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Abstract Background: The neural and cognitive substrates of measures of orientation as used in clinical trials
and examinations have not been comprehensively examined.

Methods: We studied 473 subjects diagnosed with mild cognitive impairment (MCI) and Alz-
heimer’s disease (AD) at baseline in Alzheimer’s Disease Neuroimaging Initiative. Regression ana-
lyses at baseline were conducted to find significant predictors of orientation score among cognitive,
brain morphometry, and glucose metabolism measures. Mixed model longitudinal analysis was per-
formed to examine consequences of orientation on functional decline, and Cox hazard models exam-
ined the risk of conversion to AD in the MCI group.

Results: In MCI and AD subjects, orientation was predicted by poorer neurocognitive performance
on immediate and delayed episodic memory and attention and processing speed. Among magnetic
resonance imaging measures, orientation was predicted by entorhinal cortex thickness, hippocampal
volume, and inferior temporal cortex thickness. Glucose metabolism in both middle-inferior temporal
cortex and hippocampus were also predictive of orientation score. Functioning was significantly
lower in disoriented subjects after 4 years of follow-up, and MCI patients who also were disoriented
showed a higher rate of conversion to AD with a hazard ratio of 1.5.

Conclusions: Orientation is associated with medial temporal lobe structure, temporal lobe glucose
metabolism, and episodic memory function. In MCI individuals orientation was a risk factor for pro-
gression to AD, also associated with rapid functional decline and worse prognosis. Thus, orientation
may serve as a surrogate for episodic memory in clinical examination. These results have direct im-
plications for the use of orientation in MCI and AD clinical trials including ceiling effects in healthy
controls and issues of redundancy with measures of memory, when both are used in composite scores.
© 2015 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

'Data used in preparation of this article were obtained from the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.u-
cla.edu). As such, the investigators within the ADNI contributed to the
design and implementation of ADNI and/or provided data but did not partic-
ipate in the analysis or writing of this report. A complete listing of ADNI
investigators can be found at: http://adni.loni.ucla.edu/wp- content/upload-
s/how_to_apply/ADNI_Acknowledgement_List.pdf.
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Tests of orientation to time, date, and place are widely
used in clinical psychiatric and neurologic examinations
and for staging and monitoring progression in research
studies and clinical trials involving individuals with de-
mentia or its antecedents. Pragmatically, orientation may
be useful as an indicator of decline in the Alzheimer’s dis-
ease (AD) spectrum [1,2], and can also be used to
discriminate between AD and other neurodegenerative
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disorders, that is, frontal temporal dementia [3]. Neuro-
cognitive studies examining the relationship between
orientation and cognition have found correlations between
episodic memory and working memory and/or executive
impairment and orientation [4-7]. Several lesion and
neuroimaging studies have implicated multiple brain
areas (presumably subserving different cognitive
operations) as being involved in orientation, including
the hippocampus [8], medial temporal and parietal
cortical areas [9], and orbitofrontal cortex [10] in various
disorders. However, few studies have examined the neural
substrates of orientation in the context of mild cognitive
impairment (MCI) or AD. A single fluorodeoxyglucose
positron emission tomography (FDG-PET) study of pa-
tients with mild-to-moderate AD found that temporal
disorientation was related to reduced glucose metabolic
rate in the posterior cingulate gyri and in the right middle
temporal gyrus, but cognition was not examined [11].

Beyond its routine use in the clinic, orientation has come
to be viewed as increasingly important in tracking neurode-
generative disease progression [2,12]. Recently several so-
called composite measures of cognition have identified
orientation as a key component in the battery [12,13].
Selection was made after analyses revealed that orientation
(scored on the Mini-Mental State Examination or MMSE)
demonstrated consistent decline in MCI and AD groups
over time (i.e., had robust signal to noise properties using
mean/standard deviation ratios). Further adjustments for
group, namely individuals who remained cognitively normal
versus those who progressed or showed practice effects were
sometimes made [2,12]. However, selection criteria did not
include redundancy with other measures (e.g., episodic
memory), nor applicability to preclinical AD given the
possibility of ceiling effects [14]. For the Preclinical Alz-
heimer Cognitive Composite (PACC) selection of items
including MMSE orientation was based on a literature re-
view. The resulting composite was used retrospectively in
measuring change in various groups with preclinical AD
and setting aside the possibility of tautology, was able to
track “progressors” in various groups [13].

