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Abstract: Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine.
Elderly or immunocompromised individuals are particularly susceptible to infectious diseases;
specifically, infections in the spine can impair the ability of the spine to support the trunk, causing
patients to be bedridden, which can also severely affect the physical condition of patients. Although
treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection
remain to be elucidated because they have pathological manifestations that are similar to but distinct
from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic
spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation.
Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and
the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due
to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced
by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis
with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent
activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we
review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the
efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab,
and bisphosphonates, in treating this pathological condition.

Keywords: romosozumab; teriparatide; denosumab; bisphosphonate; pyogenic spondylodiscitis;
osteolysis; osteoblastogenesis; osteoclastogenesis; Wnt

1. Introduction

Pyogenic spondylodiscitis is an infection that occurs at an intervertebral disc and the
adjacent vertebrae, and it can lead to bone loss and subsequent instability of the spine.
Elderly and immunocompromised people are particularly susceptible to spondylodiscitis,
have a high risk of being bedridden, and experience a deterioration of their physical
condition [1]. Moreover, the prevalence of spondylodiscitis has increased over the last
20 years [1]. The prevalence of spondylodiscitis increased from 2.2/100,000 to 5.8/100,000
within 14 years in Denmark [2] and from 5.3/100,000 to 7.4/100,000 within 3 years in
Japan [1,3]. Regarding the treatment, antibiotics can be effective in fighting microbes;
however, they have no reparative effects on destroyed bone lesions. Notably, bone loss
may have fewer treatment options than infection and tends to become problematic. A
possible therapeutic measure is the administration of medications for osteoporosis. These
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medications modulate bone formation and/or resorption, and the effects vary by the type
and characteristics of the medication. However, currently, there is no consensus on which
agent is appropriate for these patients.

Recently, we managed the case of a patient with postoperative pyogenic osteolytic
spondylodiscitis who was treated with romosozumab, a monoclonal antibody against
sclerostin that stimulates canonical Wnt/β-catenin signaling and exhibited enhanced
bone formation following treatment. Briefly, the elderly woman with diffuse idiopathic
skeletal hyperostosis and untreated severe osteoporosis had a lumbar vertebral fracture
at the L3 level. She was administered teriparatide, calcium, and alfacalcidol, but these
medications were stopped after a short period because exanthema occurred. She underwent
surgical fixation of the spine from the T12 to the L5 level using a percutaneous pedicle
screw system but developed a surgical-site infection in the L3 vertebral body and L2/3 and
L3/4 intervertebral discs six weeks after the surgery. Severe osteolysis was evident at the
surgical site on the CT images (Figure 1). We started the administration of romosozumab
immediately after the implant removal and thorough irrigation and continued it in parallel
with the treatment of infection using antibiotics. Although serological inflammation
persisted for six weeks after surgery, the CT images revealed robust bone formation in the
destroyed bone lesions at the L3 vertebra and bony spur bridging at the L2/3 and L3/4
disc levels at two months after operation (Figure 1).
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Although our treatment was successful in this case, a decision regarding treatment
for bone loss secondary to pyogenic spondylodiscitis is still difficult and controversial.
Therefore, we review the molecular signaling pathways involved in bone loss secondary to
infection and discuss the potential role of the currently available osteoporosis medications,
including romosozumab, teriparatide, denosumab, and bisphosphonates (BPs), in the
treatment of this intractable pathological condition.

