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Abstract

Background: The key to understanding changes in gene expression levels using reverse transcription real-time quantitative
polymerase chain reaction (RT-qPCR) relies on the ability to rationalize the technique using internal control genes (ICG).
However, the use of ICGs has become increasingly problematic given that any genes, including housekeeping genes,
thought to be stable across different tissue types, ages and treatment protocols, can be regulated at transcriptomic level.
Our interest in prenatal glucocorticoid (GC) effects on fetal growth has resulted in our investigation of suitable ICGs relevant
in this model. The usefulness of RNAT8S, ACTB, HPRT1, RPLPO, PPIA and TUBB as ICGs was analyzed according to effects
of early dexamethasone (DEX) treatment, gender, and gestational age by two approaches: (1) the classical approach
where raw (ie, not normalized) RT-gPCR data of tested ICGs were statistically analyzed and the best ICG selected
based on absence of any significant effect; (2) used of published algorithms. For the latter the geNorm Visual
Basic application was mainly used, but data were also analyzed by Normfinder and Bestkeeper. In order to account
for confounding effects on the geNorm analysis due to co-regulation among ICGs tested, network analysis was performed
using Ingenuity Pathway Analysis software. The expression of RNAT8S, the most abundant transcript, and correlation of ICGs
with RNATSS, total RNA, and liver-specific genes were also performed to assess potential dilution effect of raw RT-gPCR data.
The effect of the two approaches used to select the best ICG(s) was compared by normalization of NR3CT (glucocorticoid
receptor) MRNA expression, as an example for a target gene.

Results: Raw RT-gPCR data of all the tested ICGs was significantly reduced across gestation. TUBB was the only ICG that
was affected by DEX treatment. Using approach (1) all tested ICGs would have been rejected because they would initially
appear as not reliable for normalization. However, geNorm analysis (@pproach 2) of the ICGs indicated that the geometrical
mean of PPIA, HPRT1, RNAT8S and RPLPO can be considered a reliable approach for normalization of target genes in both
control and DEX treated groups. Different subset of ICGs were tested for normalization of NR3CT expression and, despite
the overall pattern of the mean was not extremely different, the statistical analysis uncovered a significant influence of the
use of different normalization approaches on the expression of the target gene. We observed a decrease of total RNA
through gestation, a lower decrease in raw RT-qPCR data of the two rRNA measured compared to ICGs, and a positive
correlation between raw RT-qPCR data of ICGs and total RNA. Based on the same amount of total RNA to performed
RT-gPCR analysis, those data indicated that other mRNA might have had a large increase in expression and, as
consequence, had artificially diluted the stably expressed genes, such as ICGs. This point was demonstrated by a
significant negative correlation of raw RT-gqPCR data between ICGs and liver-specific genes.
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especially if absolute quantification is required.

HPRT1, PPIA, TUBB, ACTB, RNA28S

Conclusion: The study confirmed the necessity of assessing multiple ICGs using algorithms in order to obtain a
reliable normalization of RT-qPCR data. Our data indicated that the use of the geometrical mean of PPIA, HPRTT,
RNAT8S and RPLPO can provide a reliable normalization for the proposed study. Furthermore, the dilution effect
observed support the unreliability of the classical approach to test ICGs. Finally, the observed change in the
composition of RNA species through time reveals the limitation of the use of ICGs to normalize RT-gPCR data,

Keywords: Dexamethasone, Sheep, Fetal liver, geNorm, Co-regulation, Internal control gene, RNATS8S, RPLPO,

Background

Quantitative reverse transcription real time polymerase
chain reaction (RT-qPCR) is the most sensitive and accur-
ate method to measure mRNA gene expression. Accurate
normalization is critical in accounting for quantity of in-
put RNA, varying amounts of cDNA input, sample loss
during handling, and activity and variation in the kinetics
of reverse-transcription enzyme during reaction [1,2]. A
reliable normalization may be even more important when
the experiment aims to evaluate low-fold changes of a tar-
get gene [3].

Among several proposed method of normalization, in-
cluding total RNA, genomic DNA, and spike-in of an
external artificial reference [4], the use of internal con-
trol genes (ICGs) appear to be the most accurate [5].
Validated ICG are essential for unbiased interpretation
of RT-qPCR given the vast number of confounding fac-
tors that can affect the transcription of any gene [4].
Classically, housekeeping genes (HKG) were used as
ICGs because it was thought that they expression is
stable across different tissue types, ages, and treatments;
however, several studies revealed that also the expression
of HKG is under active regulation [4]. This was sug-
gested by some studies where it was shown that expres-
sion of HKG may vary as a result of neoplastic growth,
hypoxia or other experimental treatments [6-9]. Among
classic HKG, beta-actin (ACTB) mRNA expression for
example is increased by a maximum of 4-fold in fibro-
blasts during 8 hrs of serum stimulation [8]. ACTB and
cyclophilin A (PPIA) expression in human tumor cell
lines also varied widely after hypoxia treatment [6]. The
expression of ribosomal protein, large, PO (RPLPO) was
significantly changed after hindlimb suspension interven-
tion in rat tendon and muscle [10]. With lipopolysacchar-
ide stimulation, the expression level of hypoxanthine
phosphoribosyltransferase 1 (HPRTI) and tubulin, beta
(TUBB) increased in alveolar macrophages from chronic
obstructive pulmonary disease patients [11]. All the above
clearly demonstrated that the use of classic HKG for
RT-qPCR normalization without any assessment is highly
unreliable. In addition, they also indicated that the ICGs
do not need to be HKG. Therefore, there was a need of a

