; here if the sample has size n;
each observation is removed in the training process, and labeled as a
testing set of size 1.Hence, n differentmodelsmust be run to complete a
LOO CV.

Our paper presented statistical methodology aimed at enabling
extensive CV in genome-enabled prediction using a suite of methods.
These were OLS, BLUP on markers, GBLUP, RKHS, and Bayesian
procedures. Formulae were derived that enable arriving at the predic-
tions that would be obtained if one or more cases were to be excluded
from the training process and declared as members of the testing set. In
the cases ofOLS, BLUP,GBLUP, andRKHS, andassuming that the ratio
of variance componentsdonotchangeappreciably fromthose thatapply
to the entire sample, the formulae are exact.

The deterministic formulae can also be applied in a multiple-kernel
ormultiple-random factors setting, given the variance components. For
example, consider the bikernel RKHS regression (e.g., de los Campos
et al. 2010; Tusell et al. 2014)

y ¼ gP þ gM þ e ¼ KPaP þ KMaM þ e: (56)

Here, gP ¼ KPaP is genetic signal captured by pedigree, and
gM ¼ KMaM is genetic signal captured by markers; aP and aM are
unknown and independently distributed RKHS regression coeffi-
cients, and KP and KM are positive-definite similarity matrices. Sup-
pose that KP ¼ A, i.e., the numerator relationship matrix based on
the assumption of additive inheritance, and that KM is a Gaussian

Figure 12 Effective number of importance
samples for LOO Bayesian GBLUP (given the
variances) for selected lines; 15,000 indepen-
dent samples were drawn from the posterior
distribution of genotypic values.

3118 | D. Gianola and C.-C. Schön



kernel such as those employed earlier in the paper. The standard
assumption for the RKHS regression coefficients is

�
aP

aM

�
� N

 �
0
0

�
;

�
A21s2

aA
0

0 K21
M s2

aM

�!
(57)

where s2
aA

and s2
aM

are variance components associated with ker-
nels A and KM ; respectively. Hence, gP � Nð0;As2

aA
Þ and

gM � Nð0;KMs
2
aM
Þ: The BLUP of gP and gM can be found by solving

the linear system

�
Iþ A21lA I

I Iþ K21
M lM

��
ĝP
ĝM

�
¼
�
y
y

�
; (58)

where lA ¼ s2
e

s2
aA

and lM ¼ s2
e

s2
aM

. Hence, the solutions satisfy

ĝP ¼ �Iþ A21lA
�21�

y2 ĝM
� ¼ C21

A

�
y2 ĝM

�
; (59)

ĝM ¼ �Iþ K21
M lM

�21�
y2 ĝP

� ¼ C21
M

�
y2 ĝP

�
: (60)

Applying the logic leading to (102) for the LOO situation, the pre-
ceding equations can be written as

~gi;P ¼ 1

12 ciiA

�
ĝ i;P 2 ciiA

�
yi 2 ĝ i;M

��
; (61)

~gi;M ¼ 1

12 ciiM

�
ĝ i;M 2 ciiM

�
yi 2 ĝ i;P

��
; (62)

where ciiAðciiMÞ are the ith diagonal elements of C21
A ðC21

M Þ; respectively;
ĝ i;P and ĝ i;M are the corresponding solutions to the system of equa-
tions (58). The prediction of the left-out phenotype is ~yi ¼ ~gi;P þ ~gi;M :

The situation is different for Bayesian models solved by sampling
methods such as MCMC. Typically, there is no closed form solution,
except in some stylized situations, so sampling must be used. The
Bayesian model must be run with the entire data set and posterior
samples weighted, e.g., via importance sampling, to convert realizations
into draws pertaining to the posterior distribution that would result
from using just the CV training set. Unfortunately, importance weights
can be extremely variable. In (34), it can be seen that weights are