2. The Peculiarity of Bone Loss Secondary to Pyogenic Spondylodiscitis

The peculiarity of the spine versus other regions regarding the locus of infection
is a high propensity of patients losing ambulatory competencies. Bone loss in pyogenic
spondylodiscitis patients is usually rapidly progressive and highly destructive [4]; therefore,
patients tend to become bedridden and cannot recover ambulatory function without
restoring the support and stability of the spine. Moreover, major bone loss is due to
not only the causal bacteria but also the disuse of the spine owing to bed rest, brace
immobilization, and limited sunlight exposure from long hospitalization for intravenous
antibiotic administration [5]. Another factor that may lead to abrogating ambulatory
competence is neurological deficits. Due to its function as a container of the spinal cord
and cauda equina, the disruption of the spinal column by bone loss may result in the
impairment of neurological function, which is highly relevant to the patient’s ambulatory
competence. The prevalence of neurological deficits, including radiculopathy, paralysis
involving the trunk, limb, bladder, and rectum, and sensational disorder, is reported to
be 10–50% depending on the study, and although its incidence is less than 10%, there is a
chance of their progression to permanent deficits [6–9]. Fast-acting medications for bone
loss are ideal for restoring the structure and function of the spine before the general body
condition and neurological function deteriorates.

3. Molecular Mechanisms of Bone Resorption Secondary to Infection

Bone resorption driven by osteoclastogenesis is the primary factor responsible for
bone loss secondary to pyogenic osteomyelitis. Osteoclastogenesis is initiated by proinflam-
matory cytokines secreted by lymphocytes and macrophages, such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β, and IL-6, inducing the binding of the receptor activator of nu-
clear factor-κB (NF-κB) ligand (RANKL) to RANK [10]. TNF-α promotes the development
of osteoclast precursors to express RANK and the development of stromal cells, osteoblasts,
and activated T cells to express RANKL [10–12]. IL-1β also facilitates the expression of
RANKL and causes osteoclast precursors to differentiate into mature osteoclasts [10,13,14].
IL-6 induces the expression of RANKL in osteoblasts and stromal cells [10,15]. Subse-
quently, the RANK-RANKL combination causes TNF receptor-associated factor 6 (TRAF-6)
to activate NF-κB and MAPKs, followed by the activation of the transcription factors (TFs)
nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and c-Fos in osteoclast precur-
sors [10,16]. These factors upregulate tartrate-resistant acid phosphatase (TRAP), matrix
metalloproteinase 9 (MMP9), calcitonin receptor (CTR), and cathepsin K (CTSK), which
differentiate the multinucleated osteoclasts with the assistance of macrophage-colony-
stimulating factor, which stimulates the proliferation and survival of osteoclast precursors,
leading to bone resorption [10,14,16]. Another important transcription factor that induces
proinflammatory cytokines is signal transducer and activator of transcription (STAT) [10].
STAT3 has been demonstrated to play an important role in the production of IL-1β, IL-6,
and nitrogen oxide and the subsequent differentiation of cultured preosteoclasts to mature
osteoclasts induced by lipopolysaccharide (LPS) [10,17–19]. Although the patient in our
study had an infection caused by methicillin-resistant coagulase-negative staphylococci,
Gram-negative bacteria also commonly cause pyogenic spondylodiscitis. LPS is a com-
ponent of the outer membrane of Gram-negative bacteria and has been shown to play
important roles in bone resorption secondary to pyogenic osteomyelitis [20]. LPS acti-
vates Toll-like receptor 4 (TLR4) and stimulates various signaling pathways, including the
NF-κB, MAPK, and STAT3 pathways [10,21]. The effects of LPS on bone loss include not
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only the stimulation of bone resorption by osteoclasts but also the inhibition of osteoblast
differentiation [22,23]. LPS suppresses the expression of runt-related transcription factor
(Runx) 2, osterix, and activating transcription factor 4 (ATF4), consequently inhibiting
the differentiation of cultured osteoblasts [22]. The NF-κB and MAPK pathways also
contribute to osteoblast apoptosis [23]. Furthermore, noncoding microRNAs (miRNAs) are
single-stranded RNAs that have 18–24 nucleotides and a hairpin structure [24]. miRNAs
have been confirmed to function as gene regulators posttranscriptionally [24]. miRNA-
34c is upregulated by LPS stimulation, and its overexpression has been demonstrated to
suppress the expression of osteogenic gene markers, such as alkaline phosphatase, Runx2,
osteopontin (OPN), and bone morphogenetic protein (BMP) 2 [23] (see Figure 2).
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4. Osteoporosis Medications as a Treatment for Bone Loss Secondary to Infection

Some medications used for osteoporosis are considered potential therapeutics for
bone loss secondary to infection because these medications are used to treat bone loss in
other pathological conditions. Increased osteoclastic activity is evident in many osteopenic
disorders, including Paget’s disease, lytic bone metastases, and rheumatoid arthritis, caus-
ing increased bone resorption and destruction [25]. Osteoporosis medications comprise
anabolic drugs and antiresorptive drugs.

