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Solvent-driven fractional crystallization for atom-
efficient separation of metal salts from permanent
magnet leachates
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This work reports a dimethyl ether-driven fractional crystallization process for separating rare
earth elements and transition metals. The process has been successfully applied in the
treatment of rare earth element-bearing permanent magnet leachates as an atom-efficient,
reagent-free separation method. Using ~5 bar pressure, the solvent was dissolved into the
aqueous system to displace the contained metal salts as solid precipitates. Treatments at
distinct temperatures ranging from 20-31°C enable crystallization of either lanthanide-rich or
transition metal-rich products, with single-stage solute recovery of up to 95.9% and a
separation factor as high as 704. Separation factors increase with solution purity, suggesting
feasibility for eco-friendly solution treatments in series and parallel to purify aqueous material
streams. Staged treatments are demonstrated as capable of further improving the separation
factor and purity of crystallized products. Upon completion of a crystallization, the solvent
can be recovered with high efficiency at ambient pressure. This separation process involves
low energy and reagent requirements and does not contribute to waste generation.

TCritical Materials Institute, Idaho National Laboratory, 1955 N Fremont Ave, Idaho Falls, ID 83415, USA. 2 Critical Materials Institute, Ames Laboratory, US
Department of Energy, Ames, IA 50011-3020, USA. ®email: Aaron.Wilson@inl.gov

| (2022)13:3789 | https://doi.org/10.1038/s41467-022-31499-7 | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31499-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31499-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31499-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-31499-7&domain=pdf
http://orcid.org/0000-0003-0729-1261
http://orcid.org/0000-0003-0729-1261
http://orcid.org/0000-0003-0729-1261
http://orcid.org/0000-0003-0729-1261
http://orcid.org/0000-0003-0729-1261
http://orcid.org/0000-0002-9808-2272
http://orcid.org/0000-0002-9808-2272
http://orcid.org/0000-0002-9808-2272
http://orcid.org/0000-0002-9808-2272
http://orcid.org/0000-0002-9808-2272
http://orcid.org/0000-0003-3204-3796
http://orcid.org/0000-0003-3204-3796
http://orcid.org/0000-0003-3204-3796
http://orcid.org/0000-0003-3204-3796
http://orcid.org/0000-0003-3204-3796
http://orcid.org/0000-0002-3926-7445
http://orcid.org/0000-0002-3926-7445
http://orcid.org/0000-0002-3926-7445
http://orcid.org/0000-0002-3926-7445
http://orcid.org/0000-0002-3926-7445
http://orcid.org/0000-0002-0045-4585
http://orcid.org/0000-0002-0045-4585
http://orcid.org/0000-0002-0045-4585
http://orcid.org/0000-0002-0045-4585
http://orcid.org/0000-0002-0045-4585
http://orcid.org/0000-0001-5865-6537
http://orcid.org/0000-0001-5865-6537
http://orcid.org/0000-0001-5865-6537
http://orcid.org/0000-0001-5865-6537
http://orcid.org/0000-0001-5865-6537
mailto:Aaron.Wilson@inl.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he late twentieth century saw the development of new

classes of hard magnetic materials, specifically, permanent

magnets containing rare earth elements (REEs, comprised
of the lanthanide (Ln) series, scandium, and yttrium)!. REE-based
permanent magnets are indispensable in many modern technol-
ogies, including electric vehicle powertrains, wind turbines, and
electronic devices®. Beyond permanent magnets, REEs are also
critical in the production of catalysts, metal alloys, polishing
media, batteries, ceramics, phosphors, and glasses>*. Common
REE-based permanent magnets include neodymium-iron-boron
(Nd-Fe-B)> and samarium-cobalt (Sm-Co) types®, with usage
determined by the magnetic performance and operating condi-
tions for a particular application!2. In high-temperature or cor-
rosive environments, Sm-Co magnets are preferable based on
their high coercivity, corrosion resistance, and thermal stability®”.
Sm-Co magnets are rich in cobalt, a critical metal with broad
usage in lithium-ion batteries, metal alloys, and catalystsS.