In this article we examine spatial and temporal disorien-
tation in the context of AD dementia and MCI, disorders in
which disorientation may be a frequently observed symptom
[15]. This study is the first to comprehensively examine
cognitive, structural magnetic resonance imaging (MRI)
brain morphometry, and positron emission tomography
(PET) functional glucose metabolism substrates of orienta-
tion in a single large sample of MCI and AD patients. We
predicted that orientation would be associated with (1)
cognitive operations involving episodic memory, given
demands for acquisition, and recall of new information in
specific contexts; (2) executive processes involving cogni-
tive estimation, updating, and management of interference
between similar items (‘“remembering to remember” to
advance the date after time has passed); and (3) semantic
knowledge to parse meaning based on attributes (e.g., a

city is different than a county), that is, a network involving
higher integrative processes. These operations would engage
such brain regions as the medial temporal lobe (episodic
memory), prefrontal cortex (updating and estimating), and
lateral temporal lobe (semantic knowledge). However, our
results strongly supported a more restricted conceptualiza-
tion of orientation involving episodic memory and its medial
temporal lobe substrate and to a lesser extent, lateral tempo-
ral lobe glucose metabolism (perhaps impacting semantic
knowledge). In an extension of our approach to examine
prognosis, we examined the consequences of disorientation
on longitudinal functional capacity (over 4 years of follow-
up), and specifically in the context of MCI, the influence of
disorientation on conversion to AD, and demonstrated that it
was a robust and negative prognostic indicator. Our findings
also have clear implications for orientation’s possible use in
clinical trials in various AD subpopulations.

2. Methods
2.1. Study population

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). Only subjects diag-
nosed with MCI and AD at study entry were included in
the analyses. Inclusion criteria for MCI and AD patients
are described elsewhere [16,17] and on the ADNI website
(http://www.adni-info.org). Briefly, healthy controls (HC)
had no memory complaints aside from those common in
other individuals of that age range, a Mini-Mental State Ex-
amination (MMSE) [18] score between 24 and 30 (inclu-
sive), a Clinical Dementia Rating (CDR) [19] score equal
to 0, and absence of significant levels of impairment in
cognitive functions or activities of daily living. MCI patients
had MMSE scores between 24 and 30 (inclusive), a memory
complaint, objective memory loss, a CDR score of 0.5, and
absence of significant impairment in other cognitive do-
mains, and preserved activities of daily living. AD patients
had MMSE scores between 20 and 26 (inclusive), memory
complaint, objective memory loss, a CDR score of 0.5 or
1, and the National Institute of Neurological and Communi-
cative Disorders and Stroke—Alzheimer’s Disease and
Related Disorders criteria for probable AD [20].

This study included both MCI and AD subjects in a single
pool to extend the range of orientation scores and the likeli-
hood that multiple brain regions would be compromised to
greater and lesser degrees. Additionally, our rationale was
based on our own work in the ADNI sample and consequent
Pittsburgh compound B (PIB) imaging studies, in that most
MCI patients had pathology consistent with AD (i.e., suf-
fered from prodromal AD) and also converted to AD in
the course of the study [16,17]. All participants signed
written informed consent for participation in the ADNI
initiative, as approved by the institutional board at each
participating center.
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2.2. Measurements

2.2.1. Orientation

Orientation was examined as a single composite
including both spatial and temporal items, using the Fol-
stein’s MMSE orientation section, which contains five
spatial orientation and five temporal orientation items. In a
further set of analyses, we also took into account the tempo-
ral and spatial domains of orientation independently (see
Supplementary Material).