Major options for anabolic medications are teriparatide and romosozumab. Teri-
paratide has been reported to be effective in the treatment of medication-related osteonecro-
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sis of the jaw (MRONJ) [26], which has a pathological manifestation similar to that of
pyogenic osteomyelitis. The pathological manifestation of MRONJ is considered to in-
volve the antiresorptive effect of BPs or denosumab, a reduction in macrophages, and an
increase in monocytes by the effect of BPs, local bacterial infection, inflammation, and
necrosis [26,27]. However, there is increasing evidence that infection can be a histological
hallmark of MRONJ [28–32]. Bacteria form biofilms to protect themselves from the host
immune system and antibiotics [32]. Teriparatide has been suggested to promote osseous
wound healing in cases of MRONJ [26,33]. When considering the use of teriparatide in the
treatment of bone loss secondary to an infection, one concern is that teriparatide is known
to promote bone resorption concomitant with bone formation, as shown by an elevation in
the levels of serum N-telopeptide of type I collagen or collagen cross-linked C-telopeptide,
although an anabolic window exists in cases of usual osteoporosis [33–36]. Romosozumab,
a monoclonal antibody against sclerostin, seems to be a better choice because it has been
reported to increase bone formation and decrease bone resorption [37–41].

The main players among antiresorptive drugs are a group of BPs and denosumab.
Although the area of bone loss is systemic in the established stage, rheumatoid arthritis
(RA) causes local periarticular bone loss in the preclinical stage [42], which leads to mild
but similar features to those of bone infection. Many inflammatory cytokines involved
in RA have osteoclastogenic effects [43], and they commonly accompany the bone loss
secondary to an infection, as described in the previous section. In patients with RA, bone
loss is treated with BPs or denosumab, which has been shown to significantly increase
the bone mass index at the lumbar spine and hip [42]. These drugs have also been used
in bone loss secondary to tumorigenesis, such as cancer metastasis or osteolytic primary
bone tumors, for example, a giant-cell tumor of bone [44–46]. Although these medications
reduce bone resorption, they are also known to suppress bone formation, resulting in
decreased bone turnover [32]. Based on these facts, we will further introduce the currently
available evidence for the individual drugs.