An electrified infrastructure and circular economy require
efficient reuse of supply-limited materials such as REEs*~12,
Extraction of REEs from secondary feedstocks like magnet scrap
begins with leaching (selective, or complete)!3-17. Once con-
stituents of the magnet are brought into solution by leach pro-
cesses, transition metal and lanthanide elements must be
separated. Historically, REE separations were carried out through
fractional crystallization (FC), whereby evaporation or changes in
solution temperature drive precipitation of individual REE
double salts from the mixed REE salt solution!®1°. Modern lan-
thanide separations are accomplished via reagent-driven
precipitations2?21, solvent extraction (SX)2%23, ion exchange
(IX)#4, and electrochemical methods?5-28. Research efforts are
also underway to explore ionic liquids®®-31, biological chelating
agents®2, and other methods3® to improve REE separations.
Constraints of REE purification processes, whether applied to
hard rock minerals’4-3¢ or recycled scrap!337:38, generally
include consumption of energy and strong acid/base reagents,
generation of large volumes of wastewater, and use of complex
multistep processes. The poor atom economy of these processes is
directly connected to increased waste production and associated
operational increases in costs, environmental risk, and potential
for occupational exposure to hazards. Atom economy/efficiency is
the number of atoms in a product relative to the starting material
and reagents; higher efficiencies are associated with less waste and
energy input3®40. Hydrometallurgical separations would benefit
from low energy, atom-efficient, and environmentally benign
processes.

FC, also referred to as antisolvent crystallization, is a separation
process whereby two or more solutes are recovered from a
multicomponent solution*/42. FC is atom-efficient and can be
driven through solvent removal (evaporation), temperature
change, chemical reactions, pH adjustment, or use of an addi-
tional solvent (often termed antisolvent)¥1->4 While evapora-
tively driven precipitation processes suffer from low energy
efficiency and water consumption®?, thermally driven precipita-
tion (e.g., solution cooling) has limited recoveries determined by
temperature-dependent solubilities of solutes and requires nearly
saturated solutions®®. Chemical reactions and pH adjustment
inherently consume chemicals and produce waste. Contemporary
research in solvent-driven FC for mineral processing has
employed alcohols and acetone to induce FC in mixed salt
solutions to recover scandium®”->8 and REE salts>®%0; however, as
in historical treatments of brines, these processes may be limited
by post FC requirements for separation of water and solvent?s.

Prior work determined that solvent-driven FC is a molar dis-
placement process®! rather than a dielectrically driven process.
Regardless of the organic solvent employed, the same molar
fraction of NaCl was precipitated from a saturated solution,

indicating that selecting for a low molecular mass solvent is
preferable to selecting for a low dielectric solvent®!. Moreover,
salts with high molar solubilities®?~% require more solvent to be
displaced in FC than salts with an equivalent mass but lower
molar solubilities®!. High molar solubility salts also induce liquid-
liquid equilibrium (LLE) separation of the organic solvent, lim-
iting salt crystallization. For example, solvent-driven FC applied
to saturated NaCl solutions results in only ~12% of the NaCl
being crystallized. Salts with low molar solubilities do not induce
LLE separation of the organic solvent, as demonstrated in the
precipitation of sparingly soluble salts (98 wt% CaSOj, crystallized
from a saturated solution)®!. Many transition metal and lantha-
nide salts have relatively high mass fraction solubilities (>25 wt%)
but rather low molar solubilities (<2.5 molal), making them an
interesting target for solvent-driven FC with the potential for high
recoveries. Based on these findings, we have deployed solvent-
driven FC to separate transition metal and lanthanide salts using
dimethyl ether (DME), a low molecular mass non-coordinating
solvent that can be easily recovered®>-98,

DME is a hygroscopic gas that is partially miscible with water
when condensed®. Historically, DME has attracted interest as
both a clean-burning alternative fuel’ and as a refrigerant capable
of high performance at moderate pressures®®. Herein, DME-
driven FC is demonstrated in the treatment of REE-containing
permanent magnet leachates to selectively precipitate either
transition metal-rich or lanthanide-rich crystalline solid products.
The leachate was produced in an acid-free magnet dissolution
process’ 172 by dissolving the permanent magnets in a copper (II)
sulfate solution. These separations are facilitated by the differing
solubility responses of transition metal and lanthanide sulfates to
temperature change; in a temperature range from 20-50°C,
transition metal sulfate solubilities in H,O increase while lantha-
nide sulfate solubilities decrease’>~7>. These temperature and
pressure adjustments to the mixed salt aqueous solution, including
the temperature and pressure swing for DME recycling, represent
a trivial energy requirement when compared to thermal-"677 or
solar-driven’® evaporative precipitation processes.