new approach for testing the reliability of ICGs for each
experiment. In order to evaluate the reliability of ICGs for
RT-qPCR normalization several algorithms have been
developed; those include geNorm Visual Basic (geNorm
v3.5) [2], Bestkeeper [12], and NormFinder [13]. Studies
dealing with very different conditions, including tissue/
organ development, have successfully used geNorm in
selecting reliable ICGs [14-22], a method that has been
statistically validated [23]. Those studies have shown the
importance of using the geometric mean of at least two
stably expressed ICGs. In addition, some of those studies
have also demonstrated the detrimental effect of improper
selection of ICGs on RT-qPCR results of target genes of
interest. The geNorm program assesses the stability of
gene expression between candidate reference genes by
performing a pair-wise comparison of the expression ratio.
The fundamental rationale of the geNorm algorithm is
that the higher the stability of expression ratio between
two non-coregulated candidate genes across the samples,
the higher the likelihood that those are stably expressed;
thus, highly reliable ICGs. Therefore, it is critical prior to
geNorm analysis to verify the absence of co-regulation
among potential ICGs which otherwise would bias geNorm
results [24].

Despite the critical importance of proper selection and
evaluation of ICGs, these are often chosen based upon
previously scientific publications rather than upon empir-
ical data. Furthermore, the evaluation of ICGs reliability is
performed by analyzing changes in the raw RT-qPCR in
respect to the experimental conditions (e.g., gestational
age, sex or the effects of a special treatment). This ap-
proach, however does not take the accumulation of errors
and variations in each single sample during the analytical
procedure or the dilution effect of stably expressed genes
due to large increase in expression of very abundant tran-
scripts into account [1].

Prenatal synthetic glucocorticoid (GC) treatment is
commonly used in the management of women at risk of
early preterm birth and has succeeded in reducing neo-
natal mortality and morbidity [25]. Despite these benefits,
GC treatment has also been associated with a decrease in
birth weight and alterations in glucose homeostasis and
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hypothalamic—pituitary—adrenal (HPA) axis function and
fetal programming [26-28]. Although the exact mecha-
nisms underlying those responses are unknown, fetal hep-
atic development may play an important role [29]. The
liver, largest of the body’s organs, plays an important role
in coordinating metabolic homeostasis, nutrient process-
ing and detoxification [30]. Many studies suggest the liver
to be a target organ of GC treatment and partly respon-
sible for fetal growth restriction [26,31,32] and gene ex-
pression profiling might help dissecting underlying
processes. Early maternal GC treatment (dexamethasone,
DEX) is used in suspected cases of congenital adrenal
hyperplasia to protect female fetuses from virilization [33].
We have shown that DEX treatment analogous to that
used in human subjects in the first third of pregnancy, re-
sulted in profound changes in fetal HPA axis development
which persisted during postnatal [26,34].

In order to study the effect of early DEX treatment on
liver gene expression using RT-qPCR it is essential to
have reliable ICGs. In previous studies involving sheep
under different experimental conditions, internal refer-
ences such as 18S ribosomal RNA (RNAIS8S), ACTB,
HPRT1I, RPLPO, PPIA and TUBB have been widely used
to investigate a range of target genes. All those ICGs
were chosen in these studies based solely on previous
publications in different experimental models [35-38] and
not a thorough evaluation of reliability was performed.
There are no previous data on the selection of reliable
ICGs in fetal sheep liver which are independent of gesta-
tional age, sex and not regulated by GC treatment.

Within this framework we set out to identify reliable
ICGs to be used for normalize RT-qPCR data from the
experiment that investigate the effects of early DEX
treatment on the fetal sheep liver transcriptome during
gestation. For this we have tested the 6 ICGs previously
used in sheep with the aim to test the expression stabil-
ity, identify the most reliable, and uncover the number
of ICGs that should be used for accurate RT-qPCR
normalization. We evaluated the reliability of ICGs fol-
lowing two approaches: (1) we performed a statistical
analysis of the raw RT-qPCR data to assess effect of
DEX, gestation, sex, and their interaction (i.e., “the clas-
sical analysis”) and (2) by testing the stability and reliabil-
ity of the normalization by using algorithms, particularly
geNorm Visual Basic application (“geNorm analysis”). The
effect on normalization based on the two approaches and
different subsets of ICGs was assessed on the RT-qPCR
data of glucocorticoid receptor (NR3C1I).