4.1. Anabolic Drug: Romosozumab

Romosozumab is a humanized monoclonal sclerostin antibody that sabotages scle-
rostin and inhibits the suppression of canonical Wnt/β-catenin (cWnt) signaling, resulting
in osteoblastogenesis, bone formation, and the suppression of osteoclastogenesis [47–49].
Romosozumab prevents sclerostin from binding to the low-density lipoprotein receptor-
related protein (LRP)-5 or LRP-6, the receptors of Wnt ligands, increasing bone formation
and decreasing bone resorption [50]. The Wnt ligands, without restriction by sclerostin,
bind to a specific Frizzled family receptor and an LRP-5/6 coreceptor on the surface of the
osteoblasts and activate Disheveled, which prevents glycogen synthase kinase 3β (GSK3β)
from phosphorylating β-catenin, forming a complex with adenomatous polyposis coli
(APC) and Axin [51]. Cytoplasmic β-catenin accumulates, escapes ubiquitination and
degradation by proteasomes, translocates into the nucleus, and binds to the transcrip-
tion factor T cell factor/lymphoid enhancer factor (TCF/LEF), upregulating the target
gene expression [51,52]. cWnt signals are involved in the self-renewal, proliferation, and
epithelial-mesenchymal transition of target cells [53] and affect fibroblast growth factor,
Notch, and transforming growth factor-β signals [49,54–56]. Specifically, in bone, cWnt sig-
nals promote the Runx2-dependent osteoblastic differentiation of mesenchymal stem cells
or progenitor cells and have an anabolic effect [49,57,58]. The activation of cWnt signaling
induced by Wnt3a or the overexpression of β-catenin/TCF4 also elevates BMP2 promoter
activity and its mRNA levels [59]. This mechanism has been validated by confirming the
existence of TCF/LEF response elements in the BMP2 promoter region using a site-directed
mutagenesis approach [59]. Furthermore, cWnt signaling upregulates BMP2 and then
upregulates Wnt7A/10B through BMP receptor type IA, resulting in the synergistic en-
hancement of osteoblastogenesis and bone formation [47,49,59]. Moreover, cWnt signaling
causes antiresorptive effects by suppressing osteoclast differentiation at the precursor
level [52]. cWnt signaling in osteoblasts elevates the expression of osteoprotegerin (OPG)
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and suppresses osteoclast differentiation [60,61]. In contrast, osteoclast precursor-specific
β-catenin knockout mice showed enhanced osteoclast differentiation and osteopenia [52].
This result demonstrated that cWnt signaling also suppresses osteoclastogenesis at the
precursor level in an OPG-independent manner [52]. In another study, early treatment
with Wnt3a inactivated the crucial transcription factor NFATc1 in osteoclast precursors [60].
Although Wnt3a is known to activate cWnt signaling, that study revealed the involvement
of noncanonical Wnt signaling in the Wnt3a inactivation of NFATc1 by demonstrating that
the deletion of β-catenin does not block this inactivation [60]. In brief, Wnt3a activates
cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling and sup-
presses osteoclast differentiation by phosphorylating NFATc1 and suppressing its nuclear
localization [60]; thus, romosozumab may also affect the noncanonical signals induced
by Wnt3a. In addition, PKA has also been shown to negatively regulate NF-kB nuclear
localization; therefore, romosozumab may contribute to inhibiting apoptosis of osteoblasts
(see Figure 2).

In our experience with this patient, the effects of romosozumab against bone loss
secondary to infection presumably addressed the osteoclastogenesis with regard to the
parts driven by NFATc1 activation, the role of OPG, and the role of β-catenin in suppressing
osteoclast differentiation. However, romosozumab was also effective in modulating os-
teoblastogenesis and consequent bone formation in concert with BMP2 signaling, as well as
by hindering the osteoblast apoptosis induced by the NF-κB pathways (see Figure 2). The
patient exhibited enhanced bone formation at a severely osteolytic infection site as early
as two months after implant removal and thorough irrigation. Importantly, serological
inflammation was present for six weeks after the surgery, meaning that romosozumab
strongly promoted bone formation, even in the presence of osteoclastogenesis and the sup-
pression of osteoblastogenesis induced by infection. However, there is a lack of evidence
to explicitly demonstrate the efficacy and possible disadvantages of romosozumab, and
well-designed studies are necessary.

4.2. Anabolic Drug: Teriparatide

Teriparatide is a recombinant human parathyroid hormone (PTH) that contains the 1st
to 34th amino acids of the N-terminus of intact PTH [62]. When PTH was administered at
a low dose intermittently, it had anabolic effects on the skeleton [35]. Most PTH signals are
transmitted through the PTH-1 receptor, a G protein-coupled protein, activated by peptide
sequences in the N-terminal region [35]. PTH regulates osteoblast function through the
activation of the cAMP-dependent PKA and calcium-dependent protein kinase C signaling
pathways [35,63]. The other mechanisms that are involved are the MAP kinase and
phospholipase A and D pathways [35]. In addition, the expression of the Wnt antagonist
sclerostin was downregulated by chronic and excess administration of PTH, which explains
the anabolic effects of PTH, although intermittent daily administration failed to suppress
sclerostin [64]. PTH acts directly on osteoblast lineage cells through an antiapoptotic action
by Runx2 in intermittent administration and indirectly affects those cells through growth
factors, such as IGF-I, and growth factor antagonists, such as sclerostin [35,63,64]. IGF-I
synthesized in osteoblasts results in potent anabolic effects in concert with the direct effects
of PTH on cancellous bone [35].