In this work, we present an energy- and reagent-efficient sol-
vent-driven FC process that avoids the generation of waste
byproducts for the separation of lanthanides and transition metal
salts from permanent magnet leachates. This separation is
demonstrated for two example feedstocks: a moderately complex
feedstock containing Sm, Co, and Fe and another more complex
feedstock comprised of Nd, Pr, Dy, Sm, Fe, and Co. Since DME is
non-toxic and readily leaves the solution as a gas at ambient
temperatures and pressures for later reuse, no reagents are con-
sumed, and no toxicity is created in the separation process.

Results and discussion

Experimental approach. Gaseous DME is employed as a
saturation agent to induce crystallization of transition metal or
lanthanide sulfates from mixed metal salt magnet leachates. DME
is not thought to interact directly with other solutes; instead,
DME reduces the quantity of the free water (i.e., water that is not
bound within a solvation environment) to fulfill its own hydra-
tion requirements®263, A reduction in free water, reduced water
activity, and/or liquid phase microstructuring’® induce salt pre-
cipitation. This mechanism suggests that the solid salt product
compositions would be similar (if not identical) to those pro-
duced in energy-intensive evaporative precipitation processes
conducted at equivalent temperatures. Increasing reaction
chamber head pressure increases the amount of DME dissolved
into solution8%81, resulting in crystallization of a metal salt. The
experimental apparatus is depicted conceptually in Fig. la; a
jacketed glass vessel sealed at both ends and connected with
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Fig. 1 DME-FC apparatus and process schematic. a Schematic depicting
the experimental apparatus whereby DME gas is sparged into an aqueous
solution at elevated pressure, permitting dissolution of DME into the liquid.
Reaction temperature is controlled via a water bath, recirculation is carried
out through a gear pump, and crystallization of metal salts occurs on the
nucleation scaffold. b Photograph of the experimental apparatus during
treatment of the Sm-Co leachate. ¢ Process schematic depicting the DME-
FC solid-liquid separation followed by a gas-liquid separation to recover and
reuse DME with high efficiency. d Photograph of the experimental apparatus
after FC of CoSO,4 from the leachate, showing the visible change in CoSO,4
concentration concurrent with crystal growth on the nucleation scaffold.

fittings, valves, and tubing permits DME sparging of the leachate
within the inner chamber while reaction temperature is con-
trolled in the outer chamber via a water bath. In the photograph
shown in Fig. 1b, the solution becomes saturated with DME,
inducing crystallization that occurs primarily on the nucleation

scaffold in contact with the liquid phase, depleting metal ion
salt(s) from the aqueous solution. Within the reactor, we employ
stainless-steel mesh as a nucleation scaffold to increase the
nucleation density and facilitate the recovery of the crystallization
products®2. Once the liquid phase is evacuated from the reaction
column, precipitates are captured on, and subsequently recovered
from, the nucleation scaffold. By reducing the pressure exerted on
the treated solution, gaseous DME can be recovered efficiently for
reuse (see process flowsheet, Fig. 1c). The treated solution
(Fig. 1d) remains unchanged in its chemical character (i.e., pH,
salts contained in solution), apart from the removal of pre-
cipitated salts, and is thus suitable for reuse in leaching or other
hydrometallurgical processes. Experiments were conducted at
~62 psig, pursuant to the internal vapor pressure of the DME
tank at ambient temperatures.