2.2.2. Cognitive assessment

Cognitive measures were entered into analyses individu-
ally and were not statistically combined into domains.
Cognitive domains assessed included those linked to the
brain structures described previously: immediate and de-
layed episodic verbal memory were measured by Logical
Memory immediate recall and delayed recall of the Wechs-
ler Memory Scale (WMS) [21] and immediate and delayed
recall of the Auditory Verbal Learning Test (AVLT) [22],
attention was measured by Trail Making Test part A (23),
working memory was measured by digit span, semantic
memory and visuospatial ability were measured by clock
drawing score [23], language ability was measured by se-
mantic fluency (22), speed of processing was measured by
digit symbol score [24], and executive function was
measured by Trail Making Test part B (23). Clock drawing
scores were log-transformed because of a skewed distribu-
tion. All measures were obtained at baseline.

2.2.3. MRI acquisition and analysis

The scans used in this study were obtained from 1.5 Tesla
scanners at different sites involved in ADNI with minor var-
iations in the MRI protocol based on the specific configura-
tion of each scanner. For the purpose of this study,
volumetric measures of the whole brain, cerebral white mat-
ter, and left and right hippocampus, and cortical thickness
measures of both hemispheres were combined and extracted
from the following medial temporal, frontal, and parietal
lobe’s areas: parahippocampal, entorhinal, middle temporal,
inferior temporal, superior temporal, medial orbital frontal,
rostral middle frontal, superior frontal, posterior cingulate,
precuneus, superior parietal, and inferior parietal. These
measures were derived by Freesurfer (http://surfer.nmr.
mgh.harvard.edu/). We excluded full MRI scans for subjects
who had failed or partially failed the cortical reconstruction
in any of the brain regions that we examined. Detailed
description of MRI protocol and methods is available at
ADNI webpage and on request by the authors. All measures
were obtained at baseline.

2.2.4. FDG-PET acquisition and processing

A specified reconstruction algorithm for each scanner
type was implemented according to a standardized proto-
col to acquire FDG-PET data (http://adni.loni.usc.edu/
about/centers-cores/pet-core/). All images were prepro-

cessed by the ADNI PET coordinating center. Three pre-
defined regions of interest (ROIs) including both right
and left hemispheres, based on coordinates frequently
cited in FDG-PET studies of MCI and AD, were analyzed
[25]: middle-inferior temporal gyrus, posterior cingulate
cortex, and angular gyrus. Briefly, processing of images
consisted of spatial normalization in Statistical Paramet-
rical Mapping (SPM) software to the Montreal Neurolog-
ical Institute (MNI) MNI PET template and extraction of
the mean counts from the regions of interest (ROIs)
computing the intensity values with SPM subroutines;
subsequently each ROI mean was intensity normalized
by dividing it by a reference region mean (pons/cerebella
vermis). An additional fourth ROI with both hippocampi
was included. This latter measurement was performed
through HIPMASK [26], a technique specifically devel-
oped to measure hippocampal metabolism sampling that
overcomes errors in spatial alignment of small structures
such as the hippocampus and with an anatomically vari-
able position; it is an automated technique based on the
optimization of positive likelihood ratio that enables
rapid PET sampling of brain subregions. Mean glucose
metabolism intensity data were extracted for both left
and right hippocampus normalized to pons as the refer-
ence region. All measures were obtained at baseline.

2.2.5. Functional assessment

The functional assessment questionnaire (FAQ) [27] was
used as a measure of functional ability. Data at baseline, 1
year, 2 years, and 3 years were used in a longitudinal frame-
work analysis.

