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Abstract
The pandemic, originated by novel coronavirus 2019 (COVID-19), continuing its devastating effect on the health, well-being, 
and economy of the global population. A critical step to restrain this pandemic is the early detection of COVID-19 in the 
human body to constraint the exposure and control the spread of the virus. Chest X-Rays are one of the non-invasive tools 
to detect this disease as the manual PCR diagnosis process is quite tedious and time-consuming. Our intensive background 
studies show that, the works till now are not efficient to produce an unbiased detection result. In this work, we proposed an 
automated COVID-19 classification method, utilizing available COVID and non-COVID X-Ray datasets, along with High-
Resolution Network (HRNet) for feature extraction embedding with the UNet for segmentation purposes. To evaluate the 
proposed method, several baseline experiments have been performed employing numerous deep learning architectures. With 
extensive experiment, we got a significant result of 99.26% accuracy, 98.53% sensitivity, and 98.82% specificity with HRNet 
which surpasses the performances of the existing models. Finally, we conclude that our proposed methodology ensures 
unbiased high accuracy, which increases the probability of incorporating X-Ray images into the diagnosis of the disease.
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Introduction

Previously specified as 2019 novel coronavirus (2019-
nCOV), the Severe Acute Respiratory Syndrome Corona-
virus (SARS-CoV-2) disease (COVID-19) has precipitated 
global outbreak as it is termed as a pandemic by World 
Health Organization (WHO) [1]. It is rapidly disseminat-
ing all over the world since the development of the virus 
in Wuhan, China, at the end of 2019 [2, 3]. Though it was 
reportedly covered about the linkage of the Wuhan animal 
market, pointing out about the animal to human trans-
mission, further studies have suggested human to human 
transmission [4] through droplets and inappropriate social 
distancing. Nevertheless, the virus is transmitting expedi-
tiously, the costliest Polymerase Chain Reaction (PCR) test-
ing and inept isolating process still behind the foundation of 
proper treatment. For that purpose, we have to think of an 
economical and straightforward testing approach by which 
the examining process can escalate with the speed of trans-
mitting to promptly identify and detach the infected person. 
So, it is the most decisive task to defend the proliferation 
as this malignant virus is continuously ravaging the world.
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The convoluted PCR testing method is the only 
approved process of detecting the novel COVID-19 disease 
by WHO. For most of the country, people cannot afford 
this verification cost. As a result, people are dying without 
getting proper treatment because of the fatal virus. Moreo-
ver, the effect of this virus reflects in the major body parts 
including lung, heart, brain, etc. In a study published by 
nature, directly induced lung injury and deteriorate the res-
piratory system [5]. Also, there is a considerable amount 
of feature and observation to distinguish the infected part 
from a lung image. So, it will be beneficial for the society 
and a milestone development if we consider and establish 
a detection model based on the Chest X-Ray (CXR) or CT 
Scan images to classify the COVID-19 disease.

Researchers around the world are continuously trying 
to build a time-efficient and cost-effective model to iden-
tify COVID-19 disease. Investigators are adopting CXR 
and CT Scan images for the classification of the infected 
lung. There is a disparate type of AI-based architec-
tures developed to efficiently recognize the infected lung 
images [6–9]. In the AI-based methods, machine learning 
and deep learning architectures stands out in most of the 
COVID-19 classification tasks [10–12]. But one of the big-
gest hindrances the researchers are facing is a deficiency 
in the dataset. To efficiently train a model, a reasonable 
amount of the subject images is required. But there is an 
insufficient amount of COVID-19 affected lung available 
for the research. So, image processing or machine learning 
model hardly can segregate the COVID and non-COVID 
images. To support this dataset complication, researchers 
are lying towards deep learning architecture because of the 
augmentation and transfer learning approaches [13, 14]. 
Various versions of CNN models such as—Inception Net, 
XceptionNet, ResNet, VGGNet, etc. are the prominent 
architectures that are employed in this research.

Studying the existing classification models, we have 
adopted High-Resolution Network (HRNet) for feature 
extraction. In HRNet, different types of convolutional res-
olutions are linked in a parallel manner. Besides, HRNet 
consists of plentiful interaction across low and high reso-
lution that bolsters its internal representation ability. The 
feature representation of this network is kept up during the 
training process that can prevent the small target informa-
tion loss in the feature map. For vision-based problems, 
like small target segmentation and classification, HRNet 
gives more accurate and definite results because of the 
parallel procedure. In summary, our contributions in this 
research are as follows:

–	 Firstly, we propose a COVID-19 classification method 
based on a high-resolution network for feature extraction, 
provides competing results compared with the existing 
architectures.

–	 Secondly, we integrate UNet for lung segmentation along 
with the HRNet to precisely and accurately classify the 
COVID region. This addition improves the result signifi-
cantly and validates the infected lung region rather than 
the redundant non-relevant areas.