DME-FC was studied experimentally in conjunction with two
separate REE-rich leachates: one leachate was produced from Sm-
Co magnet swarf, whereas a more complex leachate was
generated from a real-world mixed magnet recycling feed,
containing both Nd-Fe-B and Sm-Co magnet swarf. The
sensitivity of the solutes to temperature shifts’3-7> (Fig. 2a)
facilitates the separation of transition metal and lanthanide
sulfates from the mixed metal salt solutions. Divergent aqueous
solubility vs. temperature trends exist for the metal sulfates
contained in the two leachates: from 10 to 50 °C, lanthanide
sulfate solubilities decrease with temperature while transition
metal sulfate solubilities increase (Fig. 2a)73-7°. Initial metal
concentrations in the Sm-Co leachate (Fig. 2b) and Nd-Fe-B
mixed magnet leachate (Fig. 2c) were measured by inductively
coupled plasma optical emission spectroscopy (ICP-OES).
Experimental observations regarding DME-FC rate and related
crystal size suggest that in this system, crystallization rate and
crystal size vary with temperature; at lower temperatures (e.g.,
20°C), the crystallization rate is enhanced by the increased
concentration of DME in water8081 as determined by the
headspace pressure of the DME tank, ~62 psig®!. Higher solution
viscosity at lower temperatures®> may also lead to greater
turbulence in gas bubble flow and more rapid dissolution of
DME into the aqueous phase34.

DME-driven fractional crystallizations under controlled tem-
peratures. DME-FC was conducted on the leachates at two
separate temperatures. In FC treatments applied to both leachates
(initial concentrations given in Fig. 2b, ¢) at 31 °C, the increased
solubility of transition metal sulfates (FeSO, and CoSO,) main-
tains Fe and Co in solution and motivates crystallization of Ln-
rich products (Fig. 3a, b). Conversely, treatment of the Sm-Co
leachate at a lower temperature of 20 °C leverages the increased
solubility of Sm in solution to preferentially crystallize the higher
value Co fraction on the stainless-steel scaffold (Fig. 3a). This
ability to combine solvent-driven and temperature-driven FC is
advantageous over evaporatively driven precipitations, where
temperature control is more complex. However, it may also be
more challenging to control concentration gradients in evapora-
tively driven processes, as during the evaporation of water, the
solute must be redistributed at a diffusion rate that matches or
exceeds rates of nucleation processes to ensure uniform
behavior®>. In contrast, DME is distributed through a salt solu-
tion more rapidly and uniformly than a precipitation process in
the studied systems, as demonstrated by the increase in the
aqueous solution volume long before turbidity or macroscopic
crystals are observed.

Separation efficacy for DME-FC was quantified with a
separation factor, &, a common method to evaluate SX and IX
processes3®87, The separation factor is the ratio of distribution
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Fig. 2 Solubility vs. temperature trends for dissolved species and initial
leachate metal concentrations. a Molal solubility limits vs. temperature for
DME8' (at sufficient pressure to condense a liquid DME phase) and metal
sulfates contained in the two studied permanent magnet leachates in the
temperature range from 10-50 °C73-75, |CP-OES measurement of metal
concentrations in the b Sm-Co magnet leachate and ¢ Nd-Fe-B mixed
magnet leachate. Source data are provided as a Source Data file.

coefficients, K;, as determined in this work by the ratio of metal
in the solid product relative to that in the original aqueous phase,
Eq. (1):

, Co Mass % in Solid Product
o _ Rgco _ CoMass % in Initial Aqueous (1)
Co/Sm — 7~ "Sm Mass % in Solid Product
dSm Sm Mass % in Initial Aqueous

Separation factors for transition metal—lanthanide separations
range from 48-730 (see Table 1), with the highest selectivity
achieved in the crystallization of the Sm-rich product from the
Sm-Co magnet leachate.

X-ray diffraction (XRD) patterns of known references®33? were
compared to experimental XRD datasets obtained for Co-rich
solids and Sm-rich solids, showing agreement with
C0S04-6H,08 and Sm,(SO,);-8H,08° (Supplementary Fig. 1).
These results indicate that the solid products are recovered as
sulfates, corresponding to their solubilized form in the aqueous
leachate.

