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Purpose: To develop and internally validate a nomogram combining radiomics signature
of primary tumor and fibroglandular tissue (FGT) based on pharmacokinetic dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical factors for
preoperative prediction of sentinel lymph node (SLN) status in breast cancer patients.

Methods: This study retrospectively enrolled 186 breast cancer patients who underwent
pretreatment pharmacokinetic DCE-MRI with positive (n = 93) and negative (n = 93) SLN.
Logistic regression models and radiomics signatures of tumor and FGT were constructed
after feature extraction and selection. The radiomics signatures were further combined
with independent predictors of clinical factors for constructing a combined model.
Prediction performance was assessed by receiver operating characteristic (ROC),
calibration, and decision curve analysis. The areas under the ROC curve (AUCs) of
models were corrected by 1,000-times bootstrapping method and compared by
Delong’s test. The added value of each independent model or their combinations was
also assessed by net reclassification improvement (NRI) and integrated discrimination
improvement (IDI) indices. This report referred to the “Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis” (TRIPOD) statement.

Results: The AUCs of the tumor radiomic model (eight features) and the FGT radiomic
model (three features) were 0.783 (95% confidence interval [CI], 0.717–0.849) and 0.680
(95% CI, 0.604–0.757), respectively. A higher AUC of 0.799 (95% CI, 0.737–0.862) was
obtained by combining tumor and FGT radiomics signatures. By further combining tumor
and FGT radiomics signatures with progesterone receptor (PR) status, a nomogram was
developed and showed better discriminative ability for SLN status [AUC 0.839 (95% CI,
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0.783–0.895)]. The IDI and NRI indices also showed significant improvement when
combining tumor, FGT, and PR compared with each independent model or a
combination of any two of them (all p < 0.05).

Conclusion: FGT and clinical factors improved the prediction performance of SLN status
in breast cancer. A nomogram integrating the DCE-MRI radiomics signature of tumor and
FGT and PR expression achieved good performance for the prediction of SLN status,
which provides a potential biomarker for clinical treatment decision-making.
Keywords: breast cancer, sentinel lymph node, DCE-MRI, radiomics, fibrograndular tissue
INTRODUCTION

Breast cancer is the most common cancer with heterogeneous
features and leading cause of cancer death in females worldwide
(1). Sentinel lymph node (SLN), as the first site for tumor
spreading in breast cancer patient, plays an important role in
treatment decision-making. There is no need to carry out axillary
lymph node (ALN) dissection in breast cancer patient with
negative SLN, and one to two positive SLNs for breast
conserving surgery (2, 3). SLN status was determined by
invasive SLN biopsy with potentially high false-negative rate
(4), possible complications of lymphedema, axillary numbness,
and brachial plexus injury (5), and inconsistency. Therefore,
preoperative biomarkers for SLN status is indeed needed for
avoiding additional unnecessary surgical procedures.

Magnetic resonance imaging (MRI) as a noninvasive
modality with different sequences is usually used to visualize
morphological, diffusion, and pharmacokinetic characteristics of
tumor before surgery in breast cancer patients. MRI features
mainly derived from dynamic contrast-enhanced (DCE) and
diffusion-weighted imaging (DWI) allow for independently
predicting lymph node status. The low apparent diffusion
coefficient (ADC) value and rim enhancement of tumor in
patients with breast cancer were associated with lymph node
metastasis (6, 7). Moreover, heterogeneous and rim
enhancement, and peritumoral–tumoral ADC ratio were
independent predictors for SLN metastasis in breast cancer (8).
In addition to conventional feature analysis, radiomics as a novel
tool applied in medicine is able to extract high-throughput
quantitative features from medical images obtained by
noninvasive technique using mathematical algorithm (9–11),
which has been used to predict malignancy (12), molecular
subtypes (13), pathological complete response to neoadjuvant
chemotherapy (14), and ALN or SLN metastasis in breast cancer
(15, 16).

Based on MRI, previous studies demonstrated that radiomics
signature of tumor with different sequences could predict ALN
metastasis, and a combined model obtained a better performance
(15). SLN status in breast cancer can also be predicted by
radiomic features of primary tumor and peritumor based on
different sequences including T2WI, DWI, and DCE (16, 17).
However, most studies only focused on the tumor and
peritumor, which ignored the fibrograndular tissue (FGT).
Previous studies have demonstrated that the amount of FGT
2

was associated with breast cancer risk (18), and the rate of FGT
enhancement may predict response to neoadjuvant
chemotherapy in breast cancer patients (19). The usefulness of
FGT radiomic features and combined features from tumor and
FGT in predicting SLN status for breast cancer remains unclear.
Furthermore, for prediction of SLN status, it is valuable to
evaluate whether the simultaneous addition of FGT radiomic
and clinical factors into tumor radiomic features could improve
the prediction performance (16).