Figure 13 Associations between phenotypes and predictions (GBLUP with all n ¼ 599 lines used in training; LOO GBLUP, leave-one-out
genomic BLUP; LOO BAYES GBLUP, direct sampling from the posterior distribution of genotypic values of followed by importance sampling
to obtained the LOO predictions.
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proportional to the reciprocal of likelihoods evaluated at the posterior
samples, so if a data point (or a vector of data points) “left out” confers a
tiny likelihood to the realized value of the parameter sampled, then the
sample is assigned a very large weight; on the other hand, if the likeli-
hood is large, the weight is small. This phenomenon produces a large
variance among weights, which we corroborated empirically. Another
view at the issue at stake is as follows: the importance weight is

wiðbÞ ¼ pðbjy2i;HÞ
pðbjy;HÞ ; hence, if the posterior obtained with all data

points has much thinner tails than the posterior density constructed
by excluding one or more cases, the weights can “blow up.”

The preceding problemwould be exacerbated by includingmore than
one observation in the testing set. Vehtari et al. (2016) examined seven
data sets, and used “brute force” LOOMSE as a gold standard to examine
the performance of various forms of importance sampling. TIS gave a
better performance than standard importance sampling (IS) weights in
two out of seven comparisons, with the standard method being better in
three of the data sets; there were two ties. Vehtari et al. (2016) suggested
another method called Pareto smoothed importance sampling (PSIS)
that was better than IS in four of the data sets (two ties), and better than
TIS in three of the analyses (two ties). Calculation of PSIS is involved,
requiring several steps in our context: (a) compute IS ratios; (b) for each
of the 599 lines, fit a generalized Pareto distribution to the 20% largest
values found in (a); (c) replace the largestM IS ratios by expected values
of the order statistics of the fitted generalized Pareto distribution, where
M ¼ 0:20 · S; (d) for each line, truncate the new ratios. Clearly, this
procedure does not lend itself to large scale genomic data, and the results
of Vehtari et al. (2016), obtained with small data sets and simple models,
are not conclusive enough. Additional research is needed to examine
whether TIS, IS, or PSIS are better for genome-enabled prediction.

It is known (e.g., Henderson 1973, 1984; Searle 1974) that the best
predictor, that is, the function of the data with the smallest squared
prediction error (MSE) under conceptual repeated sampling (i.e., infinite
number of repetitions over the joint distribution of predictands and
predictors) is Eðgjy; parametersÞ. This property requires knowledge of
the form of the joint distribution, and of its parameters. In the setting of
the case study, under multivariate normality, and with a zero-mean
model and known variance components, GBLUP is the best predictor.
However, in CV, the property outlined above does not hold. One reason
is that the data set represents a single realization of the conceptual
scheme. Another reason is that incidence and similarity matrices change
at random in CV, plus parameters are estimated from the data at hand.
For example, if datum i is removed from the analysis, the training model
genomic relationshipmatrix becomesG½2i;2i�;whereas, if observation j is
removed, thematrix used isG½2j;2j�: Further, the entire data set is used in
the CV, so yet-to-be observed data points appear in the training process
at some point. The setting of best prediction requires that the structure of
the data remains constant over repeated sampling, with the only items
changing being the realized values of the data ðyÞ, and of the unobserved
genotypic values ðgÞ: The CV setting differs from the idealized scheme,
and expectations based on theory may not always provide the best effec-
tive guidance in predictive inference.

In conclusion, CV appears to be the best gauge for calibrating
prediction machines. Results presented here provide the basis for
conducting extensive cross-validation from results of a single run with
all data. Future research should evaluate importance sampling schemes
for more complex Bayesian models, e.g., those using thick-tailed pro-
cesses or mixtures as prior distributions. An important challenge is to
make the procedures developed here computationally cost-effective,
so that software for routine use can be developed.
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APPENDIX A: PREDICTION WITH LEAST-SQUARES

Following Seber and Lee (2003), consider out-of-sample prediction, and suppose that the distribution of residuals in left-out data (testing set) of
size ntest is as in a training set of size n, with the training phenotypes represented as y; residuals in training and testing sets are assumed to be
mutually independent. In genome-enabled prediction, (1) is merely an instrumental model that may bear little resemblance with the state of nature,
so we let the true distribution be ytest � Nðm; Is2

e Þ; allowing for the almost certain possibility that m 6¼ Xtestb, where Xtest is the marker matrix in
the testing set. In quantitative genetics,m is an unknown function of quantitative trait locus (QTL) genotypes and of their effects; the latter may not
be additive, and dominance or epistasis may enter into the picture without contributing detectable variance.