To quantify the recovery efficacy of DME-FC in the
treatment of the two leachates, recovery fractions were
calculated based on the concentration of metals in the original
and treated solutions. ICP-OES results for treated Sm-Co leach
solutions show 95.9% Co recovery in the 20 °C treatment and
62.5% Sm recovery in the 31 °C treatment (see Supplementary
Fig. 2). Results for the Nd-Fe-B mixed magnet leach solution
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Fig. 3 Compositional data for solid products of DME-FC. a Solid products
obtained from DME-FC of the Sm-Co magnet leachate at 20 and 31°C.

b Solid product obtained from DME-FC of the Nd-Fe-B mixed magnet
leachate at 31°C. ICP-OES acquired mass percent compositions are plotted
at left (arrows indicate the shift from the original leachate composition to
solid product composition). Associated separation factors are listed in
Table 1. Photographs of the solid products as precipitated on nucleation
scaffolds are shown at right. Source data are provided as a Source Data file.

treated at 31°C show 76.1% Ln recovery. These high metal
recoveries are consistent with a process determined by molar
solubilities of the salt rather than mass-based solubilities®!.
Experiments were ended once extensive solid product had
formed; as such, it is unlikely that these recovery fractions
represent a thermodynamic endpoint. Prolonged experiments
were avoided; once a fraction of the crystallizing salt has been
depleted from leachate, the solution composition has changed
such that a different metal salt composition is preferred in
crystallization. Under such circumstances, the subsequent FC
product is no longer representative of treatment of the initial
leach solution, and separate metal salts may crystallize on
distinct surfaces (an example optical microscope image is
shown in Supplementary Fig. 3). The simultaneous growth of
multiple crystal types in spatially distinct locations indicates
that the product crystal structure is also a factor in the process
selectivity. Further investigation is required to determine the
tradeoffs between recovery fraction and product purity and to
model the separation mechanism. It is important to note that
changes in solution composition do not fully balance with the
compositions of the sampled crystals; this may occur due to
changes in the solution temperature and pressure during the
evacuation of the reaction chamber, precipitation losses within
sampling hardware, or simultaneous growth of differing
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crystals. Complete compositional data for original and treated
solutions is tabulated within Supplementary Table 1.

In the Co-rich solid product, Sm is largely excluded; however,
the Co:Fe ratio is similar to that of the original leachate (11.13 vs.
13.20). This is likely a reflection of the similar crystallographic
structures of CoSO, and FeSO,2%%1, which permits their co-
crystallization within the same crystal lattice?2. This is supported
by minimal Co and Fe entrainment in the trivalent Sm,(SOy);

Table 1 Separation factors for DME-FC treatments of Sm-Co
magnet leachate and Nd-Fe-B mixed magnet leachate for
products depicted in Fig. 3.
Leachate =~ Temperature Product  Separation a(lg—sy)
Sm-Co 20°C Co-rich Aco/sm 95.3
QFe+Co/Sm 86.9
aFe/Co 119
Sm-Co 31°C Sm-rich Olsm /Fe+Co 379
Osm/Co 704
Ofe/Co 13.2
Nd-Fe-B 31°C Ln-rich QU /Fet Co 48.5
OlFe/Co 1.46
sz 317
Opy/x 2.07
Osm/s 434
Apy/z 0.89
Initial leachate compositions are found in Fig. 2b, ¢ and Supplementary Table 1. Product
compositions are found in Fig. 3a, b and Supplementary Table 1.

crystalline product, which is not amenable to Co/FeSO, crystal-
lization within its lattice. Compositional data indicate that initial
solution compositions affect separation factors of crystallizations.
Moreover, solute solubilities are more deterministic of crystallized
product than the solute concentration or its nearness to
saturation. Process temperature also plays an important role;
for example, at 20 °C, transition metal sulfates are produced,
while at 31 °C, lanthanide sulfates are produced. The results also
highlight the importance of product crystal structure, as it is
possible to crystallize more than one metal salt within the same
solid product (e.g., FegxC00ySO.).