Thus, this study aimed to develop noninvasive radiomics
signatures from primary tumor and FGT based on
pharmacokinetic DCE-MRI to predict SLN status in patients
with breast cancer. The radiomic–clinic nomogram was also built
and evaluated by integrating the radiomics signatures and
independent clinical predictors. The study workflow is shown
in Figure 1. The manuscript was prepared according to the
TRIPOD checklist (20).
METHODS

Source of Data and Participants
The single-center data from our hospital was collected and
analyzed in the current study. Under approval from our
Institutional Review Board (IRB), we retrospectively reviewed
female patients with breast cancer proven by histopathology
between August 2015 and December 2018 and identified 497
patients who underwent dedicated breast MRI. The inclusion
criteria were as follows: (1) patients underwent preoperative
DCE-MRI; (2) patients were pathologically confirmed
unilateral breast cancer; (3) patients received SLN biopsy/ALN
dissection; and (4) patients did not receive neoadjuvant
chemotherapy before preoperative DCE-MRI. The exclusion
criteria were as follows: (1) the volume of interest (VOI) was
small (longest diameter ≤ 5 mm); (2) patients with two or more
lesions; (3) patients with nonmass-like breast cancer; and (4)
MRI images with poor quality (non-diagnostic or non-analytic
for tumor and FGT because of artifacts). Finally, a total of 186
patients were enrolled. Among the enrolled patients, 93 positive
SLN and 93 negative SLN were balanced and matched based on
“Age” of patients (at a ratio of 1:1) to help improve the
robustness of the selected radiomics features and model
performance (21, 22). The requirement of informed consent
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. SLN Prediction in Breast Cancer
for this study was waived by our IRB. All patient data were
anonymized and de-identified before analysis.

Outcome
The primary outcome was the SLN status. Blue dye tracer was used
to identify SLN during operation. After the induction of general
anesthesia, 1 ml of 1% methylene blue (Jiangsu Jichuan
Pharmaceutical Co. Ltd., China) was injected subcutaneously
around the areolar periphery at 12, 3, 6, and 9 o’clock positions
before breast surgery. A SLN was defined as the first blue-stained
node, which was along the blue-stained lymphatic channel. All the
blue dye-stained SLNs were removed by following the blue
lymphatic channels. Then, all SLNs were sent for immediate
frozen sectioning. The SLN was defined as positive when cancer
cells were identified by hematoxylin & eosin (H&E) staining.
According to the American Society of Clinical Oncology (ASCO),
in T1–2 breast cancer patients with one to two metastatic SLN,
SLNB alone was performed; otherwise, ALN dissection was
performed when SLN was confirmed with metastasis (3, 23).

Predictors
Our database consists of 8 clinical factors, 198 tumor radiomic
features, and 198 FGT radiomic features.
Frontiers in Oncology | www.frontiersin.org 3
Clinical data were collected from patient medical records
including age, sex, menstrual status, estrogen receptor (ER)
status, progesterone receptor (PR) status, human epidermal
growth factor receptor-2 (HER2) status, and Ki-67
proliferation index. The expression levels of ER, PR, HER2,
and Ki-67 were determined by immunohistochemistry (IHC)
after surgery. The ER or PR status was considered positive when
at least 1% of tumor cell showed nuclear staining by IHC. The
HER2 status was confirmed as positive when the staining score
was 3. Fluorescence in situ hybridization (FISH) was further
performed when HER2 score was 2. Ki-67 was considered
positive when the expression was more than 14%. Tumor size
was manually measured as the maximal transverse diameter in
the enhanced phase with best contrast of DCE-MRI.

Sample Size and Missing Data
Referring to the rule to have at least 10 outcome events per
variable (EPV) (20, 24), we ensured less than nine features
retained for each radiomics model in order to avoid overfitting,
with respect to 93 SLN outcome events in each balanced class in
the current study.

There were no missing data among clinical factors. For
radiomic features, if missing data existed in one feature, the
FIGURE 1 | The study workflow. SLN, sentinel lymph node; DCE, dynamic contrast-enhanced; MRI, magnetic resonance imaging; VOI, volume of interest; FGT,
fibroglandular tissue.
November 2021 | Volume 11 | Article 754843
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missing value was replaced by the median value of such radiomic
feature values of 186 patients.