Results

Approach 1: Expression levels of ICGs, “the classical analysis”
Raw RT-qPCR data of all ICGs tested significantly (p < 0.05)
decreased due to gestation between 50 and 140dG in all
tested ICGs; however patterns were slightly different
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between ICGs (Figure 1). RPLPO, TUBB and PPIA sig-
nificantly decreased between 50 and 140dG (Figure 1A,
B, F), whereas ACTB levels stayed stable between 50
and 100dG (p > 0.05), but significantly decreased between
100 and 140dG (Figure 1C, D). HPRT1 and RNA18S levels
stayed stable between 50 and 125dG and significantly de-
creased at 140dG (Figure 1E). Compared to control, TUBB
raw RT-qPCR data was significantly lower at 125dG in
female treated with DEX; raw RT-qPCR data of the
other ICGs were not affected by DEX treatment (Figure 1).
Gender differences were only found in RPLPO at 125dG,
with significantly higher expression levels in females as
compared to males (Figure 1A). In summary, all ICGs
tested were affected by gestation and some by DEX and/
or gender. Among the tested ICGs the raw RT-qPCR of
HPRTI and RNA18S were the least affected by the tested
conditions; thus, can be considered the best choice for
normalization of RT-qPCR of target genes among the
6 tested ICGs.

Approach 2: Determination of ICGs expression stability
using algorithms
The raw RT-qPCR data of the 6 tested ICGs were ana-
lyzed with geNorm, Bestkeeper, and Normfinder. The
rank from the most to the least reliable ICG was similar
between the three algorithms (Table 1), with PPIA being
one of the two most reliable ICGs among the ones
tested. In geNorm the lowest M value indicates ICGs
with the most stable expression. In the overall analyses,
stepwise elimination of successive genes showed that
PPIA and HPRTI were the most stable ICGs across
gestation followed by RNAI8S and RPLPO (Figure 2).
The determination of the optimal number of ICGs for
normalization is performed by geNorm by calculating the
pairwise variation (V-value) of adding the subsequent
more reliable gene. A V-value below 0.15, cut-off re-
ported by Vandesompele et al. [2], was obtained by adding
the 5th more reliable gene (V4/5); however, the addition
of the 4th more reliable gene (i.e., V3/4) had a V-value of
0.157, which is similar to V4/5 (Figure 2). Based on this
observation and based also on practicality, we deemed
that the use of 4 most reliable ICGs among the one tested,
that is PPIA, HPRT1, RNA18S and RPLPO, can provide a
trustworthy normalization factor.

geNorm is one of several algorithms available to evalu-
ate ICGs. We have evaluated our potential ICGs also
using Bestkeeper and Normfinder (Table 2). There was
an overall agreement about the 3 algorithms to rank the
best vs. the worst ICGs tested with some small differ-
ences, the major one being RNA18S as the most reliable
ICG in Bestkeeper when considering the calculated raw
RT-qPCR data instead of Ct values. The latter is the
method originally used to develop Bestkeeper; thus,
likely more reliable [12].
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Figure 1 A-F: The effect of early DEX treatment on the raw RT-qPCR data of 6 ICGs in fetal sheep liver. Data were analyzed by MANOVA
with treatment, gender and days of gestation as factors, followed by a pairwise comparison (Holm's Sidak) when main effects were p < 0.05.
Different letters indicate significant differences in day of gestation and stars significant differences in treatment. n = numbers of animals included
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Table 1 Comparison of the expression stability of 6 reference genes in fetal sheep liver as calculated by geNorm,

Normfinder and BestKeeper

Rank geNorm NormFinder BestKeeper BestKeeper
Gene Stability Gene Stability Gene Stability* Gene Stability**

1 PPIA 0.50 PPIA 0.188 HPRT1 217 RNA18S 27.2
2 HPRT1 050 HPRT1 0326 PPIA 243 PPIA 322
3 RNA18S 0.58 RPLPO 0.349 RNA18S 3.26 HPRT1 333
4 RPLPO 0.64 RNA18S 0410 RPLPO 360 RPLPO 40.7
5 TUBB 0.71 TUBB 0443 ACTB 375 TUBB 49.1
6 ACTB 0.75 ACTB 0454 TUBB 445 ACTB 50.0

*% coefficient of variation compared to the mean cycle at the threshold (Ct).

**9 coefficient of variation compared to the mean relative abundance (calculated as Et™mnCtsample)

The geNorm algorithm is based on the assumption that
the tested genes are completely independent; i.e., they are
not co-regulated because they do not have up-stream
common regulator(s). Therefore, it is essential to verify
that the best ICGs are indeed independent. For this, poten-
tial co-regulation was analyzed using Ingenuity Pathway
Analysis (IPA). The use of IPA revealed a co-regulation (or
common up-stream regulator(s)) between RNAI8S and
ACTB via tumor protein p53 (TP53), methyl CpG binding
protein 2 (MECP2), and methyl-CpG binding domain
protein 2 (MBD2) [39-46]. Direct co-regulation has
been observed between TUBB, RPLPO and ACTB via
v-myc myelocytomatosis viral (MYCN) [47-49] and between
TUBB and RPLPO via FB] murine osteosarcoma viral (FOS)

[49,50]. However, no direct co-regulation has been observed
between HPRTI1, PPIA, RNA18S and RPLPO (Figure 3), the
ICGs uncovered by geNorm to be reliable, and the most reli-
able among the one tested.

