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Abstract

Background: Clinical outcome of patients with a classical presentation of galactosemia (classical patients) varies
substantially, even between patients with the same genotype. With current biomarkers, it is not possible to predict
clinical outcome early in life. The aim of this study was to develop a method to provide more insight into galactose
metabolism, which allows quantitative assessment of residual galactose metabolism in galactosemia patients. We
therefore developed a method for galactose metabolite profiling (GMP) in fibroblasts using [U-13C]-labeled galactose.

Methods: GMP analysis was performed in fibroblasts of three classical patients, three variant patients and three
healthy controls. The following metabolites were analyzed: [U13C]-galactose, [U13C]-galactose-1-phosphate (Gal-1-P)
and [13C6]- uridine diphosphate(UDP)-galactose. The ratio of [U13C]-Gal-1-P/ [13C6]-UDP-galactose was defined as the
galactose index (GI).

Results: All patient cell lines could be distinguished from the control cell lines and there was a clear difference between
variant and classical patients. Variant patients had lower levels of [U13C]-galactose and [U13C]-Gal-1-P than classical
patients (though substantially higher than healthy controls) and higher levels of [13C6]-UDP-galactose than classical
patients (though substantially lower than healthy controls) resulting in a different GI in all groups.

Conclusions: GMP in fibroblasts is a sensitive method to determine residual galactose metabolism capacity, which can
discriminate between patients with a classical presentation of galactosemia, patients with a variant presentation and
healthy controls. GMP may be a useful method for early prognostication after further validation in a larger cohort of
patients representing the full phenotypic spectrum of galactosemia.
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Background
Deficiency of the enzyme galactose-1-phosphate uridyl-
transferase (GALT; EC 2.7.7.12) causes classical galacto-
semia (OMIM # 230400), an autosomal recessive inborn
error of galactose metabolism. Despite early start of
and good compliance with the galactose-restricted
diet, which is the only available treatment, a substantial per-
centage of galactosemia patients suffers from burdensome

complications, including decreased cognitive abilities, other
neurological complications and primary ovarian insuffi-
ciency in females [1–5]. The mechanisms of disease
are not fully understood yet. In the normal situation,
GALT facilitates the conversion of galactose-1-phosphate
(Gal-1-P) and uridine diphosphate (UDP)-glucose to
glucose-1-phosphate and UDP-galactose (Fig. 1). Highly
elevated levels of Gal-1-P in the fetus and newborn infant
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Fig. 1 Schematic overview of galactose metabolism: Galactose [1] is converted by galactokinase (GALK1) to galactose-1-phosphate (Gal-1-P) [2]
which is subsequently converted to uridine diphosphate (UDP)-galactose [3] by galactose-1-phosphate uridyltransferase (GALT). For this last conversion
UDP-glucose [4] is used as a donor for the UDP and as a receptor for the phosphate to produce UDP-galactose [3] and glucose-1-phosphate [5].
Produced glucose-1-phosphate [5] can enter glycolysis via phosphoglucomutase to glucose-6-phosphate and subsequently enter the tricarboxylic
acid (TCA) cycle. UDP-galactose [3] can be converted by UDP-galactose-4-epimerase (GALE) to UDP-glucose [4]. The numbered carbons are used in
the galactose metabolites profiling (GMP) measurements
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with galactosemia and persistently elevated Gal-1-P levels
in patients even on dietary treatment (due to significant
endogenous galactose production by the human body),
are thought to play an important role in the pathophysi-
ology. Elevated Gal-1-P levels have been demonstrated to
competitively inhibit many metabolic pathways including
glycosylation of proteins and lipids [6, 7]. As UDP-sugars
are essential in the biosynthesis of glycoproteins and gly-
colipids [8, 9], a disturbed balance in UDP-sugars may also
contribute to the glycosylation defects demonstrated in
galactosemia [10]. The clinical outcome spectrum in ga-
lactosemia is highly variable, even in siblings with identical
mutations and erythrocyte enzyme activities and ranges
from fully normal to severely impaired development,
which is poorly understood [11–14]. At this time, it is
impossible to predict clinical outcome at the time of diag-
nosis based on the available biochemical, enzymatic and
genetic data. Prognostic uncertainty is a major burden on
parents and patients, especially since unnecessary treat-
ment may occur and galactose over-restriction may even
be harmful in some patients [15]. This is especially rele-
vant since the extended newborn screening program
(NBS) in the Netherlands has resulted in the identification
of individuals with remarkable differences in biochemical
and clinical phenotypes (henceforth called ‘variant pa-
tients’) compared to patients with a classical presentation
of galactosemia (henceforth called ‘classical patients’) [16].
In this study none of the variant patients demonstrated
any symptoms of galactosemia at the time of referral while
they were on a galactose-containing diet until confirm-
ation of the diagnosis, while 95% (19/20 patients) of clas-
sical patients demonstrated CG related illness at referral.
At the time of the research these variant patients were all
under the age of ten years, which explains why long-term
clinical outcome was not reported. Biochemically they
demonstrated markedly elevated Gal-1-P levels shortly
after birth, comparable to classical patients. After intro-
duction of a galactose-restricted diet, Gal-1-P levels
showed an unusually rapid decrease (within six months) to
the near undetectable range, while Gal-1-P levels remained
significantly elevated in all treated classical patients. Some
but not all variant patients had a higher residual erythrocyte
GALT enzyme activity than patients diagnosed before NBS
(up to 9% of healthy controls), and some had previously un-
reported genotypes. These children are thus referred to as
having a variant (clinical and biochemical) presentation of
galactosemia and most likely have a higher residual capacity
to metabolize galactose. Furthermore, differences in galact-
ose tolerance have been reported between classical patients
[17]. In some of these patients improved glycosylation was
observed with a somewhat increased galactose intake (using
the IgG galactosylation marker). Thus, individualized prog-
nostication is highly relevant and should ideally be followed
by individualized treatment, which may improve outcome.

