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Abstract: High throughput sequencing (HTS) can identify the presence of Mycobacterium tuberculosis
DNA in a clinical sample while also providing information on drug susceptibility. Multiple studies
have provided a context for exploring the clinical application of HTS for TB diagnosis. The workflow
challenges, strengths and limitations of the various sequencing platforms, and tools used for analysis
are presented to provide a framework for further innovations in the field.
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1. Introduction

High throughput sequencing (HTS), also known as next generation sequencing (NGS)
can identify the presence of Mycobacterium tuberculosis DNA in a clinical sample while also
providing information on drug susceptibility, making it an exciting prospect for the future of
tuberculosis (TB) diagnostics. The World Health Organization’s END TB Strategy, originally
passed in 2014, aims to end the TB pandemic by 2035 via three main indicators: reducing TB
deaths by 95%, decreasing new cases by 90%, and ensuring families do not face catastrophic
financial costs due to tuberculosis [1]. HTS has the potential to make advancements on
all three of these indicators by providing (1) cost-efficient evaluation for TB from a range
of patient clinical samples, (2) expedited information on drug susceptibility for those
diagnosed with TB, and (3) distinguishing between infection relapse vs. reinfection [2]. The
clinical application of these technologies for tuberculosis is an exciting prospect that may
overcome many diagnostic and treatment challenges currently faced.

Worldwide, several approaches to TB diagnostics are used with phenotypic drug
susceptibility testing (pDST) from sputum samples as the gold standard. Xpert MTB/RIF
and Xpert Ultra (Cepheid, Sunnyvale, CA, USA) are now routinely used on patient clinical
samples to provide molecular based rapid diagnostic testing for both Mycobacterium tubercu-
losis complex and rifampin resistance. In those with advanced HIV disease, urine TB-LAM
has also been recommended. HTS, in contrast to these other diagnostic approaches, offers
the ability to identify multiple potential drug mutations from a clinical sample in 1–2 days
depending on the facility’s set up. By expanding our ability to identify multiple drug muta-
tions at the point of diagnosis, we can avoid initiating a patient on ineffective treatment
leading to unnecessary delays in proper care. Currently, HTS is being implemented as
an adjunct to already employed diagnostics but has the capacity to become the first-line
diagnostic approach, especially in certain populations.

HTS refers to the ability to sequence multiple DNA fragments in parallel, allowing
information to be obtained in a more rapid and cost-effective way compared to the original
Sanger sequencing. DNA can be sequenced in short fragments, long fragments, or the
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entirety of the genome based on the instrument used, the clinical use and the sample
characteristics (DNA quality, quantity, etc.). Whole genome sequencing (WGS) refers to the
entirety of the genome being sequenced and is currently generally performed after culture
to provide sufficient M. tuberculosis DNA for sequencing to occur. Targeted HTS (tHTS) first
amplifies specific parts of a genome that are of interest and can be done on culture isolates
or directly from clinical specimens (sputum, gastric aspirate, etc.) requiring less initial M.
tuberculosis DNA input since amplification increases the quantity of DNA prior to it being
loaded onto a sequencing platform. While these technologies represent new opportunities
in the field of TB diagnostics, care must be taken to not only select the correct platform for
the intended use but also ensure that proper infrastructure is in place to use the technology,
especially in high TB prevalence and lower-resource settings where the need is greatest.
Understanding the limitations of the variety of technologies available and the laboratory
and bioinformatic infrastructure needs for clinical application is paramount to ensuring
appropriate use and cost-efficiency when applying this technology for TB diagnosis.