2.2.6. MCI to AD progression

Progression from MCI to AD is a primary outcome mea-
sure in ADNI. First, each site physician reviewed visit mea-
sures and completed diagnosis formulation. Second, site’s
clinical monitor reviewed CDR and resolved any issues
with site Principal Investigator. Finally, the Conversion
Committee reviewed reports, resolved differences, and
completed diagnosis formulation. Conversions were counted
over a 4-year period.

2.3. Data analyses

First, we performed a series of linear multiple regression
analyses to identify the cognitive processes, MRI
morphometry, and PET cerebral glucose metabolism mea-
sures that predicted orientation (treated dimensionally as a
continuous dependent variable). We used a forward step-
wise method that seeks to maximize the amount of
explained variance (SAS PROC REG with MAXR selec-
tion method). We also present the results obtained when
orientation was split into temporal and spatial domains
(see Supplementary Material).

Second, as a confirmatory approach, we subjected the
models obtained in the stepwise regressions to a k-fold
cross-validation procedure to determine the robustness of


http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu/about/centers-cores/pet-core/
http://adni.loni.usc.edu/about/centers-cores/pet-core/

40

Table 1
Demographic characteristics

MCI/AD (N = 473)

Age, mean (SD) 75.11 (7.39)
Range 55-91
Gender M/F 283/190
Education, mean (SD) 15.46 (3.04)
Range 6-20
CDR, mean (SD) 0.58 (0.18)
Range 0.5-1
MMSE orientation, mean (SD) 8.47 (1.47)
Range 4-10
MMSE total score without orientation 17.43 (1.69)
items, mean (SD)
Range 13-20

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s dis-
ease; SD, standard deviation; M, Male; F, Female; CDR, Clinical Dementia
Rating; MMSE, Mini-Mental State Examination.

our findings. In this procedure, the sample is split into k
randomly chosen subgroups (i.e., k training and test data
sets). We performed a k-fold (k = 5) cross-validation
(SAS 9.3. PROC GLMSELECT) specifying the adjusted
r square as the stopping criterion to maximize the amount
of explained variance. We chose k = 5 because it yielded
reasonably large training and test sets (Table 3).

Finally, for the purpose of examining the consequences of
disorientation over time in a longitudinal framework, orien-
tation and disorientation was treated categorically by median
split resulting in two groups: oriented subjects (MMSE score
greater than 8), and disoriented subjects (MMSE score less
than or equal to 8). Mixed model analysis (SAS 9.3. PROC
MIXED) with three factors (group, time, and group X
time) was performed to examine the consequences of disori-
entation on functional capacity. In this mixed model, covari-
ance pattern was set as autoregressive, time (follow-ups) was
included as a repeated factor, and group (oriented vs. disori-
ented) as a between-subjects factor. Subject was the random
factor. In addition, Cox proportional hazard regression anal-
ysis was performed to ascertain the hazard rate of conversion
to AD in the MCI sample. Kaplan-Meier survival analysis
was used to illustrate conversion in MCI individuals with
intact orientation compared with disorientation.

Age, gender, educations (in years), and apolipoprotein E
(APOE) €4 status (carriers versus noncarriers) were forced
in all regression and longitudinal mixed models.

Table 2
Neurocognitive predictors of orientation
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3. Results
3.1. Orientation score distribution: HC

In the HC group, the mean orientation score was 9.79
(standard deviation or SD = 0.45) (of 10). Examination of
the distribution confirmed a pronounced ceiling effect.
Thus, no further analyses were undertaken in this group.

3.2. Demographic and cognitive characteristics: MCI/AD

Demographic information for the combined MCI/AD
sample is described in Table 1. Average score on CDR was
0.58. The mean MMSE score on the 10 orientation items
was 8.47 (SD = 1.47). The mean MMSE score exclusive
of orientation items was 17.43 (SD = 1.69).

3.3. Neurocognitive predictors of disorientation

Orientation score was predicted by poorer performance
on immediate and delayed recall on the WMS logical mem-
ory subtest, the AVLT delayed memory subtest, and the digit
symbol test (Table 2). As can be seen in Table 2, episodic
memory tests accounted for approximately 20% of the total
variance in the regression analysis. When only AD patients
were considered, disorientation was only predicted by the
poorer performance of delayed recall on the WMS logical
memory subtest.