Model training yields b̂, and the point predictor of ytest isXtestb̂. The mean squared error of prediction ðPMSEÞ, conditionally on training data
ðy;XÞ and on Xtest but averaged with respect of all possible testing sets of size, ntest , is

EðPMSEjy;X;XtestÞ ¼ 1
ntest

Eytestjy;X;Xtest

h�
ytest2Xtestb̂

�
9
�
ytest 2Xtestb̂

�i
: (63)

Define the conditional prediction bias as

d̂ ¼ Eytestjy;X;Xtest

�
ytest 2Xtestb̂jy

� ¼ m2Xtestb̂: (64)

Standard results on expectation of quadratic forms applied to (63) produce

EðPMSEjy;X;XtestÞ ¼ 1
ntest

n
ðm2Xtestb̂Þ9ðm2Xtestb̂Þ þ tr



Var
�
ytest

��o ¼ 1
ntest

h
d̂9d̂þ ntests

2
e

i
: (65)

Unconditionally, that is, by averaging over all possible sets of training (testing) data of size n ðntestÞ with marker configuration X ðXtestÞ

EðPMSEjX;XtestÞ ¼ EyjX;Xtest
½EðPMSEjy;X;XtestÞ� ¼ 1

ntest



EyjX;Xtest ðd̂9d̂Þ þ ntests

2
e

�
; (66)

where

EyjX;Xtest ðd̂9d̂Þ ¼ ½m2XtestEðb̂Þ�9½m2XtestEðb̂Þ� þ s2
e tr

�
Xtest

�
X9X

�21
X9test

�
¼ d9dþ s2

e tr

�
Xtest

�
X9X

�21
X9test

�
: (67)

Here, the expected prediction bias is

d ¼ m2XtestEðb̂Þ ¼
�
I2Xtest

�
X9X

�21
X9

�
m; (68)

after assuming for convenience of representation that EðytestÞ ¼ EðyÞ ¼ m; i.e., that testing and training sets have the same size and unknown

truemeanm; note that
@Xtestb̂

@y9
¼ XtestðX9XÞ21X9 is a matrix of “influences” describing how variation in training phenotypes affects predictions.

Using (68) in (67), and this in (66), the expected predictionmean-squared error averaged over an infinite number of training and testing sets, but
with fixed marker genotype matrices is

EðPMSEjX;XtestÞ ¼ 1
ntest

�
d9dþ s2

e tr

�
Xtest

�
X9X

�21
X9test

�
þ ntests

2
e

	
(69)

If Xtest ¼ X; that is, in the special case where the same genotypes appear in the training and testing sets, XtestðX9XÞ21X9test ¼ H ¼ fhijg and
trðXtestðX9XÞ21X9testÞ ¼ p; so the preceding equation becomes

EðPMSEjXÞ ¼ 1
ntest

Xn

i¼1
d2i þ

�
1þ p

ntest

�
s2
e ; (70)

with

d ¼ fdig ¼
�
I2X

�
X9X

�21
X9

�
m ¼ ðI2HÞm; (71)

and typical element di ¼ ð12 Pn
j¼1

hijÞmi. Expression (70) shows that the uncertainty of prediction, as measured by variance (second term)

increases with p (model complexity) and decreases with ntest (equal to n here). The impact of increasing complexity on bias is difficult to discuss
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in the absence of knowledge of QTL and their effects. When p/n, the training data set fits better and better and the model increasingly copies
both signal and error: predictions become increasingly poorer.