Sequential fractional crystallizations in stages and passes.
Metal-rich solutions can be treated via two distinct sequential
methods, in passes to precipitate distinct fractions from a single
solution, and also in stages by dissolving a solid product and
treating the resulting solution (see Fig. 4a). In DME-FC passes, a
solution is exposed to a set of conditions defined by temperature,
DME pressure/concentration, and treatment duration/salt
recovery fraction to produce an initial precipitate product. This
solution can then be treated under differing conditions to pro-
duce additional solid product(s). In this way, a lanthanide-rich
product can be initially precipitated at higher temperatures and
removed from the solution, followed by a subsequent crystal-
lization at lower temperatures to isolate a transition metal-rich
product. This protocol is demonstrated in the treatment of the
Sm-Co magnet leachate via ICP-OES measurement of metal
concentrations in treated solutions in Supplementary Fig. 4.

In DME-FC stages, initial solid products are dissolved in water
and resulting solutions are treated in a subsequent crystallization,
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Fig. 4 Sequential treatments in stages and passes in DME-FC. a Scheme depicting stages and passes in DME-FC. DME-FC stages involve treatment of
the initial leachate (7)), dissolution of the the solid product (e.g., s;) in water, followed by treatment of the resulting solution to yield a higher-purity solid
(e.g., s;1). DME-FC passes are successive treatments of the liquid stream to recover chemically distinct solid products (s;, s,) from the same aqueous
solution. Temperature control can enhance separations in passes (e.g., initial solid fraction s, recovered at temperature T, followed by treatment at a

different temperature (T,) to recover a separate solid fraction (s,)), and can also be used to enhance purification via DME-FC stages. As the chemical
character of the solution remains unchanged, albeit with reduced salt concentration, liquid products are suitable for further hydrometallurgical processes
upstream or downstream of the separation. ICP-OES metal compositions depicting the purification from original solution (), first solid product (s;), and
solid product produced through staging (s;;) with treatments at 25 °C for b Sm-Co magnet leachate and ¢ Nd-Fe-B mixed magnet leachate. Sum of the
lanthanide elements (Nd, Pr, Sm, and Dy) is given as Ln. Separation factors for both b and ¢ are listed in Table 2. Source data are provided as a Source

Data file.
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Table 2 Separation factors for staged treatments of the Sm-
Co magnet leachate and the Nd-Fe-B mixed magnet leachate
at 25 °C as depicted in Fig. 4.

Leachate Product Separation o a, otal
lo=$ Si1=Sn lo—Sn
Sm-Co Co-rich Ofe/Co 0.82 m 0.9
Sm-Co Co-rich OlFe4 Co/Sm 1.96 523 102
Nd-Fe-B  Fe+ Co-rich  aeicopin 9.69 54.5 528
Nd-Fe-B  Fe+ Co-rich  ag/co 1.04 1.02 1.06

resulting in two-stage solid products of increased purity. To
investigate this process, an intermediate temperature of 25 °C was
selected to promote uniform crystal growth. DME-FC experi-
ments conducted at 25°C yielded solid products that were
dissolved in water to saturation, then treated again under the
same conditions (Fig. 4a). The sequential product obtained from
the Sm-Co leachate was Co-rich, with higher purity than the
treatment carried out at 20°C (Fig. 4b). Similarly, sequential
treatment of the Nd-Fe-B mixed magnet leachate at 25°C
produced a Fe- and Co-rich solid product with minimal Ln
entrainment (Fig. 4¢). In hydrometallurgical extractions of REEs
from primary feedstocks, the leachate contains large amounts of
Fe that must be precipitated through pH neutralization® or
carried over with the lanthanides during SX!'8. DME-FC may
provide a means to selectively precipitate Fe from REE-bearing
solutions without chemical consumption before SX, reducing the
extractant required to load REE onto organic.