3.4. Brain structural MRI predictors of disorientation

Among the significant brain morphometry predictors
(Fig. 1), entorhinal cortex thickness entered first in the
regression analysis, accounting for 17% of the variance in
orientation score. Hippocampus volume added 2% more,
and inferior temporal cortex thickness accounted for an addi-
tional 1% of the variance. Results were similar when
analyzing MCI and AD subjects separately.

3.5. Brain functional FDG-PET predictors of
disorientation

Glucose metabolism normalized to pons for both middle-
inferior temporal cortex and hippocampus was predictive of
orientation score in the combined sample (Fig. 2), account-
ing for 21% of the variance. In AD patients, only hippocam-
pus metabolism was predictive of disorientation.

F8, 423 = 17.201, P <.0001, adjusted R* = 0.231

Model DF B CI t P Standardized estimate Adjusted R? VIF

Logical memory immediate 1 0.094 0.044-0.144 3.69 .0003 0.213 0.174 1.868
Digit symbol 1 0.021 0.011-0.032 3.97 <.0001 0.179 0.030 1.138
AVLT delayed 1 0.047 0.014-0.081 2.75 .006 0.127 0.019 1.191
Logical memory delayed 1 0.076 0.011-0.140 2.32 .02 0.139 0.008 2.022

Abbreviations: DF, degrees of freedom; CI, confidence interval; VIF, variance inflation factor; AVLT, Auditory Verbal Learning Test.
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Table 3

Cross-validation sample sizes for training and test sets in each of the five
folds; (a) cross-validation details for cognitive model; (b) cross-validation
details for MRI model; and (c) cross-validation details for
fluorodeoxyglucose positron emission tomography (FDG-PET) model

Observations
Fold Fitted Left out CV PRESS
(a) Cognition cross-validation details
1 355 85 121.980
2 351 89 162.675
3 349 91 153.430
4 348 92 132.004
5 357 83 168.486
Total 738.575
(b) MRI cross-validation details
1 242 60 64.054
2 243 59 151.751
3 240 62 83.292
4 235 67 110.579
5 248 54 134.694
Total 544.371
(c) FDG-PET cross-validation details
1 147 37 61.626
2 152 32 39.477
3 142 42 87.610
4 141 43 87.118
5 154 30 57.267
Total 333.098

Abbreviation: MRI, magnetic resonance imaging; CV PRESS, cross-
validation predicted residual sum of squares.

3.6. k-fold cross-validation analyses

We subjected the models obtained in the previous series
of regression analyses to a k-fold cross-validation. Results
were confirmatory. We present the sample size for training
and test sets in the cross-validation procedure in Table 3,
showing that k-fold method with k = 5 provided reasonable
sample sizes in each of the folds. The cross-validation
predicted residual sum of squares (CVPRESS) values,
another index of fit examining residuals between observed
and predicted scores, are shown in Table 3.

3.7. Consequences of disorientation over 4 years of
follow-up

For this set of analyses, two groups were created according
to MMSE orientation score at baseline with the score of 8 as a
cutoff for disorientation (see Data Analysis section). For the
combined group of AD and MCI individuals, functioning
level, as measured by FAQ, was significantly lower in disori-
ented subjects. FAQ scores systematically declined over 4
years, as indicated by the group X time interaction factor
(F4, 437 = 5.21, P = .0004) in the mixed model analysis,
that is, those patients who showed disorientation at baseline
declined to a greater extent on their everyday functioning level
(Supplementary Table 7 and Supplementary Fig. 1). This
finding remained unchanged when analyzing both groups
separately, although as expected, it was of greater statistical
significance for AD patients compared with MCI patients.