While at diagnosis the severity of GALT deficiency is
determined by measurement of GALT activity in eryth-
rocytes, the available enzyme assays have a number of
limitations. First, the in vitro activity of GALT is not de-
termined under physiological conditions, including satu-
rated concentrations of the two substrates Gal-1-P and
UDP-glucose. Second, they do not provide information
on the effect of the enzyme deficiency on overall metab-
olism of galactose. The highly variable clinical outcome
spectrum may also be a consequence of differences in
the residual capacity to metabolize galactose in other tis-
sues than the erythrocyte. In another inborn error of
metabolism, very-long-chain acyl-CoA dehydrogenase
(VLCAD) deficiency, fatty acid oxidation flux in fibroblasts
was demonstrated to correlate much better with clinical se-
verity than the enzyme activity in lymphocytes [18].
For all the above-mentioned reasons, we developed a

method for galactose metabolites profiling (GMP) which
provides information on galactose metabolism, by analyzing
the intracellular levels of the metabolites generated from
stable labeled [U13C]- galactose including Gal-1-P and
UDP-galactose. We performed GMP in fibroblasts of clas-
sical patients and of patients with a variant presentation.

Methods
Patients
GMP was performed in fibroblasts of: 1) three classical
patients (2 males, 1 female) who were diagnosed based on
clinical presentation, 2) three variant patients (2 males, 1
female) who did not demonstrate any symptoms of illness
at the time of diagnosis by NBS, and demonstrated a rapid
decrease of Gal-1-P levels to undetectable (in 2) or just
detectable (in 1) with a lactose free diet and 3) three
healthy control subjects. Measurements were performed
in fibroblasts which had been previously collected for
clinical reasons. The Medical Ethics Review Committee of
the AMC decided that the Medical Research Involving
Human Subjects Act did not apply to this study and that
their official approval was not required. All fibroblasts had
been taken in early childhood.

GALT enzyme activity and genetic analysis
Measurement of residual erythrocyte GALT enzyme activity
and genetic analysis had been performed in all patients as
part of the diagnostic work-up. Measurement of residual
GALT enzyme activity in fibroblasts, essentially performed
as described by Shin-Buehring [19], was performed as part
of the diagnostic work-up in variant patients and for re-
search purposes in the included classical patients.