Note that

Var½ðy2Xb̂Þ� ¼ MMs2
e ¼ ðI2HÞs2

e ; (72)

where M ¼ I2XðX9XÞ21X9 ¼ I2H. Applying this result in (8)

EyjX½PMSEð1Þ� ¼ 1
n

h
d9Ddþ s2

e trðDMÞ
i
; (73)

where 1
n ðd9DdÞ is the average squared prediction bias, and s2

e
n tr½DM� is the average prediction error variance. Note that

d9Dd ¼
Xn

i¼1

d2i
ð12hiiÞ2

; (74)

and that

trðDMÞ ¼ trðD2DHÞ ¼
Xn

i¼1

 
1

ð12hiiÞ2
2

hii
ð12hiiÞ2

!
¼
Xn

i¼1

"
12 hii
ð12hiiÞ2

#
: (75)

Employing (74) and (75) in (73),

EyjX½PMSEð1Þ� ¼ 1
n

(Xn

i¼1

"
d2i

ð12hiiÞ2
þ s2

e

Xn

i¼1

 
12 hii
ð12hiiÞ2

!#)
¼ 1

n

Xn

i¼1

"
d2i þ s2

e ð12 hiiÞ
ð12hiiÞ2

#
: (76)

Examine the difference ðDMSEÞ in expected prediction mean-squared error between the LOO procedure, as given in (76), and that from the
“distinct testing set” layout given in (70), and set n ¼ ntest . One obtains

DMSE ¼ 1
n

Xn

i¼1

"
d2i þ s2

eð12 hiiÞ
ð12hiiÞ2

#
2

1
n

hXn

i¼1
d2i þ ðnþ pÞs2

e

i
: (77)

Since p ¼ trðXðX9XÞ21X9Þ ¼ trðHÞ ¼Pn
i¼1hii;

DMSE ¼ 1
n

(Xn

i¼1

"
d2i þ s2

eð12 hiiÞ
ð12hiiÞ2

#
2
Xn

i¼1



d2i þ ð1þ hiiÞs2

e

�) ¼ 1
n

(
s2
e

Xn

i¼1

h2ii
12hii

þ
Xn

i¼1

d2i hiið22 hiiÞ
ð12hiiÞ2

)
: (78)

The hii are bounded between 0 and 1, so the two terms in (78) are positive.

APPENDIX B: MATRIX ALGEBRA RESULT
Early derivations of the mixed model equations used for computing best linear unbiased estimation of fixed effects, and BLUP of random effects in
mixed linear models used by Henderson’s (e.g., Henderson et al. 1959; Henderson 1975, 1984) made use of the Sherman-Morrison-Woodbury
formula (Seber and Lee 2003). Moore-Penrose generalizations are in Deng (2011).

Assuming that the required inverses stated below exist, the following result holds

ðAþ UBVÞ21 ¼ A21 2A21UB
�
Bþ BVA21UB

�21
BVA21: (79)

A special case is when B ¼ I; U ¼ 6u; V ¼ v9; where u and v9 denote column and row vectors; here

�
Aþ uv9

�21 ¼ A21 2
A21uv9A21

1þ v9A21u
; (80)

�
A2uv9

�21 ¼ A21 þ A21uv9A21

12 v9A21u
: (81)
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APPENDIX C: LOO ORDINARY LEAST-SQUARES
In (4), we have

b̂½2i� ¼
�
X9½2i�X½2i�

�21
X9½2i�y½2i� ¼

�
X9X2xix9i

�21�
X9y2 xiyi

�
¼
"�

X9X
�21 þ

�
X9X

�21
xix9i
�
X9X

�21

12 x9iðX9XÞ21xi

#�
X9y2 xiyi

�
: (82)

Let the n · n regression “hat matrix” beH ¼ XðX9XÞ21X9, with diagonal elements hii ¼ xi9ðX9XÞ21xi; i ¼ 1; 2; . . . ; n:Hence, (4) can be written
as

b̂½2i� ¼
�
X9X

�21
X9y2

�
X9X

�21
xiyi þ

�
X9X

�21
xix9i
�
X9X

�21
X9y

12 hii
2

�
X9X

�21
xix9i
�
X9X

�21
xiyi

12 hii

¼ b̂2
ð12 hiiÞ

�
X9X

�21
xiyi 2

�
X9X

�21
xix9ib̂þ hii

�
X9X

�21
i xyi

12 hii

¼ b̂2

�
X9X

�21
xi
�
yi 2 x9ib̂

�
12 hii

¼ b̂2

�
X9X

�21
xiêi

12 hii
: (83)