2. Whole vs. Targeted Sequencing for TB

WGS can provide a wealth of information, including for TB outbreak investigation [3]
and drug resistance [4], and has been used in several studies seeking to define genomic
epidemiology of TB [5,6]. While previously performed only on TB culture isolates (repre-
senting a fraction of the pathogen population in host), WGS has now been applied directly
to clinical specimens [7] and can provide more information on genetic diversity than a
culture isolate [8]. A systematic analysis of over 40,000 isolates from 45 countries utilizing
whole genome sequencing data against pDST showed a pooled sensitivity of more than 80%
for rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin and specificity
over 95% for all drugs except ethionamide, moxifloxacin and ethambutol [9]. Another study
showed WGS of M. tuberculosis isolates to be 93% in agreement with pDST when performed
on multi-drug resistant (MDR) or extremely drug resistant (XDR) TB patients [10]. Barriers
to the wide scale implementation of WGS in clinical setting includes the high cost of WGS
(141 to 277 USD per sequence) which has been decreasing [11] and the need for significant
infrastructure for bioinformatic analysis [12]. The use of tHTS sequencing for M tuberculosis
has been growing steadily and has advantages and disadvantages over WGS. Although
it does not provide information on the entirety of the genome, careful primer design to
investigate specific areas leads to greater depth of coverage for less resources. Several
research studies have designed “in-house” multiplex polymerase chain reaction (PCR)
panels for use on culture isolates [13,14] and clinical specimens such as sputum or bronchial
aspirates [15–17]. The Deeplex® Myc-TB assay (Genoscreen, Lille, France) is the most
well-described commercially available targeted sequencing assay in the peer-reviewed
literature. Deeplex is usable directly on sputum samples [18–20] but has also recently been
applied successfully to stool samples [21]. Table 1 provides an overview of selected studies
utilizing tHTS for tuberculosis, including the sequencing platform used, clinical specimen,
and location where study was performed. Due to the cost and infrastructure needed for
WGS, targeted approaches are currently more easily applicable for clinical settings as they
do not require specimen culture and are often less bioinformatics intensive.

Most studies have been conducted in Africa (Ghana, Kenya, Uganda, Zambia, Djibouti,
Eritrea, Botswana, South Africa, Congo), with other studies being fairly heterogenous in
their geographic coverage including Europe (Italy, Germany, Moldova, Spain) and Asia
(China, Hong Kong, India). One study was performed in the United States [14] and no
studies were in Latin or South America. In addition to the Deeplex Myc-TB commercial
assay, several studies have evaluated the Next Gen-RDST/SMOR assay developed by
Colman et al., 2016 [22], which utilizes amplicon targets and automated data analysis
scripts to predict drug resistance.
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Table 1. Overview of tHTS studies directly on clinical specimens for Mycobacterium tuberculosis DNA.

Author/Year Location tHTS Kit Index Test
Sample Platform Reference Stan-

dard/Comparisons

Cabbibe 2020 [18] Italy Deeplex Myc-TB Sputum MinION
Deeplex Myc-TB

amplicons on
MiniSeq

Kambli 2021 [23] Mumbai, India Deeplex Myc-TB Sputum, isolates iSeq
pDST from MGIT;

LPA;
pyrosequencing

Kayomo 2020 [19] Congo Deeplex Myc-TB Sputum MiSeq Xpert MTB/RIF

Colman 2019 [14] United States SMOR assay [24] Isolates MiSeq, iSeq WGS (MiSeq and
iSeq)

Tafess 2020 [13] Hong Kong,
Ethiopia

In-house PCR
(19 gene targets) Isolates MiSeq, MinION pDST from MGIT

Gliddon 2021 [25] Kwazulu, South
Africa

In-house RPA
(isothermal) Isolates MinION

WGS (HiSeq),
pDST from MGIT

and solid agar
Sibandze 2022

[21] Eswatini, Germany Deeplex Myc-TB Stool NextSeq pDST from MGIT

Wang 2019 [26] Botswana SMOR assay [24] Isolates MiSeq
pDST on MGIT;

LPA, Xpert
MTB/RIF

Mariner-Llicer
2021 [27] Spain In-house assay

(11 gene targets) Sputum, isolates MinION WGS (MiSeq)