Fig. 1. Magnetic resonance imaging (MRI) morphometric predictors of
orientation in individuals with Alzheimer’s disease (AD) and mild cognitive
impairment (MCI). Brain areas that significantly predicted orientation are
highlighted in red. The overall significance of the predictive model was: F;,
2094 = 12.583, P <.0001, adjusted R? = (0.212. (A) Decreased entorhinal cor-
tex thickness predicted poorer orientation, accounting for 17% of the variance
(adjusted R? = 0.174); individual estimates: b = 0.523 (confidence interval or
CI10.067-0.979), t = 2.26, P = .025, standardized b = 0.175, variance infla-
tion factor or VIF = 2.298. (B) Smaller hippocampal volume predicted disori-
entation, accounting for 2% of the variance (adjusted R? = 0.025); individual
estimates: b = 0.0005 (CI 0.0001-0.001), t = 2.43, P = .015, standardized
b =0.177, VIF = 2.015. (C) Decreased thickness of the inferior temporal cor-
tex predicted disorientation, explaining 1% of the variance (adjusted
R? = 0.014); individual estimates: b = 1.307 (CI 0.470-2.145), t = 3.07,
P =.002, standardized b = 0.207, VIF = 1.726. (D) Represents both entorhi-
nal and inferior-temporal cortices from a basal plane, illustrating the impor-
tance of medial temporal lobe areas in disorientation. NB: The colored area
represents the region under studys; it is not a heat map.

MCI patients who were disoriented converted at a higher
rate to AD (61%) than MCI patients who were oriented
(42%) over a 5-year period (X2 = 8.45, P = .004). The
mean follow-up time in months for disoriented MCI patients
who developed AD was 24.09 (SD = 12.60) and 28.04
(SD = 12.19) for oriented patients. Cox hazard ratio regres-
sion model to estimate the risk of conversion to AD accord-
ing to orientation status at baseline showed that the hazard
ratio was 1.5 (P = .0001), 95% confidence interval (CI)
1.28-1.75, that is, disoriented MCI patients showed approx-
imately 1.5 times the risk of conversion per month as
compared with oriented patients. In addition, Kaplan-
Meier survival analysis revealed that subjects with MCI con-
verted at a higher rate to AD if they also had disorientation
compared with MCI patients with relatively intact orienta-
tion (Fig. 3).

4. Discussion

Although orientation has long been used as a measure of
global mental status in neurological and psychiatric
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Fig. 2. Fluorodeoxyglucose positron emission tomography (FDG-PET)
measures of glucose metabolism predictors of orientation in individuals
with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Brain
areas that significantly predicted orientation are highlighted in red. The
overall significance of the predictive model was: Fg 133 = 9.314,
P <.0001, R? adjusted = 0.214. (A) Glucose hypometabolism in the middle
and inferior temporal cortex was predictive of disorientation, explaining
almost 18% of the variance (adjusted R? = 0.186); individual estimates:
b = 3.934 (confidence interval or CI 2.474-5.393), t = 5.32, P < .0001,
standardized b = 0.375, variance inflation factor or VIF = 1.154. (B)
Glucose hypometabolism in the hippocampus was also predictive of disori-
entation, explaining almost 3% of the variance (adjusted R? = 0.028); indi-
vidual estimates: b = 2.185 (CI 0.602-3.768), t = 2.72, P = .007,
standardized b = 0.194, VIF = 1.178. NB: The colored area represents
the region under studys; it is not a heat map.

assessment [28], research has been sparse on the cognitive
operations involved in orientation abilities and the neural sub-
strates that support them. The current findings provide conver-
gent evidence that episodic memory ability and both structure
and metabolic function of medial temporal brain areas are pri-
mary predictors of disorientation in the context of MCI and
AD. We also found evidence for a role of lateral temporal cor-

Kaplan-Meier Curve
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Fig. 3. Kaplan-Meier estimates of the rate of progression to Alzheimer’s
disease (AD) in mild cognitive impairment (MCI) patients who were either
oriented or disoriented at baseline. MCI patients with disorientation con-
verted to AD at a higher rate than MCI patients with intact orientation abil-
ity. The blue line represents oriented MCI individuals and the red line
represents disoriented MCI individuals. The X-axis represents time and
the Y-axis represents conversion from MCI to AD.

tex in orientation ability. This region has been thought to sup-
port semantic knowledge, including featural attributes and has
been compromised in MCI and AD [29]. Importantly, our re-
sults were robustly supported by k-fold cross-validation ana-
lyses in which shrinkages were very small.