MRI Acquisition
All the MRI sequences were performed on a 3.0-T scanner with a
16-channel breast coil (Skyra, Siemens Healthcare, Erlangen,
Germany). T2WI, T1 mapping, and DCE were conducted with
patients in a prone position as our previous study (13). T1
mapping and DCE images were collected for radiomic analysis.
T1 mapping was performed with parameters: repetition time
(TR) = 5.64 ms; echo time (TE) = 2.46/3.69 ms; field of view
(FOV) = 360 × 360 mm; slice thickness = 2.5 mm; matrix = 269 ×
384; flip angles = 2°/15°. Gadodiamide (Omniscan, 0.1 mmol/kg;
GE Healthcare, Milwaukee, USA) was intravenously
administered at a rate of 2.5 ml/s after T1 mapping, followed
by 20 ml of saline flush with the same injection rate. Twenty-six
consecutive DCE phases were acquired using the CAIPIRINHA-
Dixon-TWIST-VIBE sequence with parameters: TR = 5.64 ms;
TE = 2.46/3.69 ms; FOV = 360 × 360 mm; slice thickness = 2.5
mm; matrix = 269 × 384; flip angle = 10°.

Radiomics Workflow
The radiomics procedure included VOI segmentation, radiomic
feature extraction, feature selection, and prediction
model construction.

VOI Segmentation and Feature Extraction
T1 mapping and DCE-MRI data were imported to Omni-Kinetics
(GE Healthcare, Milwaukee, USA). Reference Region mode with a
reference region of interest in the contralateral pectoralis major was
used to generate voxel-wise perfusion maps. Two radiologists
(more than 8 years of experience) blinded to the pathological
diagnosis participated in the interpretation of breast MRI. VOIs of
tumor and ipsilateral FGT were manually outlined slice by slice in
the enhanced phase with best contrast between lesion and FGT,
respectively. In order to guarantee the reproducibility of the
extracted radiomic features, 20 patients’ images were randomly
chosen for intra- and inter-observer agreement analysis. The tumor
and FGT VOIs were independently segmented in the subset of 20
patients twice by one radiologist at 1-month interval to assess the
intra-observer agreement and once by another radiologist at the
same period for inter-observer agreement analysis.

Perfusion and enhanced features were calculated based on the
VOIs of tumor and FGT. A total of 121 pharmacokinetic
parameters were obtained using histogram analysis, including
the maximum, minimum, median, mean, area, 10%, 25%, 75%,
and 90% of volume transfer constant (Ktrans), rate contrast
(Kep), volume fraction of plasma (Vp), time to peak (TTP),
maximum concentration (MAX Conc), area under curve (AUC),
maximal slope (MAXSlope), blood flow (BF), blood volume
(BV), and mean transit time (MTT). Seventy-seven features
based on the images in the first post-contrast phase were
extracted, consisting of 29 first-order features, 13 gray-level co-
occurrence matrix (GLCM), 10 Haralick features derived from
GLCM, 16 gray-level run length matrix (GLRLM), and 9
morphology metrics features.
Frontiers in Oncology | www.frontiersin.org 4
Radiomic Feature Selection and Radiomics
Model Construction
All data were used for feature selection and model construction,
and the same feature selection method was applied for tumor and
FGT features. The SLN status was labeled by nominal number,
“1” for negative while “0” for positive status. The negative SLN
was the main predicting event.

Radiomic features with low reproducibility were excluded
firstly. Intra- and inter-observer reproducibility of all extracted
radiomic features were assessed using intraclass correlation
coefficients (ICCs), and features with ICC less than 0.7 for
intra- or inter-observation were excluded (25). Furthermore,
following the exclusion of features with variance ≤ 1, the Z-
score standardization and normalization were performed.

Next, minimal redundancy maximum relevancy (mRMR)
was used to select the optimal 20 features, which were non-
redundant and highly informative (26, 27). The least absolute
shrinkage selection operator (LASSO) with 10-fold cross-
validation (the criteria as maximum area under the ROC
curve) was further used to select most candidate radiomic
features. Finally, the backward stepwise logistic regression with
minimum Akaike Information Criterion (AIC) was conducted
and the retained features were involved to construct logistic
regression model. Therefore, two independent radiomics
“Radscore” for tumor and FGT were calculated according to
Equation (1), which were further used as the radiomics signature
of each patient:

Radscore = b0 + b1x1 + b2x2 +… + bnxn (1)

where b0 is the constant, bi is logistic regression coefficient, and xi
is the value of selected features.

Construction of Clinical and Combined
Radiomics–Clinic Models
The independent predictors among clinical factors were selected
sequentially by univariate (p < 0.1) and multivariate backward
stepwise logistic regression with minimum AIC criteria. The
retained clinical factors were used to construct independent
clinic model using logistic regression method.