–	 Finally, we conduct a performance comparison with the 
existing advanced models by implementing those mod-
els and evaluating their performance with our proposed 
work. From the experimental results, we can affirm that 
the proposed model accomplishes surpassed the exist-
ing models by accuracy, sensitivity, specificity, and other 
evaluation metrics.

The rest of this paper is organized as follows. In sec-
tion “Related Works”, we provided a study on the related 
works in this area of research. Subsequently, in section “Pro-
posed Model”, we discussed our proposed model which 
consists of a detailed description of our dataset and clas-
sification network. In section “Experimental Analysis”, the 
experimental analysis is presented in detail, followed by the 
performance evaluation. Finally, in section “Conclusion”, 
we concluded this paper with significant future works.

Related Works

Over the years, numerous types of works have been estab-
lished to detect COVID-19 disease from a distinct perspec-
tive. Researchers around the world tried to come up with a 
model that can efficiently classify this disease considering a 
short amount of time. Various transfer learning approaches 
attracted attention because of insufficient amount of 
COVID-19 affected lung images [15–17]. In this section, 
a study on the existing works on COVID-19 classification 
will thoroughly describe with appropriate characterization 
and depiction.

Apostolopoulos et  al. [14] proposed an architecture 
based on transfer learning for the feature extraction. First, 
the authors tried to employed a CNN model to extract the 
feature of a different nature that is called pre-trained (only 
used for feature extractor) the CNN model. This was done by 
operating the transfer learning for feature extraction. After 
that, the extracted features were fed into a particular network 
for classification purposes. Though the author accomplished 
exceptional result but the author did not focus on handling 
the negative transfer.

Borghesi et al. [18] introduced a Chest X-Ray (CXR) 
scoring system named as Brixia score to determine the out-
come (recovery or death). Dividing the lungs into six zones 
with the aid of frontal chest projection, the authors assigned 
four scores (Score 0: no abnormalities to Score 3: alveolar 
predominance or critical condition). Then the six scores for 
the six divided zones were aggregated to obtain the final 
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score ranging from 0 to 18. For validation, weight kappa 
(kw) , confidence interval (CI) and P-values were calculated. 
Although the scoring system is a unique way to identify 
the disease, the experiment should apply to a considerable 
amount of CXR images.

Leveraging the multi-resolution capabilities of the incep-
tion module, Das et al. [19] built a truncated inception net 
architecture associating with the adaptive learning rate pro-
tocol. In this model, kernels of disparate receptive fields 
were executed in a parallel manner for feature extraction. 
Then, the extracted features were deformed depth-wise to 
obtain the final output. Because of the diminutive dataset, 
used in the architecture, the inception net is truncated at 
some particular point of the model. An accuracy of 99.92% 
was achieved classifying COVID-19 cases combining with 
the pneumonia cases.

A COVID-19 detection model considering multi-class 
and hierarchical classification was developed by Pereira et al. 
[20]. Working on the natural data imbalance, a resampling 
algorithm for rebalancing the class distribution was oper-
ated. For feature extraction, Inception V3, Local Binary Pat-
tern (LBP), Local Phase Quantisation (LPQ), Local Direc-
tional Number pattern descriptor (LDN), Locally Encoded 
Transform Feature Histogram (LETRIST), Binarized Sta-
tistical Image Features (BSIF), etc. model was employed. 
Early and late fusion techniques were leveraged to the 
feature descriptor algorithms. Then, the author introduced 

the resampling operation to rebalance the distribution of 
the multi-class: flat and hierarchical. A macro-average F1 
score of 0.65 and 0.89 was achieved using the multi-class 
approach and the hierarchical classification respectively. In 
an unbalanced environment, this architecture stands out in 
the relative existing works.

A 19-layer CNN architecture was proposed by Ozturk 
et al. [21] for the binary COVID-19 classification. The 
authors also covered the multiclass problem by assimi-
lating the Pneumonia with the COVID and No Finding 
class. DarkNet-19, adopted by the author, is based on the 
prominent real-time object detection model YOLO. In the 
proposed model, a total of 17 layers were built by a 2D 
Convolutional layer of different dimensions and trainable 
parameters, one Flatten and one Linear layer. Each of the 
Convolutional Layer was developed followed by batch 
normalization and LeakyReLU operation. An accuracy of 
87.02% for multi-class cases and 98.08% for binary classes 
was attained by the authors. A highly diverse and long-rang 
selective connective method was proposed by Wang et al. 
[22]. The machine-driven design strategy is leveraged by 
generative synthesis [23]. A PEPX module (conv1 × 1 + 
conv1 × 1 + DWconv3 × 3 + conv1 × 1 + conv1 × 1 ) was 
assembled with general convolutional, flatten and fully 
connected layers. Finally, softmax was used for classifica-
tion purposes. Though an accuracy of 93.3% was achieved 
operating this network, the long-range connections in the 

