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Many sensory systems utilize parallel ON and OFF pathways that
signal stimulus increments and decrements, respectively. These
pathways consist of ensembles or grids of ON and OFF detectors
spanning sensory space. Yet, encoding by opponent pathways
raises a question: How should grids of ON and OFF detectors be
arranged to optimally encode natural stimuli? We investigated
this question using a model of the retina guided by efficient cod-
ing theory. Specifically, we optimized spatial receptive fields and
contrast response functions to encode natural images given noise
and constrained firing rates. We find that the optimal arrange-
ment of ON and OFF receptive fields exhibits a transition between
aligned and antialigned grids. The preferred phase depends on
detector noise and the statistical structure of the natural stim-
uli. These results reveal that noise and stimulus statistics produce
qualitative shifts in neural coding strategies and provide theoreti-
cal predictions for the configuration of opponent pathways in the
nervous system.
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Across many sensory systems, neurons encode information
about either increments or decrements of stimuli in the

environment, so-called ON and OFF signals. This division
between ON and OFF signaling has been observed in visual
(1, 2), thermosensory (3), auditory (4), olfactory (5), and elec-
trosensory (6) systems. This organization has the advantage that
neurons can be tasked with signaling increments or decrements
in steady-state stimulus levels with fewer spikes, thereby result-
ing in more efficient neural codes (7, 8). Moreover, when the
number of potential stimuli is large, neurons often specialize; for
example, they only respond to a small region of visual space or a
narrow auditory frequency band. The combination of these cod-
ing strategies raises two questions. First, how should a particular
set of detectors, either the ON or OFF cells, arrange themselves
most efficiently to cover stimulus space? Second, what is the
optimal relative arrangement of ON and OFF detector grids?
For one system, the retina, the answer to the first question is
clear from previous work: Detectors of a particular type tile
stimulus space and exhibit overlap near the 1-sigma boundary
of a Gaussian receptive field (9–13). The answer to the second
question, what might be called the “sensor alignment problem,”
has received comparatively little attention and is the focus of
this study.

Conceptually, there are three general possibilities for how the
sensor alignment problem could be solved. One possibility is that
the grids of sensors are statistically independent, meaning the
locations of receptive fields in one grid provide no information
about the receptive field locations in the other grid. A second
possibility is that the two grids are aligned, meaning the recep-
tive field centers in one grid are closer than expected by chance.
The third possibility is that the two grids are antialigned, meaning
the receptive field centers in the two grids are further apart than
expected by chance. On general information theory grounds, the
optimal solution is likely to depend on noise in the encoding
process and the statistics of the encoded stimuli (14, 15).

While most anatomical studies of retinal mosaics indicate
they are statistically independent (16–18, but see ref. 19), we

have recently shown that grids of ON and OFF receptive field
(henceforth called “mosaics”) formed by retinal ganglion cells
(RGCs) are antialigned when those cells encode similar visual
features (20). Here, we show how these results can be explained
through the lens of efficient coding theory (7). This theory
argues that sensory systems should aim to reduce the redun-
dancy present in sensory input while minimizing metabolic costs,
thereby reliably encoding natural stimuli with fewer spikes. Effi-
cient coding theory has been successful at explaining many
aspects of sensory processing and retinal physiology, includ-
ing center-surround receptive fields, the formation of mosaics,
and a greater proportion of OFF than ON cells (7, 11, 15, 21,
22). Thus, we asked whether efficient coding theory might pre-
dict the optimal spatial arrangement of ON and OFF receptive
field mosaics within the retina. Our approach to this question
involved optimizing a model that approximates the processing
performed by many RGCs (21). By maximizing the mutual infor-
mation between an (input) library of natural images and (output)
spike rates, we examined the effects of image statistics and
encoding noise on the optimal arrangement of ON and OFF
mosaics.

In this model, we found that the optimal spatial arrangement
was a pair of approximately hexagonal mosaics of ON and OFF
receptive fields. However, surprisingly, the relative alignment
of these mosaics depended on the input noise, output noise,
and the statistics of the natural image set. When output noise
was low, the mosaics were aligned, with ON and OFF receptive
fields centered at nearby locations more often than expected by
chance. When output noise was relatively high, antialignment
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became the favored arrangement. Surprisingly, the content of
the image set also strongly influenced the transition between
aligned and antialigned mosaics. In particular, when image sets
contained more “outlier” images with particularly large lumi-
nance or contrast values, antialignment became the favored state
for fixed input and output noise. We demonstrate analytically
and confirm computationally that as noise parameters or stim-
ulus statistics vary, mutual information changes smoothly, while
the optimal mosaic arrangements undergo a sudden, qualitative
shift. Finally, we confirm these predictions by showing that sys-
tematic manipulations of the training dataset change the phase
boundary in a manner predicted by an analytical model. These
findings underscore the crucial role played by both noise and the
statistics of natural stimuli for understanding specialization and
coordination in sensory processing.