In order to build combined radiomics–clinic model, the
constructed radiomics signature (tumor or FGT or Tumor + FGT)
were mixed with the clinical factors to sequentially receive univariate
(p < 0.1) and the backward stepwise logistic regression with
minimum AIC criteria. The combined model could be constructed
if the radiomics Radscore and any clinical factor were retained
simultaneously. The nomogram based on the logistic regression
coefficients was constructed for the final combined model.

Evaluation of Model Performance
The discrimination ability of each model was evaluated by receiver
operating characteristic (ROC) curve analysis, fromwhich the AUC,
sensitivity, specificity, accuracy, negative predictive value (NPV),
and positive predictive value (PPV) could be derived. The
continuous net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) indices were also calculated to
assess the added value of each independent model and their
November 2021 | Volume 11 | Article 754843
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combinations (28). The model calibration was evaluated by
calibration curve analysis and Hosmer and Lemeshow test. The
decision curve analysis (DCA) was used for assessing clinical
usefulness and net benefit resulted from the predicting model.
The Delong’s test was used for comparing each pair of
model’s AUC.

Considering the robustness of the independent tumor and
FGT radiomics model, the internal validations were performed
using 1,000-times bootstrapping (20). Furthermore, the
performance of radiomics models was tested in the subsets of
different molecular subtypes, i.e., luminal A, luminal B, HER2
enriched, and triple-negative breast cancer.

Statistical Analysis
Statistical analysis was implemented by IBM SPSS software
(version 22.0, NY, USA) and R software (version 3.5.3; http://
www.r-project.org). The continuous variables with normal
distribution were evaluated by Student’s t-test and illustrated as
mean ± standard deviation, while the continuous variables with
non-normal distribution were evaluated by Mann–Whitney U test
and represented as median (interquartile range [IQR]). The
categorical variables were evaluated by Chi-square to compare
the clinical factors between groups with positive and negative SLN.
The main R packages were as follows: “icc” for ICC calculation by
setting as “twoway” and type of “agreement”, “findCorrelation” in
“caret” package for correlation analysis, “mRMRe” package for
mRMR analysis, “glmnet” package for logistic regression and
LASSO logistic regression analysis, “pROC” package for ROC
analysis, “PredictABEL” package for continuous NRI and IDI
indices calculation, and “rmda” package for DCA. The statistical
significance was set as two-sided p < 0.05.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

Participants
The data were collected from our hospital for more than 3 years
from August 2015 to December 2018. A total of 404 variables
were collected from 186 patients. The patients with positive SLN
(n = 93) and negative SLN (n = 93) were matched. There were no
missing data for clinical factors.

In the positive SLN group, the median number of node
was 1 (IQR: 1, 2). As shown in Table 1, the clinical and
histopathological variables including age, menopause, tumor
size, HER2 status, and Ki-67 status between patients with and
without SLN metastasis had no significant difference (all p >
0.05), while there were significant differences in ER and PR status
between these two groups (both p < 0.05).

Feature Selection and Model Construction
For radiomic features, 73,656 values were calculated for all
features and patients, and 4 missing values of MTT_Std for
tumor and FGT were found in two patients with positive SLN
and two patients with negative SLN, which were present as
“nan”. The missing values were replaced with the median value
of the feature.

For the tumor model, 149 radiomic features remained with
ICC > 0.7 simultaneously in intra- and inter-observer agreement
analysis. Among the 20 optimal radiomic features selected by
mRMR, 11 features remained after 10-fold LASSO logistic
regression. Based on the backward stepwise logistic regression,
eight final features were selected for constructing logistic
regression model (Table 2). The “Radscore” for tumor model
was expressed as Eq. (2).
TABLE 1 | Baseline characteristics.

Group Patients with positive SLN (n = 93) Patients with negative SLN (n = 93) p-value

Age (mean ± SD) 49.7 ± 10.2 47.9 ± 9.5 0.208
Menopause 45 41 0.556
Median tumor size (IQR) 2.1 (1.8, 2.6) 2.0 (1.5, 2.5) 0.083
ER 0.023
Positive 82 70
Negative 11 23

PR 0.003
Positive 80 63
Negative 13 30

HER2 0.275
Positive 22 16
Negative 71 77

Ki-67 0.869
Positive 68 67
Negative 25 26

Molecular subtypes
Luminal A 21 21
Luminal B 61 48
HER2 enriched 6 7
Triple negative 5 17
November 2021 | Volume 11 | Article
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2; SLN, sentinel lymph node.
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RadscoreTumor = −0:338 − 0:369� BF _ 10percent + 0:677

� TTP _ 25percent − 1:194� TTP _Max

− 0:809�MTT_Max − 0:602

�MAXSlope _Area + 0:722� Variance

− 0:643� Quantile5 − 3:773

�MeanDeviation (2)

For theFGTmodel, 172 radiomic features remainedwith ICC>0.7
after intra- and inter-observer agreement analysis. Among the 20
optimal radiomic features selected by mRMR, 5 features were
selected using LASSO and 3 features were finally retained after
backward multivariate logistic regression for logistic model
construction (Table 2). The radiomics score for FGT model was
expressed as Eq. (3).