Separation factors calculated for two-stage DME-FC are given
in Table 2. The total separation factors for separating the
transition metals from lanthanides were measured to be 528 in
the Nd-Fe-B mixed magnet leachate and 102 for the Sm-Co
magnet leachate. Separation factors for the two-stage process
were measured as 9.69 and 54.5 in the Nd-Fe-B mixed magnet
leachate, and 1.96 and 52.3 in the Sm-Co magnet leachate. This
progressive increase in separation factor highlights the impact of
the initial solution composition on separation efficacy: in DME-
FC, selectivity increases with the concentration of the major
component. In many separations, the selectivity of the process
declines with increasing concentration®*. In membrane processes,
the rejection of the membrane declines as concentration
increases”, increasing the concentration of minor components
in the liquor. When separation factors are relatively independent
of concentration due to chemical interactions, as is the case with
SX and IX, increasing purity becomes more difficult as the minor
component declines. In the case of DME-FC, the separation
factor is enhanced as the minor component declines. This ability
of crystallization processes to access high purity is commonly
used in industrial processes such as float zone refining of single
crystal silicon®®.

Separation factors for transition metal (Co/Fe) separations are
relatively low for both systems. Many factors influence these
results, including the presence of the lanthanide ions and relative
concentrations of Fe and Co in the initial solutions. While Fe and
Co concentrations are within an order of magnitude in the
studied solutions, molal solubility of CoSO, is twice that of FeSO,4
at 25°C. Given that Fe tends to be incorporated in transition
metal-rich solid products (even where it appears as a minor
component, as in the Sm-Co magnet leachate), small solubility
differences can have a significant impact on DME-FC separations.

In summary, DME-driven FC was demonstrated in the
separation of REE and transition metal salts from industrially
generated magnet wastes. DME-FC was applied to two separate
leachates, one comprising only Sm, Co, and Fe, and a more

complex leachate containing Nd, Pr, Dy, Sm, Fe, and Co.
Depending on the temperature (20-31°C), the process can be
tailored to selectively yield either transition metal-rich or
lanthanide-rich solid products. High recoveries are observed for
separations obtained in DME-FC (62.5-95.9% recovery), indicat-
ing that high-yield sequential processing can be achieved with a
limited number of steps. Staged treatment of the leachate,
involving dissolution of the solid products and treatment of the
resulting solutions at 25 °C, produced high purity transition metal
salt products (>99.5% transition metal). The selectivity of the
process increases with the concentration of the major component,
suggesting that DME-FC may be an effective processing route to
generate high purity products.

DME-driven FC offers non-toxic separation of valuable
elements from a mixed salt solution, avoiding requirements of
stoichiometric chemical consumption. The selectivity in solid
products avoids the energy costs of distillation and the
introduction of additional ions to the working fluid (salt
metathesis). This process presents opportunities for significant
reductions in downstream environmental effects associated with
state-of-the-art hydrometallurgical purifications. DME-driven FC
is a versatile separation that can be integrated with existing
separations such as SX to reduce reagent usage, waste generation,
and energy consumption.

Methods

Leachate preparation. Leach solutions were obtained by oxidative dissolution of
Sm-Co magnet grinding swarf (1.0 kg) and a mixture of Sm-Co and Nd-Fe-B
grinding swarfs supplied by a U.S. magnet processing plant (1.0 kg). 3.46 kg of
copper(Il) sulfate (CuSOy4, 12 wt% solution) was used for oxidative dissolution of
Sm-Co magnet grinding swarfs. For the mixture of Sm-Co and Nd-Fe-B grinding
swarfs, 2.03 kg of copper(Il) sulfate (CuSOy4, 10 wt% solution) was used. The dis-
solution reaction was initiated at ambient temperature and proceeded exothermi-
cally with stirring applied for 5h at 300 rpm. The procedure for oxidative
dissolution of magnets to produce REE-rich leachates is also described in a prior
publication”!.