Normalization of a target gene by using best ICG(s)
uncovered in approach 1 and 2

We have compared the results of normalizing RT-qPCR
data of glucocorticoid receptor (NR3CI), used as target
gene, using the geometrical mean of the 4 best ICGs as
indicated by approach 2 (Figure 4A), the two best ICGs
(or the more “flat” ICGs HPRT and RNA18S) indicated
by the approach 1 (Figure 4B and 4C) and ACTB, the
ICG with the lowest average expression stability among
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Figure 2 Average expression stability values of tested potential internal control genes (ICGs). Average expression stability values (M) of
remaining ICGs and determination of the optimal number of genes for normalization performed by geNorm, measured in n= 106 fetal sheep
liver samples. The x axis indicates the ranking of the ICGs from least (left) to most (right) stable. The pairwise variation indicates the increase in
normalization factor reliability by adding additional less stable I1CGs.

Pairwise variation |
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Table 2 Pearson correlations between RNA concentration
and raw RT-qPCR data of ICGs, rRNAs, and liver-specific
genes

Gene RNA (ug/ug tissue) IGF1 G6PC
ACTB 0.394** —0.236* —0449%*
TUBB 0424** —0454** —0.575**
RPLPO 0.469*%* -0.476** —0.396**
RNA18S 0.219* -0.131 -0.141
HPRT1 0.178 -0.219* —0.368**
PPIA 0.465%* -0.471* —0.484**
All ICG 0.468** —0429** —0.529**
RNA28S 0.077 0.146 —0.01**
IGF1 —-0479%* 0.340*
G6PC -0.301% —0.340%

The best ICGs are highlighted by bold.
**indicates correlation with p < 0.01; *indicates correlation with p < 0.05.

the one tested but also one of the most used ICGs in lit-
erature (Figure 4D). The statistical differences observed
between comparisons on the quantity of NR3CI mRNA
expression levels obviously differed between subsets of
ICGs used for normalization. For example, NR3CI mRNA
expression significantly increased between 50 and 100dG
and further increased between 100 and 140dG when nor-
malized by the geometrical mean of HPRTI, PPIA,
RNA18S and RPLPO (Figure 4A). However, when normal-
ized only to RNAISS, the increase between 100 and
140dG was not significant (Figure 4B). Normalizing to
ACTB resulted in a significant increase of NR3CI
mRNA expression between 50 and 125dG (Figure 4D).
Normalizing to HPRT1, the ICG with the least time ef-
fect on the raw RT-qPCR data resulted in a significant re-
duction of the quantity of NR3CI mRNA expression
levels at 140dG in DEX compared to controls (Figure 4C),
which was not significant when normalized to the other
subsets of ICGs (Figure 4A, B, D).

Dilution effect and ICGs

The total RNA was significantly affected by gestation
similar to mean raw RT-qPCR data of all ICGs tested
(Figure 5A). For this, it is not surprising that we have
observed a significant positive correlation between RNA
concentration and raw RT-qPCR data for all ICGs tested
with exception of HPRTI, where the P-value of correlation
was 0.06 (Table 2). The raw RT-qPCR data between all
ICGs (with exception of RNA18S) and insulin-like growth
factor 1 (IGFI) and glucose 6 phosphatase (G6PC) were
negatively correlated (Table 2). The raw RT-qPCR data of
very abundant expressed ribosomal gene RNA18S had the
least correlations with the liver-specific genes and total
RNA, while raw RT-qPCR data of RNA28S did not have
any correlation (Table 2). This was mostly due to the very
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limited effect of gestation on the raw RT-qPCR data
(Figure 5B).

Discussion

Reliability and accuracy of target gene expression levels
in RT-qPCR greatly depends on the selection of ICGs;
therefore a set of appropriate ICGs must be determined.
An ideal ICG for our experiment would be stably
expressed under all conditions, i.e., is independent of
gestational age, gender or treatment. The previously re-
ported ICGs used for RT-qPCR normalization in fetal
sheep liver lacked empirical data demonstrating suit-
ability where many studies have used a single ICG
[32,35,52], and the stability of ICGs was not measured
or reported.

Various strategies have been applied to normalize for
the amount of starting material, differences in tissues,
enzymatic efficiencies or overall transcriptional activity.
The traditional way of analyzing the accuracy of ICGs is
to pick out one or two widely reported ICGs and to test
whether experimental conditions affect ICG genes ex-
pression levels. Our present study analyzed the effect of
gender and DEX treatment at four different gestational
time points in fetal liver in six commonly used ICGs in
sheep. Significant gestation effect was observed in all
measured ICGs. A similar association was found in bo-
vine mammary tissue, in which ICG expression levels
significantly changed during the whole lactation [1].
Despite being all ICGs tested affected by gestation,
RNA18S and HPRTI were the least affected. Others
have reported changes in expression of many target
genes in fetal sheep after GC treatment [32,35,53].
However, in the present study, only raw RT-qPCR data
of TUBB in females was affected by DEX treatment.
Based on the above data and using the criteria of the
classical approach (i.e., no effect in expression by the
studied condition) we should have rejected all tested
ICGs as being unreliable.

Although statistical effects of gestational age for all the
ICGs tested were observed in our study, this did not ex-
clude the possibility of a reasonable fit for these genes as
ICGs, as indicated in other studies [1,19]. The absence
of a statistical effect on potential ICGs is not an essential
condition to consider them reliable for normalization
and, oppositely, the use of such criteria to select proper
ICGs is a serious limitation, especially in experiments
dealing with temporal transcriptomics during differenti-
ation [1,19,21]. In fact, the classical approach has two
major limitations for selection of reliable ICGs: 1) relying
exclusively on the lack of differences between means does
not account for the sample-specific variation (ie., the
normalization is performed per each single sample and
the use of the means does not account for that specific
variation); 2) cannot account for the dilution effect
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(see below). Very often associated with such an approach
there is also the use of a single ICG, which presents sev-
eral limitations in itself [2].