RadscoreFGT = 0:390 + 3:455� BF _Min − 0:905

� TTP_Max + 0:450� Variance (3)

The statistical differences for the selected radiomic features
and the constructed Radscores in the tumor model and FGT
model between the positive and negative SLN groups are
summarized in Tables S1, S2. The Radscore in the negative
SLN group was significantly higher than the positive SLN group
in both tumor and FGT models.

The clinical factor selection results after univariate and
multivariate logistic regression are summarized in Table S3
and the tumor size and PR status were retained to construct
the independent clinic model. The clinic model scores were
calculated based on the following equation:

ScoreClinic = 1:930 − 0:476� Tumor size − 1:178� PR :

The logistic regression method was also applied to construct
the combined models based on the radiomics signature of tumor,
FGT, and clinical factors. The univariate and multivariate
Frontiers in Oncology | www.frontiersin.org 6
backward logistic regression analysis results are summarized in
Tables S4–S6. The model scores for each combined model were
expressed as follows:

ScoreTumor + FGT = −0:018 + 0:889� RadscoreTumor + 0:590�
RadscoreFGT

ScoreTumor + PR = 1:407 + 1:139� RadscoreTumor − 1:776� PR

ScoreFGT + Clinic = 2:401 + 1:163� RadscoreFGT − 0:692�
Tumor size − 1:198� PR

ScoreTumor + FGT + PR = 1:379 + 1:032� RadscoreTumor +

0:569� RadscoreFGT − 1:769� PR

Prediction Performance of Different
Models
The AUC, specificity, sensitivity, accuracy, NPV, and PPV of
different predictive models for negative SLN are summarized in
Table 3 and Figure 2.

For the tumor model, the AUC and NPV were 0.783 (95% CI,
0.717–0.849) and 0.728 (95% CI, 0.629–0.809), respectively. The
AUC of averaged model performance in the resampled test set
after 1,000-times bootstrap was 0.710 (95% CI, 0.706–0.713) and
the optimism-corrected AUC was 0.700, as shown in Table S7.
In addition, during 1,000-times bootstrap, all the radiomic
features involved in the tumor model appeared more than 600
times (Figure S1), which indicated the robustness and reliability
of the selected features. The AUCs of the tumor model in the
subset of luminal A, luminal B, HER2 enriched, and triple-
negative breast cancer were 0.728 (95% CI, 0.556–0.899), 0.812
(95% CI, 0.734–0.890), 0.976 (95% CI, 0.910–1.0), and 0.741
(95% CI, 0.489–0.993), respectively.

For the FGT model, the AUC and NPV were 0.680 (95% CI,
0.604–0.757) and 0.660 (95% CI, 0.561–0.747), respectively. The
AUC of averaged model performance in the resampled test set
after 1,000-times bootstrap was 0.651 (95% CI, 0.646–0.654) and
the optimism-corrected AUC was 0.661, as shown in Table S7.
Meanwhile, the features in the FGT model also showed reliability
with more than 800 times appearing frequency during 1,000-
TABLE 3 | Prediction performance of different models from radiomic or clinical features.

Model AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Accuracy (95% CI) NPV (95% CI) PPV (95% CI)

Tumor 0.783 (0.717–0.849) 0.720 (0.622–0.802) 0.731 (0.633–0.811) 0.726 (0.658–0.785) 0.728 (0.629–0.809) 0.723 (0.625–0.804)
FGT 0.680 (0.604–0.757) 0.688 (0.588–0.774) 0.645 (0.544–0.735) 0.667 (0.596–0.731) 0.660 (0.561–0.747) 0.674 (0.571–0.763)
Clinic 0.651 (0.571–0.730) 0.849 (0.763–0.908) 0.452 (0.354–0.553) 0.651 (0.580–0.715) 0.608 (0.522–0.687) 0.750 (0.623–0.845)
Tumor + FGT 0.799 (0.737–0.862) 0.731 (0.633–0.811) 0.785 (0.690–0.857) 0.758 (0.692–0.814) 0.773 (0.674–0.849) 0.745 (0.650–0.821)
Tumor + PR 0.824 (0.765–0.883) 0.667 (0.566–0.754) 0.871 (0.786–0.926) 0.769 (0.703–0.824) 0.838 (0.736–0.906) 0.723 (0.634–0.798)
FGT + Clinic 0.757 (0.687–0.827) 0.699 (0.599–0.783) 0.763 (0.668–0.838) 0.731 (0.663–0.790) 0.747 (0.647–0.827) 0.717 (0.622–0.796)
Tumor + FGT + PR 0.839 (0.783–0.895) 0.688 (0.588–0.774) 0.882 (0.799–0.934) 0.785 (0.720–0.838) 0.853 (0.754–0.918) 0.739 (0.650–0.812)
N
ovember 2021 | Volume
FGT, fibroglandular tissue; PR, progesterone receptor; AUC, area under curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
TABLE 2 | Overview of selected radiomic features in tumor and fibroglandular tissue (FGT) radiomics models.