Mesfin 2021 [20] Eritrea Deeplex Myc-TB Sputum MiniSeq Xpert MTB/RIF

Tagliani 2017 [28] Djibouti Deeplex Myc-TB Sputum MiniSeq WGS (HiSeq) from
isolates

Song 2022 [24] China In house PCR
(11 gene targets) FFPE tissues Ion Proton pDST from

microtitre plate

Chan 2020 [15] Hong Kong In-house PCR
(10 gene targets)

Bronchial aspirate,
LN, sputum, bone

marrow
MinION, MiSeq pDST from MGIT;

LPA

Rowneki 2020 [16] Ghana, Kenya,
Uganda, Zambia

In house PCR
(17 gene targets) Sputum MiSeq

Sanger sequencing
on subset of

samples
Colman 2016 [22] Moldova SMOR assay Sputum MiSeq pDST from MGIT
Colman 2015 [29] Moldova SMOR assay Sputum MiSeq pDST from MGIT

Zhao 2022 [17] Shanghai, China In-house PCR
(7 gene targets) Sputum GridION Sanger sequencing,

pDST

Jouet 2021 [30] Djibouti, Congo Deeplex Myc-TB Sputum MiSeq

WGS, pDST from
Löwenstein–

Jensen or
Middlebrook 7H11

agar

3. Workflow

HTS workflows for TB are generally similar in their approach (Figure 1). Patient
samples are collected and to date have included sputum, stool, bronchial aspirate, gastric
aspirate, lymph node tissue, and bone marrow tissue for successful downstream sequenc-
ing (Table 1). Early morning samples of sputum, gastric aspirates, or bronchial aspirates
are preferred as they have been shown to have the highest yield [31]. When intended for
culture, multiple samples are ideal to increase the chance of enough viable organism for
growth. If not used immediately, samples are stored at −80 ◦C. Sputum, specifically, is
usually stored with cetylpyridinium chloride (CPC), ethanol, or commercially available
products such as intended to help preserve M. tuberculosis DNA, decrease contamination,
and improve culture yield [32,33]. DNA extraction on sputum or culture isolates has
used a variety of methods and kits including ethanol precipitation with pre-treatment
steps [7,27,34], the Maxwell 16 FFPE Tissue LEV DNA Purification Kit (Promega, Madison,
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WI, USA) [18–20], QIAamp DNA-Mini-Kit (Qiagen) [35], and the Roche Cobas Amplicor
extraction kit [13]. One study extracted M. tuberculosis DNA from stool for sequencing and
used the MPFast DNA Extraction Kit for Soil [21] while another study extracted from FFPE
tissues and utilized the FFPE DNA kit (Taipu Biosciences Co., Ltd., Beijing, China) [24].
Library preparation can take varying amounts of time depending on the kit used and goal
of sequencing. Some kits or steps can be used interchangeably between platforms and
automation of library prep continues to decrease the time and cost burden [36]. After
DNA extraction and throughout library preparation steps, the quality and quantity of M.
tuberculosis DNA can and should be assessed using a variety of tools. When available, an
automated electrophoresis system can provide information about DNA fragment sizes as
well as quantity. When electrophoresis is not available, the combination of fluorometric
quantification and gel electrophoresis can provide information on DNA fragment size,
quality and quantity at a more affordable cost (with protocols per specific manufactur-
ers). Spectrophotometry can provide information about sample purity which is especially
helpful when troubleshooting downstream issues encountered with sequencing. Library
preparation is usually platform-specific though there have been studies using library prepa-
ration kits from one manufacturer successfully on another platform with minimal protocol
adjustments [18]. Cell lysis and homogenization of the sample is imperative to be able to
access M. tuberculosis DNA that may be heterogeneously distributed in the clinical sample,
however excessive sample disruption may also lead to DNA fragmentation. A variety of
lysis buffers are available and mechanical disruption in the form of glass or zirconia beads
is often utilized. Purification of samples from reagent contaminants that may interfere
with successful sequencing often uses paramagnetic beads at multiple steps during the
preparation process. Care must be taken as this can also decrease overall M. tuberculosis
DNA yield as some DNA is lost in the purification steps from being “washed away” with
the intended contaminants, making fluorometric quantification at different steps essential
to ensure ample DNA is present for subsequent steps.
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Multiplexing is a cost-effective means to run multiple samples at one time by giving
individual samples a “barcode” that can be identified during the bioinformatics analysis.
While this approach increases the efficiency by which large numbers of samples can be
processed, it also decreases the amount of data that can be produced for each individual
sample so must be taken into consideration given the research or clinical question or the
data throughput of the pipeline.