Cell culture procedure and stable isotope [13C]-labeled
galactose metabolites profiling (GMP)
For the stable [13C]-labeled GMP measurements, the me-
tabolites of galactose including galactose, Gal-1-P and
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UDP-galactose were measured as output for GMP. Human
fibroblasts were cultured at 37 °C under 5% CO2 in
HAM F10 supplemented with 10% FCS and 100 μg/mL
of penicillin/streptomycin. For the experiment, cells
(50–100 μg of protein) were plated to 6 wells plates. After
24 h the medium was removed and cells were starved for
16 h using Dulbecco’s PBS without any extra additions.
After 16 h of starvation, cells of healthy controls, classical
patients and variant patients were incubated with 1 mM
of [U13C]-galactose for 1 h, 2 h, 4 h or 7 h (Fig. 2a). Cells
were washed three times with ice-cold saline solution
(0.9%; w/v). Metabolism was quenched by adding 0,5 mL
ice-cold methanol followed by 0,5 mL ice-cold water. For
the extraction of metabolites, the 6 well plates were placed

in a sonication bath and sonicated for 15 min. The
homogenate was transferred to a 2 mL tube and after
addition of 1 mL of chloroform, the homogenate was
vortexed and centrifuged for 5 min at 18.620 rcf at
4 °C. The “polar” top layer was transferred to a new
1.5 mL tube and dried in a vacuum concentrator.
Dried samples were dissolved in 100 μL methanol/water
(6/4; v/v). The following metabolites were determined:
[U13C]-galactose, [U13C]-Gal-1-P and [13C6]-UDP-galac-
tose. The galactose index (GI) was defined as the ratio of
[U13C]-Gal-1-P/[13C6]-UDP-galactose. For the analysis,
we used a Thermo Scientific ultra-high-pressure liquid
chromatography system (Waltman, MA, USA) coupled to
a Thermo Q Exactive (Plus) Orbitrap mass spectrometer

A

B

1h 2h 4h 7h
0

5×106

1×107

1.5×107

2×107

2.5×107

[U13C]-Galactose

Time (h)

A
re

a
un

d e
r t

h e
cu

rv
e

1h 2h 4h 7h
0

1×108

2×108

3×108

4×108

5×108

[U13C]-Galactose-1P

Time (h)
1h 2h 4h 7h

0

5×106

1×107

1.5×107

2×107

2.5×107

13C6]-UDP-Galactose

Time (h)

1h 2h 4h 7h
0

500

1000

1500

[U13C]-Galactose index

Time (h)

R
at

io

1h 2h 4h 7h
1

10

100

1000

10000

[U13C]-Galactose index

Time (h)

R
at

io
 (l

og
10

)

Control

Patient 3 (classical)
Patient 6 (variant)

C
(a) (b)

Contro
ls

Pati
en

t 4 (va
ria

nt)

Pati
en

t 5 (va
ria

nt)

Pati
en

t 6 (va
ria

nt)

Pati
en

t 1 (cl
as

sic
al)

Pati
en

t 2 (cl
as

sic
al)

Pati
en

t 3 (cl
as

sic
al)