Model Selected features

Tumor BF_10percent, TTP_25percent, TTP_Max, MTT_Max, MAXSlope_Area, Variance, Quantile5, MeanDeviation
FGT BF_Min, TTP_Max, Variance
FGT, fibroglandular tissue.
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times bootstrap (Figure S1). The AUCs of the FGT model tested
in the subset of luminal A, luminal B, HER2 enriched, and triple-
negative breast cancer were 0.632 (95% CI, 0.459–0.806), 0.682
(95% CI, 0.579–0.785), 0.500 (95% CI, 0.151–0.848), and 0.635
(95% CI, 0.301–0.969).

After combining the radiomics signature of tumor and FGT,
the AUC and NPV were 0.799 (95% CI, 0.737–0.862) and 0.773
(95% CI, 0.674–0.849), respectively. The AUC of the combined
radiomics model was significantly higher than the independent
FGT model (Delong’s test, p = 0.001), while not significantly
different from the independent tumor model (Delong’s test, p =
0.145). The AUCs of the combined radiomics model tested in the
subset of luminal A, luminal B, HER2 enriched, and triple-
negative breast cancer were 0.753 (95% CI, 0.593–0.912), 0.821
(95% CI, 0.744–0.897), 0.976 (95% CI, 0.910–1.0), and 0.753
(95% CI, 0.507–0.999), respectively.

By involving the hormone factor PR expression status into the
radiomics model, the AUC of Tumor + PR was significantly
higher than that of the independent tumor model (Delong test,
p = 0.041). For Tumor + PR model, the AUC and NPV were
0.824 (95% CI, 0.765–0.883) and 0.838 (95% CI, 0.736–0.906),
respectively. For FGT + Clinic model, the RadscoreFGT, tumor
size, and PR were simultaneously involved. The AUC and NPV
were 0.757 (95% CI, 0.687–0.827) and 0.747 (95% CI, 0.647–
0.827), respectively. The introduction of tumor size and PR had a
statistically significant effect on AUC improvement for the FGT
radiomics model (Delong test, p = 0.029).

For the Tumor + FGT + PR model, the AUC and NPV were
0.839 (95% CI, 0.783–0.895) and 0.853 (95% CI, 0.754–0.918),
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respectively. The AUC of the Tumor + FGT + PR model was
significantly higher than any independent or other combined
models (Delong test, all p < 0.05), except for the Tumor + PR
model (Delong test, p = 0.098). The nomogram for the combined
model is illustrated in Figure 3.

The continuous NRI and IDI indices for the different
models are summarized in Table S8. Compared with the
independent tumor or FGT radiomics model, the Tumor +
FGT model had significant improvement in discrimination and
reclassification (both p < 0.05). Meanwhile, the combination of
tumor or FGT with clinical factors also showed significant
improvement by IDI and NRI indices (all p < 0.05), compared
with each independent model. In addition, the combination
of tumor, FGT, and PR simultaneously could obtain further
improvement compared with the model combining any two
models (all p < 0.05).

The calibration curve (Figure 2) and decision curve
(Figure 4) also demonstrated that the independent tumor
radiomics model and combined model involving tumor
signature had a good fit to actual observations (Hosmer and
Lemeshow test, p > 0.05, as shown in Table S9) and had net
benefit in a wide threshold probability of 0.35–0.8.
DISCUSSION

Lymph node status is an important prognostic factor in breast
cancer. This study is the first attempt to predict negative SLN by
combining tumor and FGT radiomic features, and further
A B