Methods
Linear–Nonlinear Efficient Coding Model. The model used to examine effi-
cient coding is based on previous work (21), designed to find the optimal
encoding of visual scenes. The model takes patches of natural scenes (23)
as the input, each of which has 18× 18 (324) pixels. Each input image was
multiplied by a circular mask to avoid cases in which corners in the optimiza-
tion region produce corner artifacts that dominate the final configuration.
The circular masking effectively left about 255 pixels in each input image
patch. The model consisted of a linear–nonlinear architecture with learned
linear filters and nonlinearities. Given an input stimulus x, an input noise nx ,
and the linear filter wj for each neuron j, the nonlinearities were modeled
as softplus functions of the linearly filtered noisy stimulus for each neuron
yj = w>j (x + nx):

η(yj) = log(1 + exp(β · yj))/β [1]

using a fixed value of β= 2.5. We empirically chose a fixed value of β= 2.5
that produced a stable optimization trajectory. The output of the model
consisted of 100 units that mimic RGCs, whose firing rates are modeled using
neuron-specific gain and threshold parameters γj and θj , plus an additive
output noise nr,j :

rj(yj) = γj · η(yj − θj) + nr,j. [2]

Note that scaling r, γ, and nr by the same factor leaves the model invariant,
so we choose units in which the mean firing rate is Er = 1. We used a first-
order approximation that treats the conditional distribution of activation
as a Gaussian, which allowed us to derive a closed-form expression for the
mutual information. A detailed derivation is provided in SI Appendix. The
model was trained to maximize the mutual information between the input
images and the firing rates of the output neurons. To model the metabolic
cost of spiking, the average firing rate of each neuron across images was
constrained to 1, which was enforced via an augmented Lagrangian method
with quadratic penalty. Input and output noise were modeled as indepen-
dent and identically distributed Gaussian noise (zero means and SDs of σin

and σout, respectively).
The parameters of the model were the receptive field filter weights,

the gain of the nonlinearity, and the nonlinearity threshold of each out-
put RGC. To preserve positive gain for each output unit, we optimized the
logarithms of the corresponding parameters. Filter weights were initialized
by drawing samples from a Gaussian distribution (mean zero, SD 1; see
Fig. 1B, Top). The parameters of the nonlinearities (log gain and thresh-
old) were initialized by sampling from a uniform distribution [0, 1]. The
parameters were then optimized using stochastic gradient descent with a
learning rate of 0.001. During training, we calculated gradients using mini-
batches of 100 image patches at a time, renormalizing the filters to have
unit norm after each gradient step. Models were trained for 1 million iter-
ations, which we found sufficient in practice to ensure convergence of the
mutual information. As a means of escaping local optima, between 200,000
and 500,000 iterations, two modifications were applied to the optimiza-
tion procedure, which we call jittering and centering. These were used to
speed convergence. The jittering operation was applied every 5,000 itera-
tions and consisted of raising each element of the kernels to the power 1.25;
this makes high-amplitude portions of the filters more pronounced while
attenuating low-amplitude portions. The centering operation penalized the
spatial spread of the kernels by adding the mean of the spatial variance of
each kernel as an additional loss term; this encourages the kernels to be
localized around their centers. These two operations allowed kernels that
were trying to “squeeze” into an already formed mosaic the space to do
so, effectively speeding the optimization and allowing all kernels to con-
tribute to the encoding. After these operations, the model was optimized
without the modifications for another 500,000 iterations. We confirmed
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Fig. 1. Spatial tiling of receptive fields is predicted by efficient coding. (A) Efficient coding model architecture. Images of natural scenes (plus input noise
σin) are multiplied by linear filters wj , passed through a nonlinear function ηj , and perturbed by output noise σout, resulting in a firing rate rj for neuron j.
(B) Examples of initial and optimized filters and nonlinearities, where the filters are initialized from a white noise distribution and converge to ON and OFF
kernels with a center-surround pattern. The nonlinearities are initialized as unscaled (but slightly perturbed) softplus functions and converge to nonzero
threshold values. (C) A plot of 100 kernels from a trained model with σin = 0.4, σout = 3.0. (D and E) Contour plot showing the tiling of the ON and OFF
kernels. The contours of the two types of kernels are drawn where the normalized pixel intensity is ± 0.21. Orange circles and blue x’s indicate receptive
field centers of mass for ON and OFF cells, respectively. Scale bar is width of one image pixel.
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that jittering and centering do not alter the final converged shape of the
kernels.