0

20

40

60

80

100

[U13C]-Galactose index

R
at

io

D
***

***

10 fold

Contro
ls

Vari
an

t

Clas
sic

al
0

20

40

60

80

100

[U13C]-Galactose index

R
at

io

Contro
ls

Vari
an

t

Clas
sic

al
0.00

0.05

0.10

0.15

0.20

[13C2]-α-ketoglutarate

Fr
ac

tio
na

lc
on

tr
ib

ut
io

n ***

*

Contro
ls

Vari
an

t

Clas
sic

al
0.00

0.05

0.10

0.15

0.20

[13C2]-Glutamate

Fr
ac

tio
na

lc
on

tr
ib

ut
io

n

***

***

[

Fig. 2 Stable [13C]-labeled galactose metabolism profiling (GMP) analysis: a Fibroblast metabolites of galactose metabolism incubated on different
time points with [U13C]-galactose measured with mass spectrometry. b [U13C]-galactose index (GI) with Y-axis linear (a) and log10 (b). c The GI,
measured after 7 h of incubation in cells of classical patients, variant patients and healthy controls. d Mean of the GI and downstream [13C]-labeled
metabolites after 7 h incubation with [U13C]-galactose in cells of three healthy controls, three variant patients and three classical patients. Each
experiment was performed independently three times. Significance is as follows: controls vs the mean of classical patients ***p < 0.001 and the mean
of variant patients vs the mean of classical patients *p < 0.05, ***p < 0.001
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(Waltman, MA, USA). The autosampler was held at
10 °C during the runs and 5 μL of sample was injected on
the analytical column. The chromatographic separation
was established using a SeQuant ZIC-cHILIC column
(PEEK 100 × 2.1 mm, 3.0 μm particle size, Merck,
Darmstadt, Germany) and kept at 15 °C. The flow rate
was 0.250 mL/min. The mobile phase was composed of (A)
9/1 acetonitrile/water with 5 mM ammonium acetate;
pH 6.8 and (B) 1/9 acetonitrile/water with 5 mM ammo-
nium acetate; pH 6.8, respectively. The LC gradient pro-
gram was: beginning with 100% (A) hold 0–3 min; ramping
3–20 min to 36% (A); ramping from 20 to 24 min to 20%
(A); hold from 24 to 27 min at 20% (A); ramping from 27
to 28 min to 100% (A); and re-equilibrate from 28 to
35 min with 100% (A). The MS data were acquired at full
scan range, 140.000 resolution and in negative ionization
mode. Interpretation of the data was performed in the
Xcalibur software (Thermo scientific, Waltman, MA, USA).

Statistical analysis
Statistical analysis was performed with Prism 7.02
(GraphPad, San Diego, CA, USA). Data are expressed
as the means ± standard deviation (SD). Differences were
evaluated with the one-way ANOVA multiple-comparisons
test. When significant, the post hoc Bonferroni multiple-
comparisons test was used to test differences between
groups for significance. Statistical significance is indicated
as detailed in the figure legends; p-values of ≤0.05 were
considered significant. Isotope labeling correction was cal-
culated using Mathworks Matlab (Natick, US).

Results
Patients
The three classical patients were homozygous for the
common c.563A > G (p.Gln188Arg) mutation. Residual
GALT enzyme activity in erythrocytes was below the
limit of quantification of the enzyme assay in two

patients and severely impaired in the third patient. The
three variant patients had genotypes which were re-
ported in our recent study [16] and had residual GALT
enzyme activities in erythrocytes ranging from 4 to 9%
of the mean of the reference values (Table 1).

Stable [13C]-labeled galactose metabolism profiling (GMP)
For setting up the GMP measurements we compared
three groups (1 classical patient, 1 variant patient and
1 healthy control). [U13C]-galactose and [U13C]-Gal-1-P
was increased in fibroblasts of the classical patient and
variant patient, whereas [13C6]-UDP-galactose was de-
creased in these patients. This increase in [U13C]-Gal-1-P
and decrease in [13C6]-UDP-galactose was time dependent
(Fig. 2a). Furthermore, even the GI, defined as the ratio of
[U13C]-Gal-1-P/ [13C6]-UDP-galactose, changed in time
(Fig. 2b). The difference in GI between the different
groups was most prominent for the shorter incubation
times, however, the variations between the different mea-
surements was the highest at 1 h. We observed that the
most stable measurements were after 7 h of incubation
and therefore we chose this time point as optimal incuba-
tion time (Fig. 2a and b).
The GI was then determined for all groups (3 individ-

uals per group) and was increased in all patients com-
pared to the healthy controls but was significantly higher
in classical patients (p < 0.001) than in variant patients
(10-fold change, one-way ANOVA multiple-comparisons
test not significant) (Fig. 2c and d). These results show
that the GI can be used as a measure of the severity
of the GALT deficiency and residual galactose metab-
olism (Fig. 2c and d).
To establish whether galactose oxidation in fibroblasts

from classical patients is truly fully impaired we also studied
the incorporation of [13C]-labeled in other downstream me-
tabolites including [13C]-labeled α -ketoglutarate and glu-
tamate (Fig. 2d). In fibroblasts of classical patients there

Table 1 Genetic and biochemical characteristics of classical patients and variant patients

Patient Sex Genotype Residual GALT enzyme activity in erythrocytes
in μmol/(h.gram Hb) (reference value or range)

Residual GALT enzyme activity in fibroblasts
in μmol/(h.mg protein) (reference range)

1 Classical M c.563A > G (p.Gln188Arg)/
c.563A > G (p.Gln188Arg)

< 0.5 (18–28) < 0.01 (0.15–0.34)

2 Classical M c.563A > G (p.Gln188Arg)/
c.563A > G (p.Gln188Arg)

< 0.5 (18–28) < 0.01 (0.15–0.34)