Table 1   Analysis of the existing COVID-19 classification works

Method Image and dataset Performance

Transfer Learning [14] 1. 1427 (COVID-19: 224, Pneumonia: 700, Normal: 504) 1. Accuracy: 96.78%
2. 1442 (COVID-19: 224, Pneumonia: 714, Normal: 504)
[27], (RSNA), Radiopaedia, and (SIRM)

2. Sensitivity: 98.66%
3. Specificity: 96.46%

Brixia Scoring System [18] COVID-19: 100 (Departmental Archieve) k
w
 : 0.82; CI: 95%

Truncated Inception Net [19] 1. COVID-19: 162 Accuracy of 99.96% (AUC of 1.0)
2. Pneumonia 4280 + 1583
3. TB (China) 342 + 340 and TB (USA) 58 80 [27–29]

Flat and Hierarchical classification [20] 1144 CXR images [27, 30] F1-Score of 0.89
DarkNet + YOLO [21] COVID-19: 127, Pneumonia: 500, Normal: 500 [27, 30] Accuracy: 98.08% and 87.02%
COVID-Net [22] 13,975 CXR images [27, 31, 32] Accuracy: 93.3%
ResNet and InceptionNet [24] COVID-19: 50, Normal: 50 [27] Accuracy: 97%, 87%
VGG19, DenseNet [33] 50 CXR images with 25 COVID-19 cases [27] Accuracy: 90%, 90.01%
Anomaly Detection [34] 1431 images (COVID-19: 100) [35] Accuracy: 96.00% COVID-19 and 

70.65% non-COVID-19
DeTraC CNN [36] 80 Normal, 105 and 11 samples of COVID-19 and SARS 

[27], JSRT
Accuracy: 95.12%

Modified AlexNet [37] 85 X-ray and 203 CT (BSTI) Accuracy: 98% and 94.1% (pre-trained)
Capsule Network [38] ImageNet dataset for pre-training Accuracy: 98.3% and 95.7% (pre-trained)
Nine-layer DNN [25] Cohen et al. [27] Accuracy: 96.28%
Shallow CNN [26] Cohen et al. [27] and Mooney [28] Accuracy: 99.69%
Majority vote-based Ensemble [39] Cohen et al. [27], Montgomery Set [40], and NIH [30] Accuracy: 98.062%
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densely-connected DNN produce memory overhead. Also, 
the architecture is computationally expensive for the long-
range connections in the network. Moreover, heterogeneous 
incorporation of convolutional layers with different kernels 

and grouping configurations, heavily affect the interconnec-
tion and operation of the architecture.

Narin et al. [24] worked with the pre-trained models 
such as—ResNet50, InceptionV3 and Inception-ResNetV2. 
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Fig. 1   Proposed model to classify COVID-19 disease using HRNet

Fig. 2   A class distribution representation of the public repository
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Because of the diminutive amount of data, transfer learning 
was incorporated to overcome the training time and defi-
ciency in the dataset. Firstly, the input images were fed into 
the pre-trained models integrated with the transfer learning. 
Secondly, in the training phase, Global Average Pooling, 
Fully Connected Layer with ReLU was employed. Finally, 
the authors concluded with a fully connected layer with soft-
max for the final classification. The model achieved 97%, 

98% and 87% accuracy respectively by operating Incep-
tionV3, ResNet50 and Inception-ResNetV2 architecture. 
Nevertheless, transfer learning was incorporated with the 
model for the deficiency in the dataset, the model overfits 
with the data.

Working on both imaging systems (CT Scans and Chest 
X-rays), Mukherjee et  al. [25] proposed a Deep Neural 
Network (DNN) model to detect COVID-19 disease. The 

Table 2   Dataset preperation

Dataset name Number of images Image characteristics Selection criteria

COVID Public Repository 472 Variable size, brightness, contrast All COVID images.
NIH Chest X-Ray 1000 Constant size of 1024 × 1024, Uniform No findings, age threshold, 

random selection, without 
any medical equipment

ChexPert 1000 Variable size, resized to 256 × 256 No findings, age threshold 
> 18, random selection, 
without any medical 
equipment

Fig. 3   Variations observed in COVID dataset [a side view, b washed out, c color issue, d and e markers, f and g medical equipment]
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authors structured a Nine layer DNN architecture by incor-
porating convolutional, max pooling, and dense layers. 
Employing this DNN model on 672 images (336 CXR and 
336 CT Scans), the authors achieved 96.28% as overall accu-
racy with 98.08% as AUC and 2.08% as False Negative Rate. 
To efficiently validate the experimental result, this model 
is evaluated on 10-fold cross-validation which ensures that 
each of the images is considered for training and testing at 
least one time. Another deep learning COVID-19 model is 
proposed by Mukherjee et al. [26], concentrating on Shal-
low Convolutional Neural Network—consists of four lay-
ers. This model is a lightweight CNN architecture—trained 
with fewer parameters which reduce the time complexity by 
focusing on the meticulous lung affected areas (features). 
The authors validated their proposed model on 321 COVID-
19 affected CXR images, with 5856 non-COVID-19 affected 
images. Considering a possible bias, the authors adopted 
a 5-fold cross-validation technique and achieved 99.69% 
accuracy.