Median Nearest-Neighbor Analysis of the Spatial Relationships between the
Mosaics. To quantify the relative alignment of ON and OFF mosaics, we
used a metric based on the median nearest-neighbor distances between
heterotypic receptive field centers. For each receptive field center, we found
the nearest center with the opposite polarity to define its heterotypic near-
est neighbor distance and calculated the median of these values (see Eq. 3).
When ON and OFF mosaics are nearly aligned, this value is close to zero, as
in Fig. 2 A and B:

Median
NN distance

= median
c∈RF centers

 min
c′∈

RF centers
with opposite
polarity to c

‖c− c′‖

. [3]

One-Shape Model for Rapid Exploration of Mosaic Arrangements. The full
18 × 18 system required many hours to optimize, motivating the develop-
ment of a smaller, scaled-down system for exploring how mosaic arrange-
ments depended on different noise parameters (Fig. 3) or different stimulus
statistics (see Fig. 6). Here, we restricted input images to 7 × 7, fixed the
number of ON and OFF cells at 7 each (14 total), and adopted a fixed para-
metric form for the receptive field. Thus, the optimization only learned
receptive field center locations and a small number of receptive field shape
parameters. The receptive field function was parameterized as a difference
of two Gaussian curves, with a third parameter determining their relative
magnitude:

κ(r)∝ e−ar2
− ce−br2

, a, b, c> 0. [4]

Optimization in this setup involves fewer parameters, as well as allowing
us to use more efficient first-order optimization methods like Adam (24). To

examine the dependence of mosaic arrangement on noise, a grid search was
performed over combinations of input and output noise values, with input
noise (σin) ranging from 0.0 to 0.75 and output noise (σout) from 0.75 to 3.0.
As previously argued (21), these values lie within the physiological range
for naturalistic stimuli. The optimization was run three times for every pair
of noise values, and the model resulting in the highest mutual information
was retained (Fig. 3). This model was also used to examine the dependence
of mosaic alignment on the statistics of natural scenes (see Fig. 6). In these
simulations, the input noise was held fixed while the output noise and dis-
tribution of natural images were varied to examine the interaction between
these factors on the resulting mosaic arrangements.

Results
Linear–Nonlinear Efficient Coding Model of the Retina. We asked
how mosaics of ON and OFF cells should be arranged to
efficiently encode natural scenes. To answer this question, we
trained a model of retinal processing to maximize the mutual
information between a library of natural images and a set of out-
put firing rates (Fig. 1A). The model consists of a single layer
of linear–nonlinear units intended to approximate the encod-
ing performed by RGCs (10, 11, 21, 25–27). These model cells
linearly filter the input stimulus weighted by a spatial mask or
“receptive field” and sum the resulting values. This number,
loosely analogous to a membrane potential, is then fed through
a nonlinearity to approximate rectified neural firing rates. The
model also included two sources of noise: 1) a pixelwise input
noise, which models stochasticity in phototransduction, and 2) an
output noise, which models stochasticity in output firing rates. A
key difference between the two is that the input noise is subject to
the nonlinearity, and thus its effect becomes stimulus-dependent,

A
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B

Fig. 2. Spatial coordination of receptive field mosaics depends on input and output noise level. Receptive field centers for ON (orange circle) and OFF
(blue x) cells under differing sets of noise parameters. (A) (σin = 0.02, σout = 1.0), (B) (σin = 0.1, σout = 1.0), (C) (σin = 0.4, σout = 2.0), (D) (σin = 0.4, σout =
3.0). The first two parameter sets result in aligned mosaics, while the latter two, at higher levels of output noise, are antialigned. Scale bar is width of one
image pixel.
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A B

Fig. 3. Optimal mosaic configurations transition from aligned to antialigned as a function of noise. (A) As output noise increases, optimal mosaic configu-
rations shift from aligned to antialigned, and this holds over a range of input noise values. Color indicates median nearest neighbor distance, with darker
indicating more clearly aligned (see Eq. 3 and Methods). The existence of a phase boundary between the two arrangements is clear. (B) Examples of optimal
mosaic arrangements for representative input and output noise combinations. Symbols denote the corresponding locations in A. Note the existence of
optimal configurations between aligned and fully antialigned (hearts) for some parameter values. Scale bar is width of one image pixel.

while the output noise is not. We trained the model by optimizing
mutual information under the constraint of a fixed mean acti-
vation (across all images) for each neuron (see Methods). This
constraint is intended to model the metabolic cost of generating
action potentials.

Receptive Field Tiling Is Predicted by Efficient Coding. Following
training, units in the model exhibited either ON-center or OFF-
center receptive fields with strongly rectified nonlinearities (Fig.
1 B and C). Each population of ON-center units and OFF-center
units (referred henceforth as ON cells and OFF cells, respec-
tively) exhibited a mosaic-like organization: their receptive fields
tiled space (Fig. 1D) (21). When varying noise levels, we reli-
ably found circular ON and OFF receptive fields with input noise
between 0.00 and 0.75 and output noise between 0.75 and 3.00.
Input and output noise levels outside these ranges produced
irregular receptive field shapes (SI Appendix, Fig. S1), as did
nonnatural distributions of images (SI Appendix, Fig. S7). There-
fore, we restricted the analysis to this range of noise regimes and
focused on natural image patches.