FIGURE 2 | The performance of different prediction models for sentinel lymph node (SLN) status and calibration curve. (A) ROC curves of different prediction
models: Tumor model (green); FGT model (brown); Clinic model (blue); Tumor+FGT combined model (pink); Tumor+PR combined model (purple); FGT+Clinic
combined model (black); Tumor+FGT+PR combined model (magenta). (B) The calibration curves of different prediction models: Tumor model (green); FGT model
(brown); Clinic model (blue); Tumor+FGT combined model (pink); Tumor+PR combined model (purple); FGT+Clinic combined model (black); Tumor+FGT+PR
combined model (magenta). The calibration curve of each model shows the agreement between the predicted probability (x-axis) and actual probability (y-axis) in
SLN status. The 45° gray line represents the perfect prediction. The closer the other line is to the gray line, the better the predictive power of the model. ROC,
receiver operating characteristic; FGT, fibroglandular tissue; PR, progesterone receptor; AUC, area under curve.
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combining radiomics signature with clinical feature, which is
helpful for treatment regimen in breast cancer. The prediction
achieved a high AUC of 0.799 for combined radiomics model by
combining tumor and FGT radiomics signatures. Furthermore,
Frontiers in Oncology | www.frontiersin.org 8
we developed a nomogram by combining tumor and FGT
signatures and histopathological PR expression status to
predict SLN status and achieved a higher AUC of 0.839, with a
high NPV of 0.853, suggesting benefits for identification of
patients with positive SLN, which was consistent with a
previous study that combined radiomic features and clinical
factors, which were predictive for positive and negative SLN
(16) and may help breast cancer patients to avoid unnecessary
SLNB and the corresponding complications.

ADC value by DWI and heterogeneous or rim enhancement
by DCE-MRI were associated with ALN and SLN metastasis (6–
8). Regarding the prediction of SLN status, the AUC of MRI
features (heterogeneous and rim enhancement, and
peritumoral–tumoral ADC ratio) was 0.80, suggesting that the
DCE-MRI can play an important role in the prediction of SLN
status. More than enhancement pattern, DCE-MRI also allows
for revealing the perfusion and permeability of tissue
characterized by multiple pharmacokinetic parameters,
including Ktrans, Kep, Vp, TTP, MaxSlope, AUC, and
MaxCon, which were able to predict the prognosis in breast
cancer (29, 30). As an emerging tool for medical application
in recent years, radiomics provides a large number of
quantitative features derived from post-contrast images
based on DCE-MRI. Liu et al. combined pharmacokinetic
parameters and radiomic features of maximum layer in
primary tumor to predict SLN status and obtained a
satisfactory performance (AUC 0.80) (31). Pharmacokinetic
parameters can also be further analyzed by histogram, one
kind of radiomics analysis, which has the potential to be a
noninvasive biomarker for preoperative differentiation of
molecular subtypes (32), lymph node metastasis (33), and
proliferative activities (34) of breast cancer. In our study, we
analyzed pharmacokinetic parameters using histogram
combined with radiomic features of post-contrast images from
whole tumor, which obtained a satisfactory performance (AUC
0.783) to predict SLN status, consistent with a previous study
(31). Furthermore, regardless of the small sample of subtype-
specific analysis, HER2 enriched had the best predictive
performance (AUC 0.976).

Although radiomic features from primary tumor and
peripheral region are difficult to explain, they allow for
FIGURE 3 | Nomogram for model combining tumor, fibroglandular tissue (FGT), and progesterone receptor (PR) in prediction of negative sentinel lymph node (SLN).
The different variable values corresponds to a point at the top of the figure, and the sum of the points for all the variables obtaining a total point corresponds to the
probability of negative SLN at the bottom of the figure. FGT, fibroglandular tissue; PR, progesterone receptor; SLN, sentinel lymph node.
FIGURE 4 | Decision curves of different prediction models. The black line
represents the assumption that no patients have negative sentinel lymph
node (SLN) status (NONE), and the gray line represents the assumption that
all the patients have negative SLN status (ALL). The colored decision curves
respectively show the net benefit per patient based on the different models:
Tumor model (green); FGT model (brown); Clinic model (blue), Tumor+FGT
combined model (pink); Tumor+PR combined model (purple); FGT+Clinic
combined model (black); Tumor+FGT+PR combined model (magenta). The
decision curve represents the clinical net benefit (y-axis) calculated by
subtracting false-positive rate (weighted by relative harm: [threshold
probability/(1 − threshold probability)]) from the true-positive rate, when
choosing different threshold probabilities based on the model cut-value. The
closer the decision curves to the black and gray curves, the more similar the
net benefit of the models as those from the assumption that “NONE” or “ALL”
patients have positive labels (the negative SLN in the current study). The
decision curves also could be used for comparing the net benefit of different
models within a specific threshold probability point or range. The higher the
decision curve of the model, the larger the net benefit. FGT, fibroglandular
tissue; PR, progesterone receptor.
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quantitatively expressing tissue heterogeneity. Dong et al.
demonstrated that Global_Variance, GLCM, GLSZM, and
GLRLM from T2-weighted fat suppression or DWI were
selected to predict SLN metastasis and the AUC was 0.863
(17). Liu et al. selected GLCM, NGLDM, and Laws_Skewness
after L5S5 of intratumoral or peritumoral regions derived from
wash-out, wash-in, or signal enhancement ratio maps based on
DCE-MRI for prediction of SLN metastasis (AUC 0.836) (16). In
summary, both aforementioned second-order (GLCM, GLRLM,
GLSZM, and NGLDM) and first-order radiomic features were
probably selected for prediction of SLN status (31, 35).
Nevertheless, in our study, for intratumoral radiomic feature
from post-contrast phase, first-order features (Variance,
Quantile5, MeanDeviation) were mainly selected to predict
negative SLN, which also implied the tumor heterogeneity.
Moreover, the selected features from whole tumor in our study
also included pharmacokinetic parameters (BF_10percent,
TTP_25percent, TTP_Max, MTT_Max, MAXSlope_Area) after
histogram analysis, which is consistent with a previous study
(31), suggesting that massive angiogenesis in tumor may
contribute to the perfusion change.