Despite the accumulation of knowledge about teriparatide, there are still a limited
number of studies reporting the effects of teriparatide on bone loss secondary to infection.
There are a few case reports of the effect of teriparatide on septic arthritis with and without
arthroplasty, pyogenic osteomyelitis and nonunion of the tibia, and pyogenic spondylitis,
all of which concluded that teriparatide was effective on this pathological condition with-
out the aggravation of infection [65–68]. Although not simulating the exact situation of
pyogenic osteomyelitis, regarding the molecular mechanism of how teriparatide works
on the bone when the host is undergoing sepsis, Terashima et al. studied its effect using
cecal ligation and puncture-treated mice [69]. Previous studies have demonstrated that IL-7
stimulates the proliferation and activation of lymphoid cells and improves host survival
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in sepsis [69–71]. In the study of Terashima et al., sepsis resulted in a rapid ablation of
osteoblasts and subsequent reduction in common lymphoid progenitors via the effects of
granulocyte colony-stimulating factor, leading to lymphopenia-associated immunodefi-
ciency, but sepsis caused no change in osteoclasts [69]. Interestingly, the use of teriparatide
not only stimulated the proliferation of osteoblasts but also improved the lymphopenia
induced by sepsis through an increase in IL-7 [69]. The occurrence of consequent augmen-
tation of T and B cells was not limited to peripheral blood but was also evident in the
bone marrow [69]. Considering these findings, teriparatide may positively affect bone loss
secondary to pyogenic myelitis by bone formation, boosting the proliferation of osteoblasts
and strengthening the immune system by increasing the number of lymphocytes through
IL-7 signaling. However, further studies are needed to rule out adverse side effects, such as
paradoxical bone resorption or hypercalcemia, when using teriparatide in an acute phase
of bone infection.

4.3. Antiresorptive Drug: Denosumab

Denosumab is a human monoclonal antibody against RANKL that inhibits the dif-
ferentiation of osteoclast precursors into mature osteoclasts [72]. However, because its
receptor, RANK, is also expressed by monocytes/macrophages and dendritic cells, and
RANKL, RANK, and OPG deficiency in murine models underscores the importance of this
pathway in the development and maturation of the immune system [25,73–76], a concern
arose regarding potential infectious events when RANKL was inhibited [72]. Initially, the
results from a clinical trial, fracture reduction evaluation of denosumab in osteoporosis
every 6 months (FREEDOM), showed that there was no increase in the risk of serious
infections [77]. However, a more recent meta-analysis concluded that there was a signif-
icant increase in the risk of serious infections in osteoporosis in females or osteopenia
patients treated with denosumab [77,78]. This result was supported by newer data from the
FREEDOM trial showing concordant results, although the risk increase fell into borderline
significance when nonmetastatic breast cancer was excluded [78,79]. Watts et al. also
evaluated infectious events in the FREEDOM trial, reporting a more frequent incidence of
erysipelas and cellulitis and infections in other regions, such as the gastrointestinal system,
renal and urinary system, ear, and endocardium [80]. However, the number of each event
was small, and there was no relationship between infectious events and the timing of the
administration or duration of denosumab [80], which leads to skepticism regarding causal-
ity between the administration of denosumab and the occurrence of infectious events. In
summary, denosumab might be associated with an increase in serious infections [81] based
on the underlying evidence in the area of molecular science. Denosumab may, therefore,
cause the deterioration of infection when used in pyogenic osteomyelitis patients, even if it
was effective in suppressing osteolysis. Likewise, further studies are necessary to clarify
the efficacy of denosumab in the treatment of this pathological condition.