These results have important clinical implications in that
the use of orientation as a measure can aid in the assessment
of memory functioning. Additionally, it adds to prognostic
information: more disoriented individuals were more likely
to experience steeper declines such that they converted more
rapidly than less disoriented individuals, and concomitantly
also demonstrated reduced functional abilities over time.
Based on the analyses presented here, orientation could be
used as an outcome in clinical trials, given that it is valid
on its face, can be objectively scored, and has plausible bio-
logical correlates. Given the relationship of disorientation to
steeper decline in everyday function and MCI to AD conver-
sion, it could also be used to enrich samples. Nevertheless,
there are caveats. We found marked ceiling effects in HCs
in ADNI (mean orientation score = 9.8 of 10) and so the
measure may have limited utility in determining fine differ-
ences in medial temporal lobe integrity in this group.

As noted, little research has specifically focused on orien-
tation items in relation to neurocognition and neurobiolog-
ical variables in MCI or AD. Our initial hypothesis
involved a large network of cognitive and regional neurobi-
ological predictors. However, our findings, combining three
different and complementary lines of evidence, pointed
toward medial temporal lobe integrity and episodic memory
as the critical factors that determine the presence of disorien-
tation in MCI and AD. Although our findings may be attrib-
uted to orientation in MCI and AD having unique cognitive
and neurobiological underpinnings, in our view, the locus of
pathology, rather than its nature, more likely played a deter-
mining role [30]. In this respect, we acknowledge that there
is evidence that AD pathology is often accompanied by other
disease processes [31].

One point to take into consideration is the method by
which orientation is measured. There is likely a difference
in the cognitive domains needed to verbally “name” a loca-
tion as opposed to navigating to the location. Questions of
spatial orientation (e.g., state, country, name of building)
may rely on new learning of the names of places rather
than actual tracking of one’s location in space. Similarly,
temporal orientation may also be “memorized” to some de-
gree (e.g., month, year). This may account for the seeming
reliance of orientation on memory function and temporal
lobe brain structures found in this study. It would be useful
to examine other aspects of orientation, in which route-
finding in space [32] and temporal monitoring might be
used as orientation measures. It is worth noting here that
when we separated spatial and temporal orientation, we
found that predictors were generally the same, but the
amount of variance accounted for was less in spatial orienta-
tion than temporal orientation. This perhaps suggests that
predictors outside the domains included in ADNI’s data



A. Sousa et al. / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 1 (2015) 37-45 43

set may play a role or alternatively that there may have been
a reduction in range for spatial orientation.

Orientation has also been shown to be a significant pre-
dictor of further cognitive decline [1]. Our findings similarly
suggest that individuals with MCI who were disoriented at
baseline had higher hazard ratio for the conversion to AD
compared with MCI individuals who were oriented at base-
line. Furthermore, disoriented individuals declined in
everyday function significantly more than oriented subjects.
In this sense, greater atrophy and glucose hypometabolism
in the hippocampal and middle temporal lobe brain region
(beyond what is expected in prodromal AD) may indicate
amore aggressive form of AD from which a primary clinical
manifestation would encompass impairments in orientation
ability. In keeping with this, clinicopathological studies of
post-mortem brain tissue have found that disorientation
was significantly correlated with neurofibrillary tangle den-
sity in CA1 field of the hippocampus and Brodmann’s Areas
7 and 23 [33]. It may also be important in future studies to
examine the covariance of orientation and its neural sub-
strates monitored over time.