4. Sequencing Platforms

The most well-known and heavily utilized platform for short-read sequencing is Il-
lumina’s line of technologies (e.g., iSeq, MiSeq, and NextSeq) which uses a “sequencing
by synthesis” approach where terminator nucleotides are incorporated into growing DNA
strands and can be detected and then reassembled to a reference sequence. Ion Torrent
(ThermoFisher Scientific) uses a similar “sequencing by synthesis” approach but detects
pH changes released during DNA synthesis to determine the nucleotide sequence. Long-
read sequencing approaches include Pacific Biosciences single-molecule real time (SMRT)
sequencing approach where DNA fragments are ligated into loops by specific adaptor
sequences and immobilized in channels where fluorescent light is detected as phospho-
linked nucleotides are incorporated. Lastly, Oxford Nanopore’s newer nanopore technology
measures ionic current fluctuations as single-stranded nucleic acids pass through biolog-
ical nanopores. Table 2 provides a summary of the benefits and limitations with each
approach alongside selected publications that utilized each platform for M. tuberculosis
DNA sequencing.

Table 2. Sequencing platforms used for HTS of M tuberculosis [37] including selected studies using
particular platforms.

Platforms Characteristics Pros Cons Studies

Illumina
iSeq

MiniSeq
Miseq

Nextseq
HiSeq

NovaSeq

Short-read (2 × 150 bp,
MISEQ 2 × 300 bp)

Run time 4–72 h

Low error rate (99.9%
accuracy)

Platforms vary in low
to high throughput

Difficulty in sequencing
repetitive regions [38]

Per base error rate
increases with read

length (trimming can
improve)

Long run times

Sibandze 2021 [21];
Kambli 2021 [23];

Kayomo 2020 [19];
Wang 2019 [26];

Colman 2019 [14];
Mesfin 2021 [20];

Tagliani 2017 [28];
Vogel 2021 [11]

Thermo fisher Ion
torrent
Proton
PGM

S5

Short-read (200–400 bp)
Run time 3–24 h

Short run time
Low error rate

Low performance on
homopolymer regions
High cost per sample

Daum 2012 [39]; Pavel
2016 [40]

Pacbio
RSII

Sequel

Long-read (10–60 kb)
Run time up to 20 h

Short run time, long
read length

High cost, high error
rate (single base pair

deletions most
common, can improve
with increased depth)

Lee 2019 [41]; Ley 2019
[42]

Oxford Nanopore
Minion
Gridion

Promethion

Long-read (900 kb +)
Run time 30 min to 48 h

Short run time, long
read length

Increasing portability

Historically higher
error rate (>98%

reported accuracy with
newer technology)

[43,44]

Gliddon 2021 [25];
Mariner-Llicer 2021
[27]; Zhao 2022 [17]

5. Sequencing Data Analysis and TB Resistance Platforms

Sequencing platforms generate data in the form of FAST or FASTQ files, with FASTQ
files including information on the quality of the nucleotide that was determined reported
as a Phred score [45]. At present, there is one commercially available automated web
app for tHTS of M. tuberculosis (Deeplex Myc-TB) however others have been reported
to be in development [46]. Without an automated setup, there are a myriad of ways to
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manually set up a bioinformatics pipeline to analyze results. FAST or FASTQ files of M.
tuberculosis nucleotide sequences are used with a variety of software programs (Minimap2,
BWA) to align the sequence to a reference creating a SAM or BAM file. BAM files are
smaller in size requiring less data storage space but are a binary file format and therefore
unable to be interpreted by the user in the raw text format. Basic quality control and
sequence trimming (using programs such as FastQC and Trimmomatic) occur prior to
sequence alignment to a reference (usually H37Rv, NC_000962.3), with some approaches
also aligning the generated sequences to human and bacterial genomes to classify and filter
out non- M. tuberculosis sequences more systematically. More advanced quality control,
including sorting, duplicate control, and indexing can be done prior to variant calling,
with the most popular software programs used for variant calling of M. tuberculosis being
Pilon [47], vSNP [48], SNiPgenie [49], MTBSeq [50], and BovTB [51]. Variant filtering and
annotation occurs at this step as well. Many public health laboratories have developed their
own software programs or developed a customized workflow utilizing aspects of existing
tools. While the most popular database for determining drug resistance for tuberculosis
is the World Health Organization’s resistance database [9], others are available including
KvarQ [52], PhyResE [53], MTBSeq [50], and Mykrobe [54]. Laboratories often have a
dedicated bioinformatics specialist to develop the pipeline based on the specific needs
of the research group especially regarding data storage. The benefits of an in-house
bioinformatics pipeline are the ability to customize your setup for the research questions
you are interested in and provide regular updates as technology progresses. Automated
pipelines, while convenient, require waiting for the developers to release updates and
may not always keep up as quickly with the changing research landscape. Due to the
heterogeneity in data analysis approaches, comparison of studies can be challenging.

6. Future Directions

The use of genotypic DST for clinical decision making is still on the horizon but
represents an exciting area of future research. Currently, the main means to determine
genotypic drug susceptibility using HTS is via culture growth (WGS or tHTS) or directly
from sputum (tHTS), with culture growth delaying clinical utility for ~2–4 weeks. Using
tHTS directly on clinical samples would provide faster diagnostic decisions but can also be
limiting as it only selects for certain regions to be amplified. Because of this, assays would
need to be consistently updated to target new regions that are discovered to be associated
with drug resistance in order to stay relevant. This would also need to be incorporated
into bioinformatics pipelines to interpret the sequencing data from these new targets. The
ideal assay would provide information on all anti-tuberculous drugs currently used in
clinical practice, have a coverage depth allowing for identification of mixed infections, and
have an automated, user-friendly bioinformatics pipeline with regular software updates
incorporating new drug mutations that are discovered. While lineage information and
strain typing may not yet be used for clinical treatment decisions, it helps with surveillance
and may help us explore poorly understood concepts of why certain cases require different
treatment lengths or are more likely to have relapse after receiving adequate treatment.
Combining information about tuberculosis strains and immune phenotypes in the host
may shed light on the enigma of tuberculosis disease progression.

At present, studies have investigated the sensitivity and specificity of DST determined
from HTS compared to culture-based DST, with limited exploration of clinical outcomes had
HTS alone been used for planning drug regimens. As gene causes of resistance are explored
further, the accuracy of prediction will improve and HTS is likely to increase in importance
as a tool to guide drug regimen composition in TB care. As costs decrease and portability
improves, NGS will be able to be implemented in settings where the tuberculosis burden is
high and resources are more limited. The use of HTS directly on clinical samples, including
the exploration of newer sample types such as stool, is a promising direction to optimize
the use of sequencing for diagnosing tuberculosis in its diverse clinical presentations.
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7. Conclusions

Overall, HTS in the clinical setting is an exciting and fast evolving area. It offers
the potential for rapid diagnosis and information on drug resistance of M. tuberculosis
earlier than pDST options and with expanded information than current molecular-based
methods such as Xpert and Xpert Ultra. As bioinformatics becomes more automated and
accessible, HTS is expected to expand to the clinical setting and augment, if not supplant,
current methods.
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