Using (83), the error of fitting phenotype yi is then

yi 2 x9ib̂½2i� ¼ yi 2

"
x9ib̂2

x9i
�
X9X

�21
xi
�
yi 2 x9i b̂

�
12 hii

#
¼ yi 2 x9ib̂þ hii

�
yi 2 x9ib̂

�
12 hii

¼ yi 2 x9ib̂
12 hii

;     i ¼ 1; 2; . . . ; n: (84)

APPENDIX D: LEAVE-D-OUT ORDINARY LEAST-SQUARES
If d cases are removed from the training data set, X½2d�9 X½2d� ¼ X9X2X½d�9 X½d�: In (79), put A ¼ X9X; U ¼ X½d�9 ; B ¼ 2 I, and V ¼ X½d�, to
obtain the coefficient matrix

�
X9X2X½d�9 X½d�

�21 ¼
�
X9X

�21 þ
�
X9X

�21
X½d�9

�
I2X½d�

�
X9X

�21
X½d�9

�21

X½d�
�
X9X

�21
; (85)

for d being one of the D ¼
�
n
d

�
possible d2 tuplets: For example, if n ¼ 1000, and d ¼ 100 or 500, then D ¼ 6:39 · 10139 and 2:71 · 10299;

respectively. Clearly, it is not feasible to consider all possible configurations of training and testing sets. Note that ½I2X½d�ðX9XÞ21X½d�9 �21 will
not exist for all combinations of n and d. For the leave-d-out least-squares estimator given to exist, it is needed that n2 d$ p:

The right-hand side vector in least-squares takes the form

X½2d;�9 y½2d� ¼
Xn

i¼1
xiyi 2

X
j2d

xjyd ¼ X9y2X½d�9 y½d�: (86)

Let  Hd ¼ X½d�ðX9XÞ21X½d�9 be the d · d part of the hat matrix H. The OLS estimator, b̂½2d� ¼ ðX½2d;�9 X½2d;�Þ21X½2d;�9 y½2d�, can be written as

b̂½2d� ¼
��

X9X
�21 þ

�
X9X

�21
X9½d�½I2Hd�21X½d�

�
X9X

�21
	�

X9y2X9½d�y½d�
�

¼ b̂2
�
X9X

�21
X9½d�y½d� þ

�
X9X

�21
X9½d�½I2Hd�21X½d�

�
X9X

�21
X9y2

�
X9X

�21
X9½d�½I2Hd�21X½d�

�
X9X

�21
X9½d�y½d�: (87)

Further,

b̂½2d� ¼ b̂2
�
X9X

�21
X9½d�y½d� þ

�
X9X

�21
X9½d�ðI2HdÞ21X½d�b̂2

�
X9X

�21

½d�
X9½d�ðI2HdÞ21Hdy½d�

¼ b̂2
�
X9X

�21
X9½d�ðI2HdÞ21

h
ðI2HdÞy½d� 2X½d�b̂þHdy½d�

i
¼ b̂2

�
X9X

�21
X9½d�ðI2HdÞ21

�
y½d� 2X½d�b̂

�
¼ b̂2

�
X9X

�21
X9½d�ðI2HdÞ21ê½d�: (88)

APPENDIX E: LOO AND LEAVE-D-OUT BLUP OF MARKERS
As indicated in (15),findingBLUPofmarkers requires computing the coefficientmatrix in the corresponding equations, and the vector of right hand
sides. Following the reasoning used for least-squares
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X9X þ Il ¼
Xn
i¼1

xixi9þ Il (89)