Most radiomics studies in breast cancer emphasized on the
features extracted from intratumoral and peritumoral regions for
prediction of molecular subtypes (13), lymph node metastasis (15),
and prognosis (14, 36). To our best knowledge, few studies have
constructed a radiomics model using FGT features for
classification and prediction in breast cancer. The predictive
value of FGT in breast cancer studies is still controversial.
Vreemann et al. determined that FGT was related to short-term
breast cancer risk (18). However, Dontchos et al. found no
difference in FGT amount between cancer and control groups
(37). We tried to investigate the predictive performance of
FGT for SLN status in breast cancer. In the current study, the
predictive value of FGT was relatively low (AUC 0.680), as well as
in all the subtype sets. However, the introduction of FGT features
into the tumor model could improve the predictive performance
as shown by continuous NRI and IDI indices in our study,
achieving a higher AUC of 0.799 compared with the FGT or
tumor model alone, consistent with previous studies that
show that the combination model could improve predictive
performance (16, 17, 31).

Clinical factors such as age, tumor size, tumor location,
tumor histological type, and lymphovascular invasion were
significant predictors for SLN metastasis in breast cancer
(38, 39). Nomograms based on the clinical factors, such as the
Memorial Sloan-Kettering Cancer Center (MSKCC) nomogram,
have been developed to predict the likelihood of SLN metastasis
in breast cancer with good prediction performance in different
populations (39–41). In the current study, the clinical factors
PR and tumor size were selected as independent predictors to
construct an independent clinic model for predicting SLN status.
The PR expression with an odds ratio of 0.308 means that the
positive PR is inversely related to the negative SLN, consistent
with a previous study that shows that PR was a predictor for
SLN metastasis (42). The biological mechanism of PR for
SLN metastasis in breast cancer is still unclear. One probable
Frontiers in Oncology | www.frontiersin.org 9
interpretation is that PR is associated with cell proliferation,
migration, attachment, and invasiveness in breast cancer
(43, 44). In addition, the tumor size with an odds ratio of
0.621 indicated that the smaller tumor size is related to higher
probability of the negative SLN, which is in accordance with
previous studies (38, 39, 42).

Furthermore, previous studies have demonstrated that the
combination of clinical factors and radiomic features can
improve the prediction performance of SLN status (16, 45).
We found that the AUC was improved from 0.799 to 0.839 for
the radiomics model combining tumor with FGT after further
involving the clinical factor of PR, which was consistent with a
previous study (16). However, different studies obtained different
AUCs of predictive models based on radiomic features from
intratumoral and peritumoral regions and clinical factors (16, 17,
31, 35). One of the possible reasons is that we predict negative
SLN instead of positive SLN. The other possible reason is that the
different features could be extracted by different imaging series,
image processing, software, and composition of breast
cancer subtypes.

There were several limitations in this study. First, the sample
size of the study was relatively small for breast cancer patients
and small for different molecular subtypes. Therefore, we tried to
use the whole dataset to construct the model and internally
validated by 1,000-times bootstrapping. Second, the
segmentations of tumor and FGT for radiomic features
extraction were conducted by manual method although the
acceptable inter- and intra-observer reproducibility was
achieved. Third, external validation of this study is absent.
Multicenter validation is needed to achieve high-level evidence
for further clinical application. Thus, the data should be further
collected and further validation and physiological explanation
for the robust features should be explored as well.

In conclusion, introducing FGT and hormone receptor PR on
the basis of tumor radiomics model could help improve the
prediction performance of SLN status in breast cancer. A
nomogram integrating the DCE-MRI radiomics signature of
tumor and FGT and PR status achieved good performance in
the prediction of SLN status. This study provided a potential
biomarker for predicting preoperative SLN status, which might
be helpful for planning treatment strategy.
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