4.4. Antiresorptive Drug: BPs

BPs are a group of pyrophosphate analogs that bind to hydroxyapatite on the bone sur-
face at the sites where remodeling is active and are internalized into osteoclasts through en-
docytosis, leading to their apoptosis or the suppression of bone-resorbing activity [82]. BPs
comprise two types of chemical structures specific to the side-chain groups: nonnitrogen-
containing BPs (non-NBPs) and nitrogen-containing BPs (NBPs), which exhibit more
powerful effects than the prior and are widely used [83]. Non-NBPs exert their activi-
ties by conversion into cytotoxic ATP analogs, interfering with mitochondrial function in
osteoclasts and leading to apoptosis [84,85]. NBPs bind to key enzymes of the intracel-
lular mevalonate pathway and inhibit them, preventing the prenylation and activation
of small GTPases that are essential for the bone-resorbing activity and survival of osteo-
clasts [82,86–89]. The mevalonate pathway is responsible for the production of cholesterol
and isoprenoid lipids [82,90]. Some of the isoprenoid lipids are indispensable for the
prenylation and activation of GTPases [82,90–92]. These GTPases play an important role in
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regulating osteoclast morphology, cytoskeleton arrangement, membrane ruffling, traffick-
ing, and cell survival [82,93,94].

In the context of using BPs as a treatment for bone loss secondary to pyogenic
osteomyelitis, the majority of studies have highlighted the downsides of NBPs. First,
NBPs have inflammatory side effects leading to osteomyelitis [95]. Deng et al. pretreated
macrophages that were infected with Porphyromonas gingivalis and Tannerella forsythia with
alendronate, an NBP, and demonstrated augmented production of IL-1β through caspase-1
activation [95]. Furthermore, intraperitoneal injection of NBPs induced histamine-forming
enzyme histidine decarboxylase (HDC) in tissues, such as the liver, lungs, spleen, and bone
marrow, through IL-1 signaling in murine models [96]. HDC is induced by NBPs, LPS, IL-1,
and TNF, and histamine is an inflammatory mediator and a regulator of immune responses,
including Th1/Th2 balance and hematopoiesis [97]. Pretreatment with alendronate aug-
mented LPS-stimulated IL-1 production and HDC induction; conversely, pretreatment
with LPS augmented alendronate-induced HDC elevation [96]. Moreover, macrophages
activate human γδ T cells when treated with NBPs, and it is suggested that macrophages
present NBPs to γδ T cells [96,98]. Another study reported that NBPs stimulated human γδ

T cells to release TNFα and/or interferon-γ [99] through the inhibition of the mevalonate
pathway [100].

Second, NBPs downregulated TLR ligand-induced monocyte chemoattractant protein-
1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) production in the macroph
age-like cell line J774.1 via Smad3 activation [101]. The chemokine MCP-1 facilitates osteo-
clast differentiation [102], and MIP-1α stimulates osteoclasts [103]; therefore, a reduction
in these chemokines might inhibit the normal activation and migration of osteoclasts and
cause osteonecrosis, leading to the formation of sequestra [101].

Third, the existence of NBPs on the surface of the bone can significantly increase the
number of bacteria attached to the bone [104]. When pamidronate was used to coat a
hydroxyapatite (HA) material, the number of adherent bacteria was 60-fold greater than
that when the HA was uncoated; therefore, NBPs presumably increase the bacterial load at
the infection site and exacerbate the infection [104].