If observation ðyi; xi9Þ is to be predicted in a LOO CV, X½2i;�9 X½2i;� þ Il ¼ X9X þ Il2 xixi9 and X½2i;�9 y½2i;� ¼ X9y2 xiyi, so

br
½2i� ¼

�
X½2i;�9 X½2i;� þ Il

�21
X½2i;�9 y½2i;� ¼

�
X9X þ Il2xixi9

�21�
X9y2 xiyi

�

¼
"�

X9X þ Il
�21 þ

�
X9X þ Il

�21
xixi9

�
X9X þ Il

�21

12 hrii

#�
X9y2 xiyi

�
;

where hrii ¼ xi9ðX9X þ IlÞ21xi: Letting C21 ¼ ðX9X þ IlÞ21; the preceding becomes

br
½2i� ¼ C21X9y2C21xiyi þ C21xixi9C21X9y

12 hrii
2
C21xixi9C21xiyi

12 hrii
¼ br 2C21xiyi þ C21xixi9br

12 hrii
2
C21xihriiyi
12 hrii

¼ br 2

�
12 hrii

�
C21xiyi 2C21xixi9br þ hriiC

21xiyi
12 hrii

¼ br 2
C21xi

�
yi 2 xi9br

�
12 hii

¼ br 2
C21xiê

r
i

12 hii
; (90)

where êri ¼ yi 2 xi9b
r is the residual from the ridge regression-BLUP analysis obtained with the entire sample.

For leave-d-out the algebra is as with least-squares, producing as coefficient matrix�
X9X þ Il2X½d�9 X½d�

�21 ¼ C21 þ C21X½d�9
h
I2X½d�C21X½d�9

i21
X½d�C21; (91)

and the right-hand sides are as before X½2d;�9 y½2d� ¼ X9y2X½d�9 y½d�: LettingH
r
½d� ¼ X½d�C21X½d�9 , algebra similar to the one producing (88) yields

br
½2d� ¼ br 2C21X½d�9

�
I2Hr

d

�21êr½d�; (92)

where êr½d� ¼ y½d� 2X½d�br is the d2 dimensional residual from ridge regression BLUP applied to the entire sample.

APPENDIX F: LOO AND LEAVE-D-OUT GBLUP

LOO GBLUP
In LOOCV, one seeks to estimate the mean of the predictive distribution of the left-out data point Eðyi

��y2i;HÞ: Since yi ¼ xi9bþ ei ¼ gi þ ei and
ei � Nð0;s2

e Þ is independent of y2i one has

E
�
yi
��y2i;H

� ¼ E
�
gi þ eijy½2i�;H

�
¼ E

�
gi
��y½2i�;H

�
: (93)

More generally, we are interested in predicting all n genetic values g ¼ fgig: Since our zero-mean BLUP is interpretable as the mean of the
conditional or posterior distribution ½gjy; u� (u denotes s2

g and s2
e here), for pð:j:Þ denoting a density function, it follows that

p
�
gjy2i; u

�
} p
�
y2i

��g; u�pðgjuÞ} pðyjg; uÞ
p
�
yi
��g; u� pðgjuÞ; (94)

since pðyjg; uÞ ¼ pðyi
��g; uÞpðy2i

��g; uÞ; due to independence of residuals. The preceding posterior is Gaussian (given the dispersion parameters)
because the prior and the sampling model are both Gaussian; hence, the mode and the median of this distributions are identical. Apart from an
additive constant

log


p
�
gjy2i;   u

�� ¼ log  pðyjg; uÞ þ log  pðgjuÞ2 log  p
�
yi
��g; u�; (95)

or, explicitly,

log


p
�
gjy2i; u

�� ¼ 2
1

2s2
e
ðy2gÞ9ðy2 gÞ2 1

2s2
g
g9G21gþ 1

2s2
e

�
yi2gi

�2 ¼ 2
1

2s2
e

�
ðy2gÞ9ðy2 gÞ þ lg9G21g2

�
yi2di9g

�2�
(96)

where l ¼ s2
e

s2
g
, and d�i is a n· 1 vector with a 1 in position i and 0’s elsewhere. The gradient of the log-posterior with respect to g is