In order to overcome such limitations, in the current
study, we relying on algorithm, particularly geNorm, to
evaluate the most stable ICGs and acquire accurate data
on the optimal number of ICGs that should be used for
normalization [2]. Contrary to the use of the classical
approach, geNorm analysis of pairwise variation among
the 6 evaluated ICGs in the present study revealed that
most of the ICGs tested can be considered reliable and

that the use of the geometrical mean of 4 ICGs (PPIA,
HPRTI, RNAI8S and RPLPO) can provide a robust
normalization.

The effect of an inappropriate set of ICGs for
normalization of a target gene was demonstrated by
normalizing the RT-qPCR data of a target gene (NR3CI)
using the two ICG with the lowest time effect (ie., the
most ‘flat’ genes), i.e, RNA18S and HPRTI or the 4 most
stable ICGs indicated by geNorm analysis among the pool
of ICG candidates chosen (geometrical mean of HPRT1I,
PPIA, RNA18S and RPLPO). Despite the fact that all the
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treatment, gender and day of gestation as main effect, followed by a pairwise comparison (Holm’s Sidak) when main effects were p < 0.05.
Different letters indicate significant differences in day of gestation; stars indicate significant differences in DEX treatment. The final data were
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tested genes had a similar pattern (Figure 1), the ana-
lysis revealed obvious differences in the statistical re-
sults of the normalized target gene with the best
subset of ICGs or the use of only one of the genes least
affected by time (RNAI8S and HPRTI). The difference
was even more pronounced when the normalization
was performed by the very commonly used ACTB (Figure 4).
This comparison clearly confirmed the limitation of
using the classical approach to select ICGs or the use
of previously published ICGs without validation using
specific algorithms.

The results from the use of geNorm (approach 2) contra-
dict the results from the classical approach (approach 1).
In approach 1 all the tested ICGs would have been rejected
based on the fact that the raw RT-qPCR data were signifi-
cantly affected by gestation and/or DEX treatment. All the
tested ICGs had a decrease in raw RT-qPCR data through
gestation (Figure 1). How is it possible that ICGs can be
both deemed to be reliable and have the raw RT-qPCR
data significantly affected by a condition (by definition an
ICG should not be affected by any condition)? In a previ-
ous study in bovine mammary tissue from pregnancy to
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end of subsequent lactation it was observed a similar pat-
tern of ICGs [1]. In that study it was demonstrated that
this pattern is an artifact and consequence of a dilution
effect due to equal amount of total RNA is used for
RT-qPCR between samples concomitant to a very large
expression of few abundant mammary-specific genes
with a consequent relative decrease in abundance of
the stably expressed genes. In such a case the apparent
decrease in raw expression of stably expressed genes is
due to the decrease of proportional abundance of their

mRNA among all RNAs in the sample and not to ac-
tive transcription repression.

Based on the similarity between the previous study in
bovine mammary tissue and the present study, we have
assessed if a dilution effect could have been the cause of
the observed reduction of raw RT-qPCR data during
gestation (Figure 1; Additional file 1: Figure S1). For this,
and similarly to the previous study [1], we have evalu-
ated if a correlation existed between raw RT-qPCR data
of ICGs and total RNA concentration. We have also
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measured the expression of RNA28S, the most abundant
RNA, and correlated with ICGs. In addition, we have
run a correlation with raw RT-qPCR data of the liver-
specific genes IGF1 [54] and G6PC [55]. Contrary to the
previous study [1], in the present study a significant
positive correlation was observed among the raw RT-
qPCR data of the tested ICGs and the amount of RNA
per ug of tissue. As for the ICGs tested the abundance
of RNA decreased through time (Figure 5A). In the same
time period the measured amount of rRNA, which is
known to make up the majority of total RNA, had a minor
change through the differentiation, although tended to de-
crease. Most of the ICGs decreased more than 3-fold, the
rRNAs decreased less than 2-fold, while the total RNA
decreased 2-fold (Figure 5A and 5B). Despite the ob-
served decrease through time and correlations, the
data are uncoupled. In fact, the total RNA can be con-
sidered an absolute value while the values for ICGs
and the rRNA are relative. This uncoupling (or lack of
direct relationship) is due to the fact that the starting
amount of total RNA was equal between all samples
(see material and methods) despite the change in total
RNA. Therefore, the apparent large decrease in raw RT-
qPCR of ICGs and, even with lower magnitude, of the
rRNA, strongly support that something else composing
the total RNA must have increased dramatically during
differentiation and was not measured in the present
experiment.