These findings have important implications for the use of
orientation in preclinical and prodromal AD (i.e., MCI due to
AD) clinical trials. First in healthy subjects, a ceiling effect
may be present that could obscure subtle longitudinal change.
Although the PACC was able to demonstrate sensitivity to
various groups of “progressors” in preclinical AD or a
possible surrogate based on APOE ¢4 genotype, it is unclear
if orientation directly contributed to sensitivity [13]. Second,
the use of orientation may be redundant in composite test bat-
teries with cognitive tests assaying episodic memory pro-
cesses that engage medial temporal lobe. On the other
hand, orientation does not overlap completely with episodic
memory measures and thus may demand unique cognitive
operations sensitive to functional decline (see point 4 below).
Third, several composite batteries (ref e.g., PACC, ADCOM)
and orientation scores are included from multiple sources
(e.g., CDR, MMSE, and Alzheimer’s Disease Assessment
Scale-cognitive subscale [ADAS-Cog]) [34]. Thus, critical
examination of subtle differences in administration and items
in orientation may be necessary to more comprehensively un-
derstand what orientation, in its various implementations, is
measuring. Fourth, disorientation was associated with
steeper declines in MCI subjects in everyday function and
ultimately to progression to AD, and may have prognostic
advantages. Although we did not test this directly, orientation
may not be subject to severe practice effects because of the
necessity for the person to regularly update information,
especially with respect to temporal items [35]. Thus, the
use of orientation measures in translational interventions
may be dependent on the group that is being monitored (pre-
clinical, prodromal, and established AD), the length of time
over which monitoring is to occur, and the type of treatment.
Depending on the type of treatment, it is also worth consid-
ering whether orientation might be best be used as a
“stand-alone” measure or be included in a composite.

In summary, in this, the largest and most comprehensive
study of the neurobiological and behavioral components of
orientation, we found that disorientation in the context of
MCT and AD was predicted by reduced thickness in tempo-
ral and entorhinal cortex, and reduced volume of the hippo-
campus, and poorer performance on neurocognitive
measures of immediate and delayed verbal memory. We
also found that MCI subjects with signs of disorientation
showed an increased risk of conversion, and in both AD
and MCI, disoriented individuals had steeper decline in
function than those with preserved orientation. Our find-
ings support the perspective that orientation is an important
clinical measure, as it may be considered an ecologically
relevant surrogate for traditional laboratory tests of
episodic memory in MCI and AD. Our findings also may
usefully provide evidence-based knowledge so that an
informed discussion of orientation’s use in translational
clinical trials can begin.
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RESEARCH IN CONTEXT

1. Systematic review: We used a PubMed search for
studies examining the relationship of neurocogni-
tion, regional brain morphometry, or glucose meta-
bolism to disorientation. We interrogated the
Alzheimer’s Disease Neuroimaging Initiative data-
base to derive orientation scores and their neural
and cognitive predictors.

2. Interpretation: The study is the first to provide
convergent evidence that medial temporal lobe mor-
phometrics and glucose use, along with related
episodic memory test scores, are associated with
disorientation scores in mild cognitive impairment
(MCI) and Alzheimer’s disease (AD). Disorientation
in MCI also predicted decline in functional abilities
and progression to AD.

3. Future directions: The study has implications that are
directly relevant to the use of orientation measures as
outcomes in clinical trials. First, in healthy subjects,
a ceiling effect may be present that could obscure or
constrain longitudinal change. Second, the use of
orientation measures may be redundant in composite
test batteries given their strong association with
memory test scores. Last, the use of orientation
scores from different sources (e.g. Mini-Mental
State Examination, Clinical Dementia Rating,
Alzheimer’s Disease Assessment Scale-cognitive
subscale [ADAS-Cog]) requires further analyses to
determine their degree of similarity.
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