From the studied research works, we have summarized 
the methods, datasets and performance in Table 1. Though 
these deep learning methods worked well on this classifica-
tion, there is a high chance of biasness and oversampling in 
the learning process for an insufficient number of images. 
Also, the feature information needs to incorporate in each 
and every layer on high-to-low and low-to-high upsampling 
processes which is not integrated with the existing model. 
To overcome these difficulties, High-Resolution Network 
(HRNet) is employed for feature extraction of this classifica-
tion. Moreover, in the existing models, researchers did not 
focus on the segmentation as it plays a critical role to train an 
architecture. We should exclude the redundant area of a lung 
image to efficiently work on the infected lung portion only. 
For that purpose, we have integrated UNet architecture for 

segmentation purposes. In summary, we have built a unique 
and unprecedented COVID-19 detection architecture based 
on UNet (segmentation purpose) and HRNet (feature extrac-
tion purpose).

Proposed Model

In this section, we briefly discussed our approaches to data 
pre-processing, proposed research methodologies with 
proper illustration and characterization. To build this model, 
we have explored several pre-processing and classification 
techniques including supervised machine learning, deep 
learning, and transfer learning. In the extant research on 
COVID-19 detection, supervised learning focuses on the 
binary classification (COVID vs. Non-COVID) or a multi-
class classification (COVID vs. Pneumonia vs. Normal lung 
conditions) [41]. Studying these existing works and consid-
ering the drawbacks described in the literature review, we 
have introduced HRNet [42] for feature extraction embed-
ded with UNet [43] for segmentation purposes. Firstly, this 
segmentation process has been introduced because COVID 
CXR images that are publicly available contain several 
redundant marks, lung regions cropped, shifted to different 
directions, etc. After that, for feature selection, HRNet has 
been introduced in the field of COVID-19 detection from 
CXR images. HRNet has the capability of avoiding small 
features from the images. After feature selection, a classi-
fication head, created of a fully connected neural network 
has been used to classify COVID vs. Non-COVID images. 
Furthermore, a standard dataset is developed for COVID 
detection from chest X-ray images from several public data 
sources. These data sources are updated every day and giv-
ing researchers opportunities to focus more on COVID 

Fig. 4   Image comparison of COVID and non-COVID dataset [a COVID dataset, b NIH dataset, and c ChexPert dataset]
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detection from CXR images. A depiction of the proposed 
architecture is illustrated in Fig. 1. Following, we thoroughly 
described the related steps of the proposed method.

Dataset Collection and Preperation

The dataset for the classification purpose is built by assem-
bling images from several acknowledgeable sources. 
Firstly, the COVID-19 CXR dataset that has been used in 

our experiment is collected from the public repository of 
GitHub [27]. As of July 03, 2020, this repository contains 
759 images. In Fig. 2, the class distribution of the public 
repository is depicted. In this public repository, 521 images 
are labeled as COVID-19 and 12 images are labeled as 
Acute Respiratory Distress Syndrome (ARDS) COVID-19. 
A total number of 533 images from the repository were 
collected from this source for our primary COVID-19 data-
set. Though this is the most prominent repository since 

Fig. 5   Image comparison used in lung segmentation [a COVID dataset, b Montgomery dataset, and c Shenzen dataset]

Fig. 6   Segmented region after 
dilation and closing apply UNet 
architecture
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the beginning of the research in COVID-19 classification, 
there are some shortcomings in the images. One of the 
particular drawbacks can be exemplified as—this collection 
contains images from several publicly available resources 
such as websites and pdf formats. As a result, these images 
are in variable size and quality. Also, there are few side 
view images where the majority of the images belong to 
frontal views. Moreover, some images have color issues, 
contain markers, etc. In Fig. 3, four examples of COVID-19 
images are depicted acknowledging the issues—side view 
(Fig. 3a), washed out (Fig. 3b), color issue (Fig. 3c) and 
markers (Fig. 3d).

For non-COVID or normal images, we have collected 
images from the National Institute of Health (NIH) Chest 
X-Ray [30] which contains 108,948 frontal view X-ray 
images with 14 condition labels including normal condi-
tion and pneumonia of 32,717 unique patients. Unlike the 
COVID dataset, these images are not of variable dimensions. 
All of the images are resized to 1024 × 1024 in portrait 
orientation. As most of the images from the COVID dataset 
belongs to adult patients, we have applied an age threshold 
of 18 years or older on normal condition images to keep 
the X-Ray image condition as similar as possible. We also 
explored the ChexPert [44] which contains 224,316 chest 
radiographs. This dataset contains 14 labeled observations of 
65,240 patients where the number of Normal (non-COVID) 
images are 16,627. In Table 2, we have summarized the 
properties of the final dataset created for the evaluation of 
our proposed architecture.