Mosaic Arrangements Depend on Input and Output Noise. We next
analyzed how these optimized mosaics of ON and OFF recep-
tive fields were spatially arranged with respect to one another.
Each optimized mosaic formed a nearly hexagonal grid (Fig. 1D).
Analysis of the spatial relationships between the mosaics in Fig.
1 D and E revealed they were antialigned (Fig. 2D). However, as

we explored the effect of changing the amounts of input and out-
put noise on the optimization of this model, we observed other
mosaic combinations that were aligned (e.g., Fig. 2D). Gener-
ally, small input and output noise values yielded aligned mosaics,
while larger values produced antialigned mosaics (Fig. 2 A–D).
Importantly, for a fixed amount of input and output noise, mul-
tiple instances of the optimization produced consistent results,
indicating that mosaic alignment and antialignment depended
on the specific amount of input and output noise, and did not
depend on different initializations to the optimization. More-
over, these same effects held when image patches were twice as
large (SI Appendix, Fig. S8), arguing against simple edge effects.
These results motivated a more thorough analysis of how the rel-
ative spatial organization between the two mosaics depended on
input and output noise.

A Simplified “One-Shape” Model Captures the Noise Dependence of
Mosaic Arrangements. To examine the dependence of the mosaic
arrangements on noise over a range of densely sampled val-
ues we utilized a simpler “one-shape” model that trained much
more quickly than the full model (see Methods). This model
assumed that all receptive fields shared a common shape (a dif-
ference of concentric Gaussians), while optimizing over both the
parameters of this shape and the locations of the receptive fields
(see Methods). The learned kernels of this simplified model also
exhibited ON and OFF receptive fields (SI Appendix, Fig. S2A)
and ON and OFF mosaics (SI Appendix, Fig. S2B). In addition,
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the optimal radial kernel exhibited a center-surround organiza-
tion (SI Appendix, Fig. S2C). To further speed training, we also
reduced the number of units in the model to seven ON and
seven OFF cells (their polarities were fixed during the optimiza-
tion). These simplifications allowed us to rapidly judge if the
optimization preferred alignment or antialignment (Fig. 3). To
ensure these simplifications did not strongly bias the results, we
compared the mosaic arrangements for particular input and out-
put noise combinations across the one-shape model and the full
model. In all cases examined, the two models produced match-
ing aligned or antialigned results (SI Appendix, Fig. S3). Thus,
the one-shape model is a useful proxy for larger-scale and more
general optimizations and could be used to rapidly and reliably
determine if mosaics were aligned or antialigned for a given set
of noise parameters.

Mosaics Exhibit a Phase Change as a Function of Input and Output
Noise. To determine the optimal arrangement of ON and OFF
mosaics for different amounts of input and output noise, we per-
formed a grid search over input and output noise values using
the one-shape model. We ran the model with input noise rang-
ing from 0.00 to 0.75 in steps of 0.05 and output noise from 0.75
to 3.00 in steps of 0.10. Optimizing the location of seven recep-
tive field centers in a circular space nearly always resulted in a
single kernel in the center surrounded by the remaining six ker-
nels at the vertices of a hexagon (see Fig. 3). When the output
noise level was low, ON and OFF receptive field mosaics were
aligned as in the first row of Fig. 3B and resulted in near-zero
median nearest-neighbor distances (dark purple colored area in
Fig. 3A), whereas ON and OFF mosaics were antialigned under
higher output noise levels as in the last row of Fig. 3B, resulting
in larger median nearest-neighbor distances (lighter colored area
in Fig. 3A). In particular, this analysis reveals an abrupt tran-
sition between mosaic alignment and antialignment (Fig. 3A).
Thus, our model optimization indicates the solution to the sen-
sor alignment problem depends on noise present in the encoding
process. Below, we build an analytical model for understanding
this result.

Retinal Phase Transitions from an Analytic Model of Efficient Coding.
To understand the factors that give rise to the phase transition
between aligned and antialigned mosaics, we developed a sim-
plified one-dimensional analytic model in which ON and OFF
grids have identical nonlinearities, fixed kernels, fixed spacing,
and are only allowed to shift relative to one another (SI Appendix,
Supporting Information Text). Moreover, we assume that images
are drawn from a Gaussian distribution with a 1/f frequency
spectrum that is the one-dimensional equivalent of the two-
dimensional scale-free distribution of natural images (14, 28),
though other frequency distributions produced the same effect
(SI Appendix, Fig. S9). We verified via simulation that, even with
all of these restrictions, the phase transition occurs just as in
the less constrained models in both one and two dimensions,
suggesting that the remaining free parameters—gain, threshold,
and mosaic alignment—are sufficient to account for the phase
transition (SI Appendix, Figs. S5 and S6).