@

@g
log


p
�
gjy2i; u

�� ¼ 2
1

2s2
e



22ðy2 gÞ þ 2lG21gþ 2d�i

�
yi 2 d�i g

��
; (97)

note that d�9i g ¼ gi. Setting to zero yields the joint mode, i.e., the BLUP of all n lines (but using y2i) as the solution to the linear system

ðC2DiÞ~g½2i� ¼ y2 d�i yi; (98)
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where ~g½2i� ðn · 1Þ is the BLUP of g calculated with all observations other than i; C ¼ Iþ G21l is the coefficient matrix used for calculating
BLUPðgÞ ¼ ĝ ¼ fĝ ig ¼C21y using all data points; di is as defined earlier; andDi ¼ d�i d

�9
i is an n· nmatrix of 09s except for a 1 in position ði; iÞ.

Observe that

~g½2i� ¼ C21y2C21d�i yi þ C21Di~g½2i� ¼ ĝ2C21d�i yi þ C21Di~g½2i�: (99)

Further,

C21d�i yi ¼ ciyi;C
21Di~g½2i� ¼ ci~gi; (100)

where ci is the ith column of C21 ¼ fciig, and ~gi is the i
th element of ~g½2i�. Thus

~g½2i� 2 ci~gi ¼ ĝ2 ciyi: (101)

Inspection of the preceding expression reveals that element i of ~g½2i�, that is, the genetic value of the observation left out in the LOO CV can be
computed as

~gi ¼
1

12 cii
�
ĝi 2 ciiyi

�
;     i ¼ 1; 2; . . . ; n: (102)

If desired, the remaining n2 1 elements of ~g½2i� can be calculated recursively as

~gj ¼ ĝ j 2 cji
�
yi 2 ~gi

�
;     j 6¼ i: (103)

The observed predictive MSE is given by

PMSEð1Þ ¼ 1
n

Xn
i¼1

�
yi2

1
12cii

�
ĝi2ciiyi

��2 ¼ 1
n

Xn
i¼1

�yi2ĝ i
12cii

�2
: (104)

Leave-d-Out GBLUP
Consider next a leave-d-out setting. Assume that observations have been reordered such that phenotypes of members of the testing set are placed in
the upper d positions in y; so y9 ¼ ½yd; y½2d�� and g9 ¼ ½gd; g½2d�� Thus

log
h
p
�
gjy½2d�; u

�i
¼ 2

1
2s2

e
ðy2gÞ9ðy2 gÞ2 1

2s2
g
g9G21gþ 1

2s2
e

�
yd2gd

�
9
�
yd 2 gd

�
¼ 2

1
2s2

e

h
ðy2gÞ9ðy2 gÞ þ lg9G21g2

�
yd2Ddg

�
9
�
yd 2Ddg

�i
; (105)

whereDd ¼ ½ Id 0d;n2d � is a d · nmatrix partitioned into an identity d · d submatrix, and with a 0 as each element of the d · ðn2 dÞ partition.
Hence

@

@g
log
h
p
�
gjy½2d�; u

�i
¼ 2

1
2s2

e

h
22ðy2 gÞ þ 2lG21gþ 2Dd9

�
yd 2Ddg

�i
(106)

Setting the vector of differentials to 0, and rearranging

~g½2d� ¼
�
C2Dd9 Dd

�21�
y2Dd9 yd

�
¼
�
C2Dd9 Dd

�21
~yd; (107)

where ~yd is y with the d phenotypes in the testing set replaced by 09s. Application of (79) produces

�
C2Dd9 Dd

�21 ¼ C21 2C21Dd9
�
Id 2DdC

21Dd9
�
DdC

21 (108)

Let now the inverse of the coefficient matrix for computing the BLUP of all individuals, or lines from all data points in y, be partitioned as

C21 ¼ �Iþ G21l
�21 ¼

�
Cdd Cd;2d

C2d;d C2d;2d

�
: (109)