As described earlier, COVID images contain lateral 
X-ray images, taken from PDF files, marked images (Fig. 3d 
and  e), etc. Firstly, we removed these images from the 
COVID dataset as there is a possibility that these images can 
make the classifier biased. Secondly, in NIH and ChexPert 

datasets, some images contain medical equipment (Fig. 3f 
and g) which creates redundancies and abnormalities in 
times of training the model. Hence, these types of images 
are excluded from the main data repository. But still, most 
of the images contain several marks around the lungs area. 
To avoid these marks, we segmented the lung area from 
the images. In the next section, we described the process 
of lung segmentation and pre-processing the images and 
finally creating a practical COVID dataset for our experi-
ment. In Fig. 4, a comparison between a single random 
image collected from COVID, NIH, and ChexPert dataset 
is illustrated. Furthermore, we aggregated Normal images 
from NIH and ChexPert dataset as it looks similar.

Lung Segmentation

For our primary purpose, all the datasets mentioned above 
do not contain any annotation for the lung area. Thus to 

Fig. 7   Sample images after augmentation

Table 3   Image augmentation parameters

Process Values Probability

Scale X-axis—(0.8–1.1)
Y-axis—None

1

Rotate Angle – (− 45, 45) 1
Shear X-axis—(− 0.2, 0.2)

Y-axis—None
0.7

Padding 512 1
Center crop 512 1
Gamma correction 0.5–3 1
Salt and Pepper noise 0.01 0.3
Blur 0.5 Kernel size = (11, 11) 0.5
Random noise 0.5 0.3
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segment the lung data, we collect dataset that has lung area 
annotated and train the UNet [43] from scratch. Belongs to 
the semantic segmentation category, UNet was solely cre-
ated for medical image segmentation and also proven its 
worth in recent segmentation tasks. Another great feature 
of UNet is it can make a strong usage of augmented data, 
contracting and symmetric path-based architecture enables 
precise localization.

Assembled upon the Fully Connected Network (FCN), 
UNet is symmetric and consists of a skip connection 
which provides information from local to global network 
while upsampling. As a consequence of the symmetric-
ity, this network has an extended number of feature maps 
in the intermediate connection that allows transferring 
the information. There are three distinct parts of the 
UNet—Downsampling path (Contraction), Bottleneck, 
and Upsampling path (Expansion). While the Contract-
ing path is established by the basic convolutional process, 
the Extracting path is constituted with transposed 2D con-
volutional layers.

For this segmentation task, we collected a dataset from 
Jaeger et al. [45]. This dataset contains a total number of 800 
frontal X-ray images from the Montgomery County chest 
X-ray dataset of the Department of Health and Human Ser-
vices, Montgomery County, Maryland, USA (138 images), 
and Shenzen chest X-ray dataset of Guangdong Medical 
College, Shenzen, China (662 images). Chest X-ray data-
sets from these sources are visually similar to the dataset 
of 2472 images which we have selected for our COVID 
detection task. A side by side comparison with our COVID 

dataset images and segmentation dataset images is depicted 
in Fig. 5.

Every image of the Montgomery dataset is either 4020 × 
4892 pixels or 4892 × 4020 pixels. Images from the Shenzen 
dataset are variable but approximately 3000 × 3000 pixels. We 
resized these images and their corresponding lung masks to 
512 × 512 pixels to train our model. Moreover, augmentation is 
done on the images and their corresponding masks to take the 
advantages of the UNet model. The augmentation procedure 
and parameters are described in the dataset augmentation sec-
tion and the training process with the parameters is explained 
in the “Experimental Analysis” section. After training the 
UNet model with this segmentation dataset, we used the oper-
ating weights to get segmented lung images from the COVID 
dataset. Furthermore, the UNet model provides a prediction 
mask for every image. Hence, we applied dilation operation 
for 8 iterations and 2 iterations of closing operation on the 
predicted masks to gain more information from the edges of 
the lungs. To ensure the quality of the segmentation, we then 
applied a region-based threshold to distinguish the pixels. For 
every image, we got several segmented regions then calculate 
the total area of these segmented regions for image and apply a 
threshold of 50,000 pixels to ensure the quality. This threshold 
value was chosen by trial and error and observing the output 
from the segmentation model. After applying an area threshold 
to these segmentations, we finally got our COVID dataset. Our 
final COVID dataset consists of 410 COVID images and 500 
non-COVID images from NIH and the ChexPert dataset. The 
working procedure of this segmentation method is summarized 
in Algorithm 1 (Fig. 6).