The above observations allow us to conclude that at
the beginning of pregnancy there was an overall higher
RNA expression leading to higher total RNA concentra-
tions compared to the end of pregnancy. The expression
of RNA includes not only mRNA but all RNA species. A
similar observed decrease in most of mRNA has been
previously reported during the differentiation of human
hepatocytes (HepaRQG) in vitro where a decrease in expres-
sion of most of the genes was observed [56]. Therefore,
there was an active depression of transcription during dif-
ferentiation, likely driven by epigenetic specialization [57].
Based on the negative correlations of total RNA and ICGs
with liver specific genes, we postulate that there was a
large increase in liver specific genes, likely very abundant,
such as albumin and fatty acid binding protein 1. This
large increase of abundant liver-specific gene can have
caused the dilution of other genes, especially the genes
with a constant copy number/cells, such is the case for the
tested ICGs. Increase in liver-specific abundant genes was
also previous observed [56] and are known to be under
active transcriptional control by specific liver-specific
transcription regulators [58].

A dilution of stably expressed genes in the present ex-
periment can explain the observed apparent, but likely mis-
leading, decrease in raw RT-qPCR data of ICGs (Figure 1
and Additional file 1: Figure S1). Not accounting for such
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effect, would bias the final normalization of RT-qPCR data
of target genes. In our case if a target gene that has an in-
crease in mRNA copy/cell is subject to the dilution effect
and it probably appear as having a lower or no change
through time if it is normalized by a “flat” gene (i.e., not
subjected to the dilution, but, for this has in reality an
up-regulation in copy mRNA/cell that is inversely pro-
portional to the dilution). The normalization of RT-qPCR
data of that same target gene by using reference genes that
proportionally follow the dilution can correct for that dilu-
tion revealing the true pattern of the target gene.

The above interpretation of the data has a caveat. If
the total mRNA is changing through differentiation this
means that there is an overall increase or decrease in
overall transcription, as also suggested by previous data
from others [56], resulting in an increased or decreased
amount of mRNA/cell. This means that the proportion
of the 3 types of RNA can change. This observation re-
veals a limitation on relying only on ICGs for RT-qPCR
normalization. The normalization by ICGs is methodo-
logically correct if a relative expression between specific
mRNA is considered, but it is not appropriate if an abso-
lute or real expression (i.e., amount of specific mRNA/cell)
is considered. The caveat discussed above highlights a
shortcoming of using expression of other mRNA to
normalize target mRNAs and prompts to find even
better approach for RT-qPCR normalization.

Conclusion

In the present analysis using geNorm we have uncovered
that the geometrical mean of HPRT1, PPIA, RNA18S and
RPLPO can be suitable for calculating the normalization
factor to be used with RT-qPCR data in developing fetal
sheep liver. The data also indicated that the use of one
ICG, even among the list of the 4 more stable ICGs, to
normalize a target gene can bias the final results. For this
we recommend using the geometric mean of at least the
four indicated ICGs as an accurate normalization factor.
However, this can be considered reliable only in the
present experimental setup. Different experiments, even
using the same model, require a separate validation of
ICGs, since those are experiment-specific.

In addition, the data clearly indicated that, in order to
have a proper relative quantification of target genes, the
normalization must be able to account for the dilution ef-
fect and also for the variation in total RNA and ratio be-
tween RNA species. In the present case the data supported
a dilution effect that affected all genes but most visible in
stably expressed genes; therefore, proper normalization
needs to account for such dilution effect and reliable refer-
ence genes should have a decrease through gestation in
measured raw RT-qPCR data.

Finally, the present data appear to highlights a limita-
tion of using ICGs for normalization when a change in
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overall transcription during tissue differentiation is ob-
served, i.e. increase/decrease of mRNA as was suggested
by the data in the present experiment. Therefore, even if
the proposed normalization can be considered reliable
for relative gene expression, the quest for an absolute
way to normalize RT-qPCR data is ever more necessary.

Methods

Animals and tissues

All procedures were approved by the Animal Experimen-
tation Ethics Committee of the University of Western
Australia and/or the Western Australian Department of
Agriculture [26].

Prenatal treatments

Pregnant Merino ewes (Ovis aries) with singleton preg-
nancies (total n =106 liver samples) of known gestational
age were allocated randomly to receive maternal injec-
tions of DEX or saline (control). Maternal DEX (Mayne
Pharma, Victoria, Australia) injections were given in a
dose of 0.14 mg/kg ewe body weight suspended in 2 mL
of saline, consisting of four intramuscular injections at
12 h intervals over 48 h between 40 and 41 days of ges-
tation (dG). Control animals received saline injections of
a comparable volume (2 mL saline/ewe) [26].

Tissue collection

Tissue samples were collected at 49-51 (50), 101-103
(100), 125-127 (125), and 140-142 (140) dG. Fetal liver
and other major fetal organs were removed, weighed,
and collected for use in other studies (e.g., [26]). Right
liver lobe (100, 125 and 140dG) and total liver (50dG)
biopsies were snap frozen in liquid nitrogen before
storage at —80°C.