Fourth, the insufficient efficacy of BPs on bone loss secondary to pyogenic osteomyeli-
tis can also be pointed out. Kim et al. retrospectively analyzed the efficacy of BPs in
pyogenic vertebral osteomyelitis patients, subgrouping as follows: group A, patients who
received BPs within 6 weeks after diagnosis; group B, patients who received BPs between
6 weeks and 3 months after diagnosis; and group C, patients who received no treatment
for osteoporosis [5]. Although the hazard ratios for the recurrence of infection were not
significantly different among the three groups, bone mineral densities measured by dual-
energy X-ray absorptiometry decreased by 0.7% in group A and 1.7% in group B at the
lumbar spine one year after the diagnosis [5]. In another study, the administration of an
NBP aggravated the infection. This study characterized the bone changes resulting from
Staphylococcus epidermidis infection in a rodent orthopedic device-related infection model
and further evaluated whether ovariectomy (OVX) or BP treatment influenced the infec-
tion [105]. As a result, treatment with zoledronic acid did not have bone-protective effects
on OVX-infected animals; moreover, it significantly increased the bacterial load, suggesting
that osteoclasts might be important in the control of the infection [105]. Supporting this
theory, there is a study reporting osteoclasts as immune-competent cells that can internalize
and present bacterial antigens to T cells [106]. Several studies have reported that NBPs
cause patients to be more susceptible to infection [107,108]. Although one study reported a
protective role of zoledronic acid on healing tooth extraction wounds and bone loss in a
mouse model of pyogenic osteomyelitis of the jaw [109], this may be limited to the oral
region environment. The majority of the studies reported the disadvantages of NBPs in
treating bone loss secondary to pyogenic osteomyelitis (see Figure 3).
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Evidence for each drug regarding the therapeutic effects on pyogenic osteomyelitis is
recapitulated in Table 1.

Table 1. Advantages and disadvantages of romosozumab, teriparatide, denosumab, and bisphosphonates (BPs) in the
treatment for pyogenic osteomyelitis.

Drugs Advantages Disadvantages

Romosozumab * • Suppresses osteoclastogenesis by
phosphorylating NFATc1, elevating the
expression of OPG, and accumulation of
β-catenin in osteoclasts

• Enhances osteoblastogenesis via augmenting
BMP2 signaling and hindering osteoblast
apoptosis induced by the NF-κB pathways

• Unknown with regard to the areas of the
bone and infection

Teriparatide • Stimulates the proliferation of osteoblasts
• Stimulates the proliferation and activation of

lymphoid cells via upregulating IL-7 in the bone
marrow

• Unknown with regard to the areas of the bone
and infection, but may need precaution to
paradoxical bone resorption or hypercalcemia

Denosumab • Inhibits osteoclastogenesis by inhibiting RANKL • A concern of aggravating the infection

NBPs • Impair function and survival of osteoclasts
• One study reported that zoledronic acid had

protective effects on bone loss secondary to
pyogenic osteomyelitis of the jaw

• Augment the production of IL-1β in
macrophages

• Upregulate histamine production via HDC
induction with and without the LPS existence
in the bone marrow

• Affect macrophages to activate γδ T cells
• Stimulate γδ T cells to release TNFα and/or

IFNγ
• Down-regulate TLR ligand-induced MCP-1

and MIP-1α production in macrophages
• Increase bacterial loads at the infection site
• Insufficient efficacy on the bone loss

* Romosozumab lacks evidence from previous studies; therefore, we discussed based on the known efficacy of romosozumab. BMP2,
bone morphogenetic protein 2; HDC, histamine-forming enzyme histidine decarboxylase; IFNγ, interferon-γ; IL, interleukin; LPS,
lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MIP-1α, macrophage inflammatory protein-1α; NBPs, nitrogen-containing
BPs; NFATc1, nuclear factor of activated T cells cytoplasmic 1; NF-κB, nuclear factor-κB; OPG, osteoprotegerin; RANKL, receptor activator
of NF-κB ligand; TLR, Toll-like receptor; TNFα, tumor necrosis factor α.
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5. Conclusions

Considering the underlying characteristics of bone loss in pyogenic spondylodiscitis
and the relatively older population of patients with this condition, the use of anabolic
medications may be desirable in these patients, given the potential advantages reported in
previous studies. Further accumulation of evidence will help in the treatment of patients
with this intractable disease, which is increasing in prevalence and impacts society.
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