Fig. 8   A general architecture of HRNet for feature extraction
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Data Augmentation

For a better generalization of the classification model, we 
augmented both the segmentation dataset for the UNet 
model and the pre-processed segmented COVID dataset. 
In both cases, we applied the same set of augmentation 
such as scaling, padding, crop, rotation, gamma correction, 

slight Gaussian blur, random noise, salt and pepper noise, 
etc. based on a probabilistic value. Figure 7 demonstrates 
the output of image augmentation. In Table 3, we have 
discussed the parameters of augmentation. These param-
eters were used for both the segmentation dataset and the 
COVID dataset. All of these parameters were selected 
empirically.

Classification with HRNet

For feature extraction, High-Resolution Net (HRNet) [42] 
is a state-of-the-art neural network architecture. In most 
of the recent HRNet adopted architecture, it is used as the 
backbone of the proposed models. Considering the two 
approaches—Top-Down and Bottom-Up, HRNet followed 
the top-down approach because it detects the subject first, 
establishes a bounding box around the subject, and then 
estimate the significant feature. Moreover, HRNet relies on 
continuous multi-scale fusions instead of a single high-to-
low upsampling process. In the following, a brief description 
of the HRNet architecture is characterized.

The fundamental working procedure is it calculates lower 
resolution and higher resolution sub-network parallelly. 
Then, these two networks coalesced together by a fuse layer 
for the purpose to assemble and interchange information 

Fig. 9   This figure visualizes some sample heatmaps (blue shade rep-
resents the focus region) of corona positive detection by the classifier. 
But as we can see in the figure, most of the focused regions redun-

dant, not significant, erroneous and somewhat can produce a biased 
result in times of classification
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Table 4   UNet configuration Layer Parameters Activation Output shape

Input – – 512 × 512 × 1
Conv2d_1a 512 × 512 × 1 ReLU 512 × 512 × 32
Conv2d_1b 512 × 512 × 32 ReLU 512 × 512 × 32
MaxPooling2d_1 512 × 512 × 32 – 256 × 256 × 32
Conv2d_2a 256 × 256 × 32 ReLU 256 × 256 × 64
Conv2d_2b 256 × 256 × 64 ReLU 256 × 256 × 64
MaxPooling2d_2 256 × 256 × 64 – 128 × 128 × 64
Conv2d_3a 128 × 128 × 64 ReLU 128 × 128 × 128
Conv2d_3b 128 × 128 × 128 ReLU 128 × 128 × 128
MaxPooling2d_3 128 × 128 × 128 – 64 × 64 × 128
Conv2d_4a 64 × 64 × 128 ReLU 64 × 64 × 256
Conv2d_4b 64 × 64 × 256 ReLU 64 × 64 × 256
MaxPooling2d_4 64 × 64 × 256 – 32 × 32 × 256
Conv2d_5a 32 × 32 × 256 ReLU 32 × 32 × 512
Conv2d_5b 32 × 32 × 512 ReLU 32 × 32 × 512
Conv2D_trans_1 32 × 32 × 512 – 64 × 64 × 256
Concatenate Conv2D_trans_1, Conv2d_4b
Conv2d_6a 64 × 64 × 512 ReLU 64 × 64 × 256
Conv2d_6b 64 × 64 × 256 ReLU 64 × 64 × 256
Conv2D_trans_2 64 × 64 × 256 – 128 × 128 × 128
Concatenate Conv2D_trans_2, Conv2d_3b
Conv2d_7a 128 × 128 × 256 ReLU 128 × 128 × 128
Conv2d_7b 128 × 128 × 128 ReLU 128 × 128 × 128
Conv2D_trans_3 128 × 128 × 128 – 256 × 256 × 64
Concatenate Conv2D_trans_3, Conv2d_2b
Conv2d_8a 256 × 256 × 128 ReLU 256 × 256 × 64
Conv2d_8b 256 × 256 × 64 ReLU 256 × 256 × 64
Conv2D_trans_4 256 × 256 × 64 – 512 × 512 × 32
Concatenate Conv2D_trans_4, Conv2d_1b
Conv2d_9a 512 × 512 × 64 ReLU 512 × 512 × 32
Conv2d_9b 512 × 512 × 32 ReLU 512 × 512 × 32
Conv2d_10 512 × 512 × 32 ReLU 512 × 512 × 1

Fig. 10   Training and validation curves after training the UNet architecture



	 SN Computer Science           (2021) 2:294   294   Page 12 of 17

SN Computer Science

from each of the sub-network with each other. Consist-
ing of four parts, each of the parts is built with repeating 
modularized multi-resolution sections [42]. Each section 
consists of a group convolution supporting the multi-res-
olution properties. A multi-resolution convolution can be 
constructed with the aid of regular convolution wherein a 
regular convolution, the input, and output layers are con-
nected in a fully-connected approach [46]. The subnetworks 
follow these properties to aggregate their multi-resolution 
attributes. In this way, the subnetwork gains global high-
resolution representations. A representation of the employed 
HRNet architecture is depicted in Fig. 8. The working pro-
cedure of feature extraction using HRNet and classification 
is compiled in Algorithm 2.