Then

C21Dd9 ¼
�

Cdd Cd;2d

C2d;d C2d;2d

��
I

0n2d;d

�
¼
�

Cdd

C2d;d

�
;DdC

21Dd9 ¼ 
 Id 0d;n2d
�� Cdd Cd;2d

C2d;d C2d;2d

��
I

0n2d;d

�
(110)
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¼ 
 Id 0d;n2d
�� Cdd

C2d;d

�
¼ Cdd; (111)

DdC
21 ¼ 
Cdd Cd;2d

�
(112)

Inspection of the form of (107) leads as BLUP predictor of phenotypes of individuals in the testing set to

~gd ¼
�
I2Cdd

�21�
ĝd 2Cddyd

�
; (113)

with CV prediction error

~ed ¼ yd 2 ~gd ¼
�
I2Cdd

�21�
yd 2 ĝd

�
;

and realized predictive mean-squared error

PMSEðdÞ ¼ e� 9
d e
�
d

d:
(114)

If desired, the BLUP predictors of the remaining n2 d genotypes (based on y½2d�) can be calculated as

~g½2d� ¼ ĝ½2d� 2C2d;d�yd 2 ~gd
�

(115)

All preceding developments rest on assuming that exclusion of d observations does not modify l in training sets in an appreciable manner.

APPENDIX G: CROSS-VALIDATION IMPORTANCE SAMPLING
The posterior expectation of the vector of marker effects is

E
�
bjy2i;H

� ¼
Z

bp
�
bjy2i;H

�
dbZ

p
�
bjy2i;H

�
db

¼

Z
b
p
�
bjy2i;H

�
pðbjy;HÞ pðbjy;HÞdbZ

p
�
bjy2i;H

�
pðbjy;HÞ pðbjy;HÞdb

(116)

¼

Z
wiðbÞbpðbjy;HÞdbZ
wiðbÞpðbjy;HÞdb

¼ Ebjy;H ½wiðbÞb�
Ebjy;H ½wiðbÞ� ; i ¼ 1; 2; . . . ; n: (117)

Here, wiðbÞ ¼ pðbjy2i;HÞ
pðbjy;HÞ is an “importance sampling” weight (Albert, 2009). Bayes theorem yields

wiðbÞ ¼
p
�
bjy2i;H

�
pðbjy;HÞ ¼

p
�
y2i

��b;s2
e

�
pðbjHÞ

p
�
y2i

��H�
p
�
yjb;s2

e

�
pðbjHÞ

pðyjHÞ
¼ pðyjHÞ

p
�
y2i

��H� 1

p
�
yi
��b;s2

e

�; (118)

and employing this form of wiðbÞ in (117) produces

E
�
bjy2i;H

� ¼
Z

pðyjHÞ
p
�
y2i

��H� 1

p
�
yi
��b;s2

e

�bpðbjy;HÞdbZ
pðyjHÞ

p
�
y2i

��H� 1

p
�
yi
��b;s2

e

� pðbjy;HÞdb
¼

Z
1

p
�
yi
��b;s2

e

�bpðbjy;HÞdbZ
1

p
�
yi
��b;s2

e

� pðbjy;HÞdb
: (119)
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The implication is that, given draws bðsÞ; s2ðsÞ
e ðs ¼ 1; 2; . . . ; SÞ from the full-posterior distribution, the posterior expectation (119) can be

estimated as

Ê
�
bjy2i;H

� ¼
XS
s¼1

1

p
�
yi
��bðsÞ;s2ðsÞ

e

�bðsÞ

XS
s¼1

1

p
�
yi
��bðsÞ;s2ðsÞ

e

�
¼
XS
s¼1

wi;sb
ðsÞ;     i ¼ 1; 2; . . . ; n; (120)

where

wi;s ¼
p21
�
yi
��bðsÞ;s2ðsÞ

e

�
XS
s¼1

p21
�
yi
��bðsÞ;s2ðsÞ

e

�;     i ¼ 1; 2; . . . ; n;     s ¼ 1; 2; . . . ; S: (121)
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