To gain additional insight into the origins of the transition,
we analyzed the behavior of this model in the more analyti-
cally tractable limit of near-independent neurons. The starting
point for this analysis is a recognition that the conditional
entropy between stimulus and neural response can be conve-
niently written as a sum of single-neuron terms and higher-order
corrections:

I(X;R)=H (X)−H (X|R)

= const+ 2NI1−N (N − 1)h2−N 2h2′ + · · · . [5]

Here, H (X ) is the (constant) entropy of the stimulus, 2N is
the number of ON + OFF cells, I1 is the contribution of each
neuron individually, and h2 and h2′ are correction terms due to
nonindependence (and thus redundancy) of ON–ON/OFF–OFF
(same polarity) and ON–OFF (opposite polarity) cells, respec-
tively (SI Appendix, Supporting Information Text, section B).
Importantly, these corrections are always negative and vanish for
widely separated cells. For our analysis, we focus only on these
leading order terms, corresponding to an assumption of approx-
imately independent neurons with small pairwise interactions.
While this assumption is violated for natural images, which pos-
sess long-range correlations and induce triplet and higher-order
interactions, our analytical results are nonetheless matched by
simulations in the full model, suggesting that intuitions gleaned
from this approximation are sufficient to explain the transition
between alignment and antialignment. In the following two sec-
tions we show 1) that noise and image statistics set the optimal
neuron response thresholds and 2) that these thresholds control
the amount of redundancy in the population responses, thereby
dictating whether mosaic alignment or antialignment is the
preferred state.

Output Noise and Image Outliers Drive Increases in Optimal Neu-
ron Response Thresholds. First, we considered optimizing only the
I1 term above, which captures the contribution of each neuron
individually to encoding stimulus information. In particular, we
focused on the influence of output noise and the distribution of
natural images on the output nonlinearities of the neurons (we
focused on output noise because the transition depended much
more on output than input noise; see Fig. 3A):

I1 = p1 log

(
1+

g0
σ2

in +σ2
outγ
−2

)
, [6]

where g0 is a constant that depends on the image distribution and
the receptive field shape, p1 is the probability that the neuron is
active, γ is the neuron’s gain, and these latter two are related
through the constraint that the average response of the neuron is
1 (SI Appendix, Eq. 11). As the output noise of neurons increases,
maximizing I1 dictates that neurons should respond by increas-
ing their firing threshold (Fig. 4A). This allows the neurons to
reserve spikes for stimuli with high signal-to-noise ratios (SNRs)
(29). Thus, units respond less often but do so with higher gain
when active, thereby mitigating the impact of noise. In addition,
the optimal firing threshold depends on the nature of the image
distribution. For neuron activation distributions with more out-
liers, thresholds increase as the tail of the distribution becomes
heavier (Fig. 4B). Intuitively, this is because heavier-tailed distri-
butions require higher thresholds to maintain the same overall
response probability. Finally, it can be shown that decreasing the
input noise has the effect of increasing the effective threshold
(SI Appendix, Supporting Information Text and Eq. 12). Thus, the
optimal spiking threshold is determined both by the input and
output noise and the distribution of natural scenes (schematized
in Fig. 4C) (8).

Mosaic Antialignment Achieves Redundancy Reduction at High
Neuron Thresholds. Next, we considered the effect of ON–
OFF pair corrections to Eq. 5. These terms, represented by
−N 2h2′ above, capture the effects of redundancy in ON–
OFF encoding: They are always negative and are the only
contributions to mutual information that change as a func-
tion of alignment. Thus, while the overall trend is that mutual
information decreases with increasing threshold, mosaic con-
figurations may be more or less efficient for information

Jun et al.
Scene statistics and noise determine the relative arrangement of receptive field mosaics

PNAS | 5 of 9
https://doi.org/10.1073/pnas.2105115118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105115118/-/DCSupplemental
https://doi.org/10.1073/pnas.2105115118


A C

B

Fig. 4. Optimal threshold increases with higher noise and heavier-tailed image distributions. (A and B) Contribution of a single neuron to the mutual
information as a function of threshold. Stars mark optimal thresholds for multiple parameter values. (A) When the input distribution is Gaussian, the
optimal threshold increases with higher output noise, even as overall information decreases. (B) When the input distribution is heavier-tailed, modeled with
a Student’s t distributions with varying degrees of freedom, the optimal threshold again increases. (C) Schematic illustrating the effects of increased noise
or outliers. With increased output noise, neurons’ SNR (black line, Upper Right) decreases, and efficient coding predicts that units should increase threshold
and gain to reduce low SNR responses (peach). Similarly, when preactivations are heavy-tailed (Lower Right), efficient coding predicts that thresholds should
increase and gains slightly decrease (SI Appendix, Fig. S11), since more mass is contained in outliers. Thus, both output noise and heavy tails lead to higher
thresholds.