Experimental Analysis

Computing Infrastructure

This whole experiment was conducted on a device with 
Ryzen 7 3700X processor, NVIDIA GeForce RTX 2070 
Super GPU, 16 GB 3600 MHz RAM, and Samsung Evo 
970 m.2 SSD.

Dataset Segmentation

To make an accurate detection, the classifiers need to focus 
on the lung regions properly. Our previous experiments 

Table 5   Hyper-parameter setup

Hyper-parameter Trained range Selected value

Learning rate 0.1–0.05 0.01
Learning rate factor 0.01–0.2 0.1
Learning rate step – 30, 60, 90
Weight decay 0.001–0.0001 0.0001
Optimizer Adam, SGD SGD
Batch Size – 8
Epoch – 25

Table 6   Performance analysis of the proposed architecture

Fold number Testing 
accuracy 
(%)

Testing 
specificity 
(%)

Testing sen-
sitivity (%)

F1-Score

1 98.78 98.03 97.56 98.76
2 100.0 100.0 100.0 100.0
3 98.78 98.03 97.56 98.76
4 98.78 98.03 97.56 98.76
5 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0
7 100.0 100.0 100.0 100.0
8 98.78 98.03 97.56 98.76
9 100.0 100.0 100.0 100.0
10 97.56 96.15 95.12 97.49
Average 99.26 98.82 98.53 99.25



SN Computer Science           (2021) 2:294 	 Page 13 of 17    294 

SN Computer Science

without segmentation (Fig. 9) shows that despite having high 
accuracy on training and validation set, the focus region of 
the classifiers often deviate to outside of lungs which may 
lead to a false prediction. To address this issue, we seg-
mented our dataset and kept only the lung portion from the 
X-ray images.

Only lung areas are collected to create a clean dataset 
without any redundant markers and flaws in the image. To 
collect these lung areas from the primary dataset of 2472 
images, the UNet model was trained on Montgomery and 
Shenzen dataset. This dataset has 800 images and to train 
UNet KFold (10-fold) cross-validation is used. For validat-
ing the experimental results, the 10-fold cross validation 

technique is adopted considering a possible bias. Further-
more, 10-fold cross-validation technique ensures that each 
images (COVID and non-COVID) is considered for train-
ing and testing purpose at least once in the experiment 
cycle. In this dataset, two corresponding masks, one for 
the right lung and one for the left lung contains for one 
CXR image. At first, two lung images were combined to 
make one corresponding mask for each CXR image. These 
images are then employed to train the UNet model. For the 
loss function, a Dice coefficient loss is used to get crisp 
borders. This loss function has been introduced by Mil-
letari et al. [47] in their research of 3D volumetric image 
segmentation. Dice loss originates from Sørensen–Dice 

Fig. 11   Classification Head

Fig. 12   Confusion matrix after training the proposed model
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coefficient which is a statistical method developed in 1940. 
Given dice coefficient D, it can be written as

where Pi and Gi represent the pixels of prediction and ground 
truth respectively. In edge detection, the values of Pi or Gi 
is either 0 or 1. That means if two sets of pixels overlap 
perfectly the D reaches its maximum value to 1, otherwise it 
decreases. By using dice loss, two sets of predicted edge and 
ground truth edge are trained to overlap gradually. After that, 
traditional cross-entropy loss calculates the average of per-
pixel loss where the per-pixel loss is calculated discretely 
here without knowing if the adjacent pixels are edges or not. 

(1)D =
2
∑N

i
pigi

∑N

i
p2
i
+
∑N

i
g2
i

As a result, it is not enough for image-level prediction. Dice 
loss provided better results in our lung segmentation using 
UNet. The model was trained for 25 epochs for each fold 
with a learning rate of 0.005, and a custom dice coefficient 
loss function with a grayscale input image of size 512 × 512 
pixels. Table 4 shows the input, output, and layer configura-
tion used for UNet.

As mentioned above, UNet is trained for 10-folds, 25 
epochs for each fold, and the dice coefficient loss func-
tion is used. The learning rate is selected by train and 
error process and images are augmented according to the 
configuration described in the augmentation section. Fig-
ure 10 shows the average training accuracy, training loss, 
average validation accuracy, and average validation loss 
for 10-folds.