Real time PCR protocol

Total liver RNA was extracted using the RNeasy Midi
kit (QIAGEN, Clifton Hill, Victoria, Australia) and stored
at-80°C until further use. RNA concentration in pg/pg tisse
was determined by NanoDrop 1000 Spectrophotometer
(average 260,00 = 2.04 + 0.08; Thermo Fisher Scientific,
Wilmington, U.S.A.) and integrity was analyzed in a se-
lected number of samples with Agilent 2100 BioAnaly-
zer (RNA 6000 Nano Kit 5067—-1511; RIN mean 8.2).
Possible genomic DNA contamination was removed from
each sample using a DNase treatment (Fermentas,
Thermo fisher scientific, Catalog #EN0521), and then
RNA sample (1 pg) was reverse transcribed in a 20 pl re-
action mixture (iScript cDNA synthesis kit, BIO-RAD,
Catalog #170-8890) according to the manufactures man-
ual. DNase treatment and RT reactions were carried out
in a Mastercycler (Eppendorf, Germany). For each run a
no template control sample containing no RNA was re-
verse transcribed to provide a negative control for real
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time PCR applications. For RT-qPCR, primer pairs for
sheep (Table 3) were either designed using Primer 6.0
(TUBB, PPIA, ACTB, RNA28S) or were previously re-
ported (RPLPO [59], RNAIS8S [26], HPRT1 [60], NR3CI
[26], IGFI [59], G6PC [61]). All primer sequences have
been tested and verified with fluorescent color band se-
quencing (PCR purification kit #83050, Seqlab, Sequence
Laboratories Gottingen, Germany).

The RT-qPCR analysis was run in triplicates on an
ABI 7500 Real Time PCR System (Applied Biosystems,
Foster, USA). All measurements were run in a total
volume of 10 pl including 5 pl power SYBR green mas-
ter mix (Applied Biosystems, Foster, USA), 4 ul cDNA,
0.4 pl primer pair in a final concentration of 400 nM
and 0.2 pl water. A non template control was included
in each RT-qPCR run for each primer. After gradient
PCR optimization with a 10 step annealing temperature gra-
dient according to the manufactures protocol (Mastercycler
gradient, Eppendorf Germany), all transcripts were amplified
using the following cycling conditions: 95°C for 10 min for
one cycle and 95°C for 20 sec, 60°C (RPLPO, TUBB,
RNAI8S, ACTB, HPRT1, PPIA, IGF1, G6PC and RNA28S)
or 58.9°C (NR3C1I) for 32 sec, and 72°C for 60 sec for
40 cycles (Table 3). Melting-curve analysis (95°C for
15 sec, 60°C for 60 sec, 95°C for 15 sec and 60°C for
15 sec for one cycle) demonstrated a single PCR product
in all measurements. Efficiencies of all genes were calcu-
lated in the same sample with E(%) = 100x(10" slope 1)
[64] with same ABI 7500 PCR program and deemed to
be similar to each other (range from 95.3% to 100%;
see Table 3).

Quantification and ICG stability evaluation

The geomean of threshold cycle (Ct) values from the 7500
system software SDS software version 1.4 (Applied Biosys-
tems, Foster, USA) were exported to Microsoft Excel. The
quantity of each ICG was calculated by Q = Efficiency”“*
where ACt=Ct min-Ct sample for each gene. Statistical
analyses were performed by using SPSS 20 statistical soft-
ware (SPSS Inc., Chicago, USA). Data was tested for nor-
mal distribution and equal variance (Levene test, p > 0.05).
Data that were not normally distributed (RPLPO, TUBB,
ACTB, HPRT1, PPIA, NR3CI) were log transformed to
achieve normality. To determine treatment, day of ges-
tation, and gender effects as well an interaction be-
tween them on raw or normalized RT-qPCR data, a
MANOVA with treatment, gender and day of gestation
as factors, followed by a pairwise comparison (Holm’s
Sidak) when main effects were p < 0.05 was performed.
Main effects are indicated in the figure legend; post
hoc p-values (Holm-Sidak) are indicated in figures.
Data are presented as mean + S.E.M. Statistical signifi-
cance was accepted for values p <0.05. The relation-
ship between the average expression of ICGs and RNA
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Table 3 Primer information for candidate reference genes and rRNA in fetal sheep liver

Gene Primer sequences (5’ — 3’) Product size Efficiency* Accession No. Function and reference

symbol

RPLPO  F:CAA CCC TGA AGT GCT TGA CAT 227 bp 95.3% NM_001012682  Protein metabolism and modification [59,60]
R: AGG CAG ATG GAT CAG CCA

TUBB F:GGT CCT GGA TGT GGT TCG GAA G 223 bp 99.78% GQ338157 Member of a small family of globular proteins [62]
R.GAC GGA GAG GGT GGC ATT GTA G

RNA18S F: GCT ACC ACA TCC AAG GAA GG 244 bp 95.62% NR_036642.1 Recognition role, involved in correct positioning
R GCT CCC AAG ATC CAA CTA CG of the mRNA and tRNA [26,51]

ACTB F:CAT CGG CAA TGA GCG GTT CC 146 bp 96.02% NM_001009784  Cytoskeletal structural protein [60]
RCCG TGT TGG CGT AGA GGT

HPRT1  F.GCT GAG GAT TTG GAG AAGGTG T 94 bp 95.6% NM_001034035.1  Nucleoside, nucleotide and nucleic acid
RGGC CAC CCA TCT CCT TCA T metabolism [50)

PPIA FTGT GCC AGG GTG GTG ACT TCA 196 bp 100% AY251270 Protein metabolism and modification [60]
RTGC TTG CCA TCC AAC CAC TCA G

NR3C1  F: ACT GCC CCA AGT GAA AAC AGA 151 bp 95.6% NM_001114186  glucocorticoid receptor [63]
R: ATG AAC AGA AAT GGC AGA CAT

IGF1 F: TTG GTG GAT GCT CTC CAG TTC 118 bp 95.1% NM_001009774.2 Insulin like growth factor type 1 [59]
R: AGC AGC ACT CAT CCA CGATTC

G6PC F: GGA TTC TGG ATC GTG CAA CT 196 bp 100% EF062861.1 Glucose 6 phosphatase [61]
R: ATC CAA TGG CGA AAC TGA AC

RNA28S F: AAC TCT GGT GGA GGT CCGTAG C 115 bp 97.5% XM_004023057  structural RNA for the large component of

R: GAG GGA AAC TTC GGA GGG
AAC C

eukaryotic cytoplasmic ribosomes, and thus
one of the basic components of all eukaryotic
cells

*PCR efficiencies were determined using the formula (10775°P%-1) x 100%.

concentration (ug/ug tissue) was analyzed with the
Pearson correlation.

To determine the reliability of ICGs using the geNorm
analysis the average expression stability values (M) of
6 ICG genes in all samples were analyzed with geNorm
Visual basic application (V 3.5, Biogazelle NV, Zwijnaarde,
Belgium) according to the manufactures manual and the
procedures described by Vandesompele et al. [2] with
respect to days of gestation, gender and treatment. The
raw RT-qPCR data were then uploaded into geNorm,
Bestkeeper, or Normfinder and ICGs ranked based on
algorithm-specific values. For geNorm the ICGs were
ranked based on the M value, which refers to the con-
stancy of the expression ratio between two genes
among all samples tested [1]. At least two ICGs are re-
quired for stability analysis and subsequent M values
are calculated prior to the stepwise exclusion of the
least stable ICGs. The lowest M value indicates the
pair of ICGs with the most stable expression.

In order to determine the minimum number of ICGs
which has to be used to obtain a reliable normalization
factor (NF), geNorm calculates the pairwise variation
Vn/n + 1 between NFn and NFn + 1 from the NF calcu-
lated using the two most stable genes (i.e., with lower

M) and the NF calculated using the additional more
stable gene (i.e., n + 1) and so on until the stepwise in-
clusion of subsequent less stable ICGs has no significant
contribution to the newly calculated NF (Figure 2). For
example, V2/3 shows the variation of the NF of two
genes in relation to three genes. geNorm suggests a cut-
off for the pairwise variation V of < 0.15. A relatively
large decrease in pairwise variation V indicates that the
added gene has a significant effect on the final NF and
should be included in the calculation of NF. However,
the proposed cut off at <0.15 of the V is considered to
be indicative and the lower the V the higher the reliabil-
ity of NF [2]. Ideally the NF should be calculated by the
geometrical mean of the combination of ICGs with the
lower V-value. According to geNorm protocol the use
of the three best ICGs is in most cases a valid
normalization strategy, and results are much more
accurate and reliable compared to the use of only one
ICG [2].

It is known, that the geNorm approach has the prob-
lem that it tends to select genes with similar expression
profiles [65]. Therefore, the pairwise comparison ap-
proach of geNorm to determine ICG stability is highly
biased by potential co-regulation between selected ICGs
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[1,65]. The potential ICGs should not be regulated
through common upstream effectors or should not dir-
ectly regulate each other [22]. We therefore analyzed in
a post-run check potential co-regulation between the 6
potential ICGs with Ingenuity Pathway Analysis web-
based software, (Ingenuity System accessed 12.12.2012,
default settings were used, one relationship step was ana-
lyzed; www.ingenuity.com, Version 14400082, Build 192063,
Redwood City, CA). The software allows the discovery,
exploration and visualization of gene interactions and
co-regulations. Networks are generated relying on
known published relationships among human, mouse and
rat genes. Briefly, the network analysis was performed
using only relationship types including “expression”,
“transcription” and “any direction”. The “Build-Grow”
option was used and all the up-stream transcription
factors of our ICGs were added. The following options
were selected: Interactions = “direct” and “indirect”;
Grow out”All the molecules” that are “Upstream of the
selected molecules” and molecules were limited to
“Use Ingenuity Knowledge Base”; Relationship Types =
“expression” and “transcription”; Molecule Types =
“ligand-dependent nuclear receptor” and “transcription
regulator”. All the other options were left as default.
Once all the upstream molecules had been added by
IPA, we manually deleted all the transcription factors
that had only one relationship with our ICGs.

Quantities of the exemplary target gene (NC3RI) was
calculated by: Q = efficiency”(ct min - ct sample), rescaled
normalized expression levels Qnormalized/rescaled = (Qsample/
NFampie)/Min(Qgamplte/NFsample) (geNorm v3.5 manual
[66]), where NF was calculated using the number of
most reliable ICGs as uncovered by geNorm.

Additional file

Additional file 1: Figure S1. Comparison of relative quantities of 6
ICGs across gestation. Kruskal-Wallis One Way Analysis of Variance on
Ranks: different numbers indicate significant differences in RQ of ICGs
(clour coded) across gestation with p<0.05. Relative Quantity of gene
expression = efficiency/\(ct min - ct sample)/ RQmin.
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