transmission as they limit the impact of these terms. More
specifically,

h2′ =−
1

N 2

∑
i,j

p2(dij ) logR(dij )≥ 0, [7]

where dij is the distance between ON cell i and OFF cell j , p2
is the probability that the pair is coactive, and 0<R< 1 is a
function that is approximately independent of both output noise
and neuron nonlinearity (SI Appendix, Supporting Information
Text, section B). This correction term is small for large separa-
tions, large around the intramosaic spacing, and almost zero in a
region around zero intercell distance (Fig. 5A). Importantly, the
width of this “independence zone” around zero intercell distance
widens as output noise grows larger. This is explained by the fact
that as output noise increases so does the threshold (Fig. 4A),
and at large threshold values nearby opposite polarity pairs are
almost never coactive (SI Appendix, Supporting Information Text,
section B ).

This analysis gives rise to the following account of the phase
transition: At low levels of output noise or light-tailed distri-
butions of neuron activations, neuronal thresholds are low, and
only aligned receptive fields avoid the large N 2h2′ penalty. Thus,
in one dimension, each ON cell is nonredundant (save one bit
of sign information; SI Appendix, Supporting Information Text,
section C) with its aligned OFF partner, but image correlations
make it highly redundant with the two OFF (and two ON) cells
on either side. Likewise, in two dimensions, each ON cell is
nonredundant (save one bit of sign information; SI Appendix,
Supporting Information Text, section C) with its aligned OFF
partner, but it suffers large negative corrections to encoding
efficiency from its six other OFF neighbors. However, as activ-
ity thresholds rise, a finite-sized region develops around each
cell within which other receptive fields of opposite polarity are
almost never coactive (Fig. 5A, gray). This region of approx-
imate independence grows with threshold, to the point that,
when it is sufficiently large, more than one OFF cell can fit
inside when the mosaics are antialigned (Fig. 5 D and E, gray

circle). Thus, antialignment results in lower redundancy (via
reduced h2′ penalties) and increased mutual information. This
picture is borne out quantitatively by the model: As output noise
(and thus threshold) increases, the optimal shift interpolates
smoothly between aligned and antialigned configurations (Fig. 5
B and C and cf. Fig. 3B, second row), suggesting a second-order
Landau–Ginzburg phase transition (30).

Outliers in Natural Image Statistics Modify the Transition from
Aligned to Antialigned Mosaics. The analysis above identifies out-
put noise and image (stimulus) outliers as driving optimal encod-
ing strategies toward higher neural response thresholds, which
we claim is the key factor mediating the phase transition from
aligned to antialigned mosaics. However, this analysis makes
numerous simplifying assumptions, including a restriction to one
dimension. Thus, we sought to test whether these predictions
generalized to a less-restricted two-dimensional model in which
image statistics were manipulated.

First, we identified image patches that generated the high-
est and the lowest firing rates in our fitted model (SI Appendix,
Fig. S4). We identified these images using the firing rates under
the two noise regimes, one that produced aligned and one that
produced antialigned mosaics (Fig. 2B [σin =0.1,σout =1.0] and
Fig. 2D [σin =0.4,σout =3.0]). In both noise regimes, the 100
image patches producing the highest firing rates were extreme
luminance values (nearly all black or all white) or extreme con-
trast values (e.g., contained one or more edges between black
and white regions). On the other hand, the 100 images pro-
ducing the lowest firing rates were nearly homogeneous gray
patches (SI Appendix, Fig. S4). A two-dimensional histogram of
the mean and SD across the pixels of all of the available sam-
ple image patches confirmed that these images exhibited outlier
mean or contrast values (SI Appendix, Fig. S4E). Thus, under
both noise regimes the largest firing rates (across all neurons)
were produced by rare, outlier images.

We next tested what impact these outlier images exert on the
phase transition between aligned and antialigned mosaics. We
reran the “one-shape” model (e.g., Fig. 3A) but with the altered
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Fig. 5. Pairwise mutual information corrections explain the phase transition between alignment and antialignment. (A) Normalized pairwise information
correction (−Nh2′/p2

1) for pairs of ON and OFF neurons as a function of mosaic shift. One unit is the spacing between nearest-neighbor receptive field centers
of the same polarity. With low output noise, an aligned position (i.e., no shift) is the only placement to avoid a large negative information correction, while
with higher output noise an ON–OFF pair can still have a finite shift within the gray area without incurring any penalty. (B) The total normalized pairwise
information correction as a function of mosaic shift, assuming equispaced ON and OFF receptive field centers filling the one-dimensional space. With low
output noise, any mosaic shift lowers mutual information, while with high output noise the pairwise mutual information becomes less negative when
the mosaic is shifted by 0.5, i.e., when antialigned. (C) The optimal mosaic shift as a function of output noise. For σout = 1.7,σout = 2, the optimal mosaic
shift lies between 0 (alignment) and 0.5 (antialignment), resembling the arrangements we obtained in the middle row of Fig. 3B. (D) Schematic of optimal
two-dimensional mosaics in a low-noise regime. The gray circle indicates the area within which an OFF cell can be located with zero pairwise correction
to mutual information. (E) Schematic of optimal two-dimensional mosaics in a high-noise regime. Here, the gray area has grown (as in A), allowing three
neighbors of the opposite polarity to fit inside without loss in mutual information.

image sets that either reduced or increased the frequency of
outlier images. From the distribution of all of the 18,587,848
possible image patches in the dataset (Fig. 6A) we considered
a two-dimensional space composed of the z scores of the patch
mean and SD values, and we drew the unit circle in this two-
dimensional space. Within this space, we considered regions
within one to three SDs from the mean of the average pixel
intensity (per image) and from the mean of the variance over
pixel intensities (per image). We then trained the one-shape
model (see Fig. 3) on only the patches within each boundary
(Fig. 6B). As predicted, we found that the transition between
aligned and antialigned mosaics occurred at lower noise lev-
els as more outlier images were included in the training set
and occurred at higher noise levels when these outlier images
were removed. Furthermore, these changes were mediated by an
increase in activation threshold as outliers grew more prevalent
(Fig. 6C). Thus, we were able to reproduce the effects of outlier
images on the phase transition between aligned and antialigned
mosaics.

Discussion
Efficient coding theory provides a basis for understanding many
features of early sensory processing. This includes the struc-
ture of individual receptive fields, how receptive fields adapt,
and their mosaic-like arrangement to uniformly tile space (7,
11, 15, 21, 22). We have extended this framework to investigate
how the receptive fields of distinct cell types should be spa-
tially arranged, given sensory noise and the statistics of natural

stimuli. We term this the “sensor alignment problem.” Below,
we summarize the features and properties of the model that
produce center-surround receptive fields, mosaics, and mosaic
coordination.

Center-Surround Receptive Fields. The convergence of the filters
to center-surround receptive fields was robust over a range of
input and output noise values (SI Appendix, Fig. S1). How-
ever, perhaps surprisingly, convergence to center-surround filters
required the higher-order correlations present in natural scenes:
Training on Gaussian images with the same covariance as the
natural scenes did not yield center-surround filters (SI Appendix,
Fig. S7).

Mosaics. In all cases where the model produced center-surround
receptive fields, it likewise produced ON and OFF cells and
mosaics (see above). Moreover, when center-surround recep-
tive fields were enforced by parameterizing filters as a difference
of Gaussians, mosaics always resulted (SI Appendix, Figs. S2,
S3, S5, and S9) even without higher-order or even long-range
correlations (SI Appendix, Fig. S9).

Mosaic Coordination. The phase transition between aligned and
antialigned mosaics occurred under a wide range of conditions,
including natural and synthetic image sets. Gaussian-distributed
images were sufficient to drive the phase transition between
the aligned and antialigned states (SI Appendix, Fig. S5B).
Indeed, this remained true even for images with only short-range
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Fig. 6. Outlier image patches drive an antialigned relationship between ON/OFF receptive field mosaics via higher optimal thresholds. (A) Distribution of
all 18,587,848 image patches from the dataset, plotted as a two-dimensional histogram with respect to the mean and the SD of each image patch (orange).
A few example patches are shown in the lower left, with the corresponding locations in the histogram marked with matching symbols. The means are
centered at zero (SD = 0.575), and the SD values are centered at 0.623 (SD = 0.187). Ellipses in the histogram represent data within one to three SDs of the
mean, which we use to construct artificial datasets with varying contributions of outliers. (B) Optimized ON and OFF receptive field mosaics using the image
patches within the boundaries denoted in A with σin = 0.4, σout = 1.4 to 2.0, plotted with the same scheme as in Fig. 3. As predicted, when trained on image
sets that systematically excluded outliers (i.e., had lighter-tailed distributions), phase transitions happened only at larger values of output noise. The fourth
column denoted as “all patches” used the full dataset as in Fig. 3. The last column, denoted as “boosted outliers,” used an augmented dataset to which we
added horizontal and vertical mirror flips of patches outside the 1.5 SD circle, thereby creating a distribution with even more outliers. This corresponds to
the top 20% of z-scores among all patches in the dataset. Here, the phase transition happened at lower output noise values. The scale bar shows a one-pixel
distance. (C) Optimal thresholds as a function of output noise, using input distributions with different levels of outliers. As predicted, the optimal thresholds
tended to increase as the input distribution contained more outliers, causing the phase transition to happen at a lower output noise level.

correlations (SI Appendix, Fig. S9), albeit only at extremely high
levels of noise.