Fig. 13   Heatmaps in a visualize some sample for positive detection and in b represent corona negative detection. As we can see, the lung regions 
are accurately focused (blue shade represents the focus region) by the classifier after training with segmented data

Table 7   Performance 
comparison with the existing 
models

Model Segmentation Testing accu-
racy (%)

Testing specific-
ity (%)

Testing sensitiv-
ity (%)

F1-Score

ResNet152 No 97.80 98.00 97.56 97.56
DenseNet121 98.90 96.00 98.00 98.98
HRNet 100.0 100.0 100.0 100.0
ResNet152 Yes 94.50 94.00 95.12 93.97
DenseNet121 93.40 96.00 90.24 92.49
HRNet 99.26 98.82 98.53 99.25
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After training the model, the weights are applied on the 
COVID dataset to remove redundant areas from chest X-ray 
images and to get lung areas. This segmented dataset is used 
for training the HRNet and get classification results from 
the classifier.

Feature Extraction and Training Procedure

In this section, the training procedure of feature extrac-
tion using HRNet and classification been discussed briefly. 
HRNet has the capability of avoiding the loss of small tar-
get information in the feature map due to its convolutions 
being connected in parallel and high-resolution feature 
representation. To train the model, the segmented COVID 
dataset of 910 images is used. This dataset contains 410 
lungs segmented COVID images and 500 lung segmented 
non-COVID images. For training purposes, 10-fold cross-
validation is used. The model showed better accuracy 
for learning rate 0.01, weight decay 0.0001, momentum 
0.8, learning rate factor 0.1, learning rate step 30, 60, 
90. Stochastic gradient descent and binary cross-entropy 
loss functions are used. These parameters were chosen 
by observing the performance and evaluating the model 
progressively (Table 5). The performance analysis of the 
model is shown in Table 6 for each fold. Using the KFold 
algorithm, first, the dataset is divided into 10-folds where 
1-fold is kept for testing. The other 9 folds are used for 
training purposes.

In summary, HRNet has been used as the backbone of 
our classification model to extract features from images. 
These features are then passed through several fully con-
nected layers which are defined as a classification head. The 

parameters of this classification head such as the number of 
layers, dropout, activation function, regularization, etc. were 
selected by trial and error method. The configuration of the 
classification head is given in the Fig. 11. Furthermore, for 
performance evaluation, if the number of True Positive, True 
Negative, False Positive and False Negative denoted by TP, 
TN, FP, and FN respectively, then the three adopted evalu-
ation matrices which are as follows:

In Table 6, the average of the testing accuracy, sensitivity 
and specificity for the 10-folds is characterized. We have 
accomplished 99.26% testing accuracy, 98.53% of testing 
sensitivity and 98.52% of testing specificity. Furthermore, 
we depicted the confusion matrices of worst and best cases 
in Fig. 12. In the worst confusion matrix (Fig. 12a), 39 
and 50 testing images correctly classified as COVID and 
non-COVID respectively whereas only two images are 
falsely classified. But, in Fig. 12b, all the testing images 
are accurately classified as COVID and non-COVID which 
represents the best confusion matrix. We have also success-
fully eradicated the issue of false-focused region detection 

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP

Fig. 14   Confusion matrix after training the existing models
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through segmentation. Figure 13 shows the heatmaps of cor-
rectly classified regions.

Comparative Analysis

We trained our model both with segmented and non-seg-
mented data. We have compared the performance of the pro-
posed model with the existing adopted models. Two exist-
ing prominent architecture—ResNet152 and DenseNet121 
are implemented for the comparison purpose. We achieved 
the superlative result in each of the terms of the evaluation 
metric—Accuracy, Testing Specificity, Sensitivity, and F1 
Score—by comparing our proposed model with these trained 
architectures. HRNet achived a high accuracy of 100% (with 
non-segmented data) and 99.26% (On Segmented Data) 
respectively. In Table 7, we have summarized the existing 
model’s performance comparison with our proposed model. 
In Fig. 14, a depiction of the optimal confusion matrix of the 
existing trained model is illustrated.

Conclusion

In this study, we use a segmented X-ray dataset, as extensive 
experiments show that, with a non-segmented dataset, clas-
sifiers may focus outside of the lung region which can lead 
to false classification results. Meanwhile, we also evaluate 
some state-of-the-art recognition methods on our dataset. 
The result demonstrates that HRnet performs the best among 
the others with 99.26% accuracy, 98.53% sensitivity, and 
98.82% specificity. The proposed model is fully automated 
without any need for manual feature extraction. Moreover, 
to ensure a production-ready solution, we broadly investigate 
the results and focus regions of the classifiers and our experi-
mental results show the robustness of our proposed model 
to focus on the right region and classify. To conclude, this 
model can be used to help the radiologist to make clinical 
decisions, due to its unbiased high-accuracy and correctly 
identified focus region. We hope that our proposed method-
ology is a step towards the possibility of lessening the false 
positive detection from X-Ray images.

However, in terms of data, we are still in the primary 
level of the experiment. As the number of patients increas-
ing around the world and the symptoms and formation of the 
virus are changing day by day, with the continuous collec-
tion of data, we intend to extend the experiment further and 
enhance the usability of the model.
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