3 Classical F c.563A > G (p.Gln188Arg)/
c.563A > G (p.Gln188Arg)

0.25 (19.4)
0.36 (20.6)

< 0.01 (0.15–0.34)

4 Variant F c.563A > G (p.Gln188Arg)/
c.1-96 T > G

1.2 (21.8–44.9) < 0.01 (0.15–0.34)

5 Variant M c.563A > G (p.Gln188Arg)/
c.656 T > A (p.Met219Lys)

2.4 (21.8–44.9) 0.04 (0.15–0.34)

6 Variant M c.382G > A (p.Val128IIe)/
c.382G > A (p.Val128IIe)

3.1 (21.8–44.9) 0.01 (0.15–0.34)
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was essentially no formation of α-ketoglutarate and glutam-
ate from [13C]-labeled galactose (p < 0.001), suggesting that
galactose metabolism is blocked in fibroblasts of classical
patients. In fibroblasts from variant patients however,
α-ketoglutarate and glutamate were formed from [13C]-la-
beled galactose in comparable amounts to those found in
control cells.

Discussion
The aim of this study was to develop a method to provide
more insight into galactose metabolism, which allows
quantitative assessment of residual galactose metabolism
in galactosemia patients. A method for GMP in fibroblasts
using [U13C]-galactose as a substrate was developed,
followed by metabolite analysis with tandem mass spec-
trometry. GMP analysis was performed in fibroblasts of
patients with a classical presentation and a variant presen-
tation of galactosemia.
Our results show that the developed GMP analysis is a

sensitive method allowing discrimination of classical pa-
tients from variant patients, and the latter from healthy
controls. These results indicate that variant patients have
a higher residual capacity to metabolize galactose com-
pared to classical patients and that the GI in fibroblasts
(defined as the ratio of [U13C]-Gal-1-P/[13C6]-UDP-ga-
lactose) can be used as a measure for the severity of the
GALT deficiency and residual galactose metabolism in
galactosemia patients. The differences in GI between the
three groups could already be observed after 1 h of incu-
bation, though less variability between the different mea-
surements and more significant differences between the
groups were seen when measurements were performed
at 7 h after incubation. For this reason, 7 h was chosen as
optimal incubation time. Before implementation in the
diagnostic workup, the developed GMP analysis in fibro-
blasts needs further validation in a larger group of galacto-
semia patients representing the whole clinical outcome
spectrum. It is essential to determine if patients with a
classical presentation, but with different long-term out-
comes, have different profiles of galactose metabolites and
if GMP can thus be used as predictor of outcome.
With the current method for GMP, we could not differ-

entiate [13C6]-UDP-galactose from [13C6]-UDP-glucose
and [U13C]-Gal-1-P from [U13C]-glucose-1-phosphate.
For the current study this is only a small limitation, as the
labeled substrate first has to pass the GALT enzyme be-
fore it can be detected either as [13C6]-UDP-galactose,
[13C6]-UDP-glucose or [U13C]-glucose-1-phosphate. If
the GALT deficiency is more severe, less of the substrate
will pass this step and less [13C6]-UDP-galactose and
[13C6]-UDP-glucose will be detected, which is clear from
the differences between classical patients and variant pa-
tients. A next step in future research will be to dis-
criminate [13C6]-UDP-galactose from [13C6]-UDP-glucose

and discriminate [U13C]-Gal-1-P from [U13C]-glucose-1-
phosphate in this analysis. This may be important because
in classical patients, differences in residual capacities
to metabolize galactose affecting clinical outcome may be
smaller. Furthermore, if [13C6]-UDP-galactose can be sepa-
rated from [13C6]-UDP-glucose, UDP-glucose 4-epimerase
(GALE) deficiency can also be studied.

Conclusions
Galactose metabolites profiling (GMP) in fibroblasts is a
sensitive method to determine residual galactose metabol-
ism capacity which can discriminate between patients with
a classical presentation of galactosemia, patients with a vari-
ant presentation and healthy controls. The results in this
research indicate that variant patients have a higher residual
capacity to metabolize galactose compared to classical pa-
tients. The developed GMP analysis may be a good method
for early prognostication of individuals with GALT defi-
ciency, though this method should be further validated in a
larger group of individuals with several degrees of GALT
deficiency representing the full outcome spectrum.
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