From these relationships we can sketch the following qual-
itative account of the phase transition between aligned and
antialigned mosaics: Given center-surround receptive fields, effi-
cient coding argues that neurons should maximize information
transmission by both distributing receptive fields to encode as
much unique information as possible and reducing redundancy,
which occurs when nearby cells are coactive to the same stimu-
lus. The first intuition leads to the formation of mosaics, while
the second leads, at low noise levels, to mosaic alignment. This
is because optimal neuron response thresholds in the low-noise
regime are lower (Fig. 4A), so nearby ON and OFF cells are
likely to be coactive unless they are aligned, and this redun-
dancy cost outweighs the benefits of encoding slightly different
locations in the visual field (Fig. 5D).

However, in the high-noise or heavy-tailed neural response
regimes, optimal encoding requires that individual neurons raise
their response thresholds (Fig. 4A). This results in the decor-
relation of nearby cells (31), creating an “independence zone”
around each cell that grows with noise (Fig. 5 A and E). Recep-
tive fields located within this distance of one another are nearly
independent in their responses, allowing for nearby cells to
sample distinct spatial locations without reducing encoded infor-
mation through redundancy (Fig. 5A). The optimal configuration
in this regime then becomes mosaic antialignment across a wide
variety of conditions (Fig. 6 and SI Appendix, Fig. S9).

In previous work we have shown that real retinal mosaics
of ON and OFF cells that encode similar visual features are

antialigned (20). Here, we have shown that the optimal solu-
tion to the sensor alignment problem depends on both system
noise and stimulus statistics. Thus, the antialignment of reti-
nal mosaics suggests that retinal processing is optimized for low
signal-to-noise conditions such as detecting dim or low-contrast
stimuli (32, 33). In natural environments, the retina is proba-
bly faced with both high and low SNR conditions. When SNR is
high, suboptimal processing that squanders some signal probably
has little impact on sensory encoding because signal is plen-
tiful. However, when SNR is low, the signal is precious and
optimal processing is required to spare the signal from noise.
This raises the question: How much does antialignment improve
encoding under low SNR conditions? We previously found a
≈ 4% increase in mutual information for antialigned mosaics
over aligned mosaics (20). While small, it is worth noting that
the presence of a surround—a feature that is thought to be
very important for optimal encoding of natural scenes—only
improves encoding by ≈ 20%. Thus antialignment of mosaics
is roughly 20% as important as center-surround receptive field
structure.

This study connects to several other strands of work on effi-
cient coding in the retina. As noted above, efficient coding as
redundancy reduction subject to signaling costs gave theoretical
weight to the idea of center-surround receptive fields as whiten-
ing filters for visual stimuli (7, 14, 15, 29, 34) that are matched
to the statistics of natural scenes. However, as later work has
made clear, nonlinearities, particularly response thresholds, are
perhaps even more important in optimizing retinal codes (8, 31,
35). In addition, noise in both sensory transduction (inputs) and
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neural outputs affects coding efficiency (14, 15, 36). This work, by
placing all of these factors in an optimization-based framework
(21), allows for investigating the relative importance of each fac-
tor in determining the optimal spatial layout of receptive fields.
Importantly, this approach relies only on information maximiza-
tion arguments, and the optimization does not rely on fitting
data from electrophysiological recordings, as required by recent
deep-learning models of retinal coding (37, 38).

By focusing on the factors that govern the transition between
aligned and antialigned mosaics from an optimal encoding stand-
point, we have necessarily ignored several real biological com-
plexities. First and foremost, the retina contains roughly 40
distinct RGC types. Our current efficient coding model only gen-
erates two types of units that encode similar visual features, but
with opposite polarity, and thus we are not yet able to determine
whether RGC types that encode distinct visual features should
be independent or coordinated. However, a limited inspection
of the mosaic relationships across RGC types that encode dis-
tinct visual features suggested that the measured receptive field
mosaics were statistically independent (20). Developing an effi-
cient coding model that is optimized to encode natural movies
may yield a greater diversity of cell types (38). Many RGC types
that encode particular space–time features such as direction of

motion or “looming” detectors also form mosaics (39). Whether
these detector grids are coordinated or should be coordinated
remains an open question. Moreover, our analysis does not con-
sider constraints on development that result in irregular mosaics,
which have been shown to require local changes in receptive field
shape for optimal encoding (40). Nonetheless, during the opti-
mization process we do observe such local changes as receptive
fields push against one another during mosaic formation (Movies
S1 and S2). Finally, our results motivate understanding the impli-
cations of efficient coding theory to other sensory systems such
as touch receptors on the skin: Might they be spatially coordi-
nated for the efficient coding of touch (41)? More generally,
these observations demonstrate that efficient coding theory can
make predictions about emergent properties present in the orga-
nization of the nervous system, such as how large populations
composed of multiple cell types should be arranged to optimally
encode the natural environment.
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