Experimental apparatus. The glass reaction vessel used in treatments is a dual
chambered tube; the inner tube contains the reaction while the volume in between
the two tubes accommodates flow from a water bath, delivering temperature
control for the reaction. The glass vessel length is ~40 cm; the inner tube measures
31.7 mm in outer diameter with 4 mm wall thickness. The outer tube measures
50 mm in outer diameter with 5 mm wall thickness. Both ends of the glass reaction
vessel are threaded to accommodate Teflon endcaps, which are integrated to a
recirculation system via 316 stainless steel Swagelok fittings and 1/8” Teflon tubing.
Recirculation and sample introduction are accomplished through use of a gear
pump (Cole Parmer 115V 60 Hz console drive, EW 35215-30, fitted with a Cole
Parmer Micro pump head, EW-07001-40). Reaction temperature is moderated
with a water bath (Cole Parmer polystat standard 3-61 capacity Heating/Cooling
bath, PN: EW12122-02). Gaseous DME is introduced to the system via a standard
gas cylinder (Matheson, 99.5% purity, size 1A). Stainless-steel wire mesh

screen (316, 400 mesh, 0.0012” x 48 roll, purchased from wirescreen.org,
400x400T0012W48T) is cut to size and implanted in the reaction chamber to serve
as a nucleation scaffold.

Experimental conditions. After assembly, the apparatus was pressurized and leak
tested with gaseous DME, then purged (five cycles) with DME to remove partial
pressures of atmospheric gas. The aqueous sample (generally 150-200 ml) was then
introduced to the chamber via the gear pump. The reaction chamber was pres-
surized, with DME gas recirculated from the headspace through the aqueous
solution. DME headspace pressure is maintained via delivery from the DME gas
canister. Temperature was varied in a range from 20 °C to 31 °C by control of the
water bath. Pressure was held at 62 psig, via delivery of gas pressure from the DME
canister. A description of a complete DME-FC treatment is given in Supplementary
Note 1: Example Experiment within the Supplementary Information.

Inductively coupled plasma optical emission spectroscopy (ICP-OES). Aqu-
eous and acid-digested crystal samples were analyzed for the elements Co, Fe, Sm,
Nd, Pr, and Dy with ICP-OES. The instrument used was an iCAP Series 6000
(Thermo Scientific), calibrated from commercial stock solutions (1000 ppm, five-
point calibration, 0, 1, 2, 5, 10 and 20 ppm calibration range). A continuing
calibration verification standard (CCV) and a continuing calibration blank are
analyzed throughout the analysis to monitor instrument performance. For quality
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control and assurance purposes, commercial stock solutions for the calibration
standards and CCV standards are obtained from separate vendors. A laboratory
control standard (LCS, or sample spike) was analyzed to ensure analytical accuracy
and precision. An internal standard for the ICP-OES analysis (scandium, 4 ppm)
was conducted to correct for any matrix artefacts. Concentrated hydrochloric acid
(HCI) was used to produce a 2% HCI acid matrix.

Samples were prepared first by filtration through a 0.45 um filter to remove
suspended solids that may otherwise induce sample introduction problems. Solid
samples were digested according to the following protocol: (1) weigh out 0.2-0.3 g
of sample into a tarred Teflon 25 ml beaker, (2) rinse the side of the beaker with
Nanopure H,O to collect all the sample in the bottom of the vessel (~0.5 ml), (3)
add 2 ml HCI to the beaker with the sample, (4) place sample on hotplate, cover
with a Telfon watchglass and heat sample, (5) once the sample has dissolved,
remove the beaker from the hotplate and cool the sample, (6) analytically transfer
the sample to a 25 ml poly volumetric flask and dilute to volume with Nanopure
H,O0, (7) transfer the sample to a 50 ml poly tube which has been labeled with the
sample ID.

Optical microscopy. Optical microscope images were captured with a camera and
an Olympus Optical SZH-ILLD Lab Zoom stereo microscope. A Cole-Parmer
standard fiber optic illuminator (41720 series) was utilized with the microscope.

X-ray diffraction (XRD). XRD patterns were obtained for crystals recovered from
nucleation scaffolds after grinding in a mortar and pestle. A Bruker D8 Advance
was used in analysis; a Cu anode generated Cu K-a x-rays and 260 was measured in
a range of 5° to 90°. XRD patterns were background subtracted using Bruker
Instrument Software. Match! software was applied in Reitveld refinement based on
known references®3:59.

Data availability

All data presented in this study are included in this published article, its Supplementary
Information, and Supplementary Source Data file. Data presented in this study include
previously reported results’3-7>81.8889 Source data are provided with this paper.
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