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Cholesterol, the bulk end-product of the mevalonate pathway, is a key

component of cellular membranes and lipoproteins that transport lipids

throughout the body. It is also a precursor of steroid hormones, vitamin D,

and bile acids. In addition to cholesterol, the mevalonate pathway yields a

variety of nonsterol isoprenoids that are essential to cell survival. Flux through

the mevalonate pathway is tightly controlled to ensure cells continuously

synthesize nonsterol isoprenoids but avoid overproducing cholesterol and

other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-

methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting

enzyme in the mevalonate pathway, is the focus of a complex feedback

regulatory system governed by sterol and nonsterol isoprenoids. This review

highlights transcriptional and post-translational regulation of HMGCR.

Transcriptional regulation of HMGCR is mediated by the Scap-SREBP

pathway. Post-translational control is initiated by the intracellular

accumulation of sterols, which causes HMGCR to become ubiquitinated and

subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols

also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic

enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This

binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize

nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even

when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP

sensor, dissociating from HMGCR when GGPP thresholds are met to allow

maximal ERAD. Animal studies using genetically manipulated mice disclose the

physiological significance of the HMGCR regulatory system and we describe

how dysregulation of these pathways contributes to disease.
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1 Introduction

Cholesterol is a hydrophobic lipid inserted in the phospholipid bilayer of biological

membranes including the plasma membrane and other organelles such as the

endoplasmic reticulum (ER), Golgi apparatus, mitochondria, nuclear membrane, etc.

Cholesterol regulates the fluidity and rigidity of membranes and dynamically changes in
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response to environmental conditions. Cells obtain cholesterol by

two mechanisms: 1) de novo synthesis from the 2-carbon

precursor acetate through a series of more than 20 reactions

that are collectively referred to as the mevalonate pathway; and 2)

uptake of extracellular low-density lipoprotein (LDL) by the LDL

receptor, which delivers LDL from the plasma membrane to

lysosomes where free cholesterol is liberated. Cholesterol serves

as a precursor for oxysterols, steroid hormones, vitamin D, and

bile acids as shown in Figure 1. Cholesterol can become

covalently attached to proteins such as Hedgehog, which plays

a pivotal role in embryonic development (Porter et al., 1996; Mafi

et al., 2021). The mevalonate pathway also produces a variety of

sterol intermediates such as lanosterol, dihydrolanosterol (DHL),

desmosterol, epoxycholesterol (EC), and dehydrocholesterols.

The nonsterol branch of the pathway yields essential

nonsterol isoprenoids including isopentenyl diphosphate/

pyrophosphate (IPP), geranyl diphosphate/pyrophosphate

(GPP), farnesyl diphosphate/pyrophosphate (FPP), and

geranylgeranyl diphosphate/pyrophosphate (GGPP). From

here diphosphate/pyrophosphate will be denoted as PP. These

molecules are essential for normal cell function and are

indispensable for several processes such as prenylation

(farnesylation or geranylgeranylation) of small GTPases and

synthesis of isopentenylated tRNA. Additionally, FPP and

FIGURE 1
Mevalonate pathway (Brown andGoldstein, 1980; Borini Etichetti et al., 2020). Explanation of the pathway is described in themain text. Changes
in carbon numbers are denoted by the right side of the molecules. The enzymes focused on in this review are indicated in red. The known inhibitors
for enzymes are denoted in blue. Abbreviations: HMGCR, 3-hydroxy-3-methylglutaryl (HMG) Coenzyme A reductase; PP, pyrophosphate; MD,
menadione; UBIAD1, UbiA prenyltransferase domain-containing protein-1; SQLE/SM, squalene epoxidase also called SM; LSS, lanosterol
synthase; PDP1, type I polyisoprenoid diphosphate phosphatase 1 also called PPAPDC2.
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GGPP are utilized to synthesize other essential nonsterol

isoprenoids such as ubiquinone-10 and heme (electron

transport), dolichol (asparagine-linked glycoprotein synthesis)

(Grabinska et al., 2016), and vitamin K2 (coagulation). Flux

through the mevalonate pathway is tightly controlled by

feedback loops that regulate the levels of key enzymes to

ensure that cells continuously produce nonsterol isoprenoids

but avoid over producing cholesterol and other sterols.

In this review we first describe the mevalonate pathway

highlighting key enzymes subjected to feedback regulation by

downstreammetabolites (Figure 1). 3-Hydroxy-3-methylglutaryl

coenzyme A (HMG CoA) reductase (HMGCR) is the rate

limiting enzyme in the mevalonate pathway and as such, is

subjected to tight feedback control through transcriptional

and post-translational mechanisms. Transcriptional regulation

of HMGCR is mediated by membrane-bound transcription

factors called sterol-regulatory element-binding proteins that

require the polytopic, cholesterol-regulated escort protein Scap

for activation. The main focus centers on the post-translational

regulation of HMGCR initiated by sterol and nonsterol

isoprenoids which combine to accelerate ER-associated

degradation (ERAD) of HMGCR. Feedback mechanisms by

the isoprenoid branch are mediated by an HMGCR-associated

protein called UbiA prenyltransferase domain-containing

protein-1 (UBIAD1). Here we detail the current mechanistic

understanding of the multivalent feedback pathways that act on

HMGCR and UBIAD1 to maintain cellular homeostasis and

suggest how dysregulation results in disease.

2 Overview of mevalonate pathway

2.1 Formation of isopentenyl
pyrophosphate

Synthesis of cholesterol through the mevalonate pathway

begins with the condensation of three acetyl CoA molecules

forming HMG CoA by acetoacetyl CoA thiolase and HMG CoA

synthase (Horton et al., 2002). HMG CoA is reduced to

mevalonate by HMGCR, which resides in the ER membrane

and is recognized as a rate-limiting step of the cholesterol

biosynthetic pathway. Mevalonate is then subjected to

successive phosphorylations by mevalonate kinase and

phosphomevalonate kinase (PMK). Mevalonate pyrophosphate

is decarboxylated bymevalonate pyrophosphate decarboxylase to

produce the first isoprenoid, 5-carbon IPP, or its isomer

dimethylallyl diphosphate/pyrophosphate (DMAPP).

Additionally, the DMAPP molecule can become incorporated

into tRNA, called isopentenylation, to produce isopentenylated

selenocysteine tRNAsec. This 21st amino acid is incorporated into

certain selenoproteins that participate in protein folding,

degradation, calcium homeostasis and can become

dysfunctional in neurodegenerative diseases (Gladyshev et al.,

2016; Carlson et al., 2018; Fradejas-Villar et al., 2021). IPP and

DMAPP are conjugated into the 10-carbon GPP and sequential

additions of IPP are added to GPP to generate a 15-carbon unit

called FPP. Both GPP and FPP are synthesized by the activity of

FPP synthase (FPPS, farnesyl diphosphate synthase, FDPS). The

FPP molecule serves as a major branch point in the pathway

where it either is converted to squalene entering the sterol

synthesis pathway or continues into the nonsterol isoprenoid

branch Figure 1 and Figure 2).

2.2 Farnesyl pyrophosphate to nonsterol
isoprenoids

In the nonsterol isoprenoid branch of the mevalonate

pathway, GGPP synthase 1 (GGPPS1) extends FPP by adding

IPP, generating the 20-carbon GGPP molecule (Kavanagh et al.,

2006). Alternatively, two GPP (10-C)molecules are conjugated to

form GGPP (20-C). The enzyme cis-prenyltransferase further

extends FPP to produce dolichol, a glycosyl lipid carrier for

glycosylation of proteins. It is also utilized for the formation of

Heme A, an iron-chelating cofactor of cytochrome c oxidase

involved in mitochondrial respiratory chain. Moreover, the

trans-prenyltransferase utilizes FPP to produce poly-prenyl

pyrophosphate that is subsequently transferred to 4-hydroxy-

benzoate. This reaction constitutes the initial step in synthesis of

ubiquinone-10 (CoQ10), which serves as an antioxidant by

preventing mitochondrial oxidative stress. The prenyl groups

of FPP (15-C) and GGPP (20-C) are covalently attached to

cysteines by a thioester linkage in CAAX motifs on proteins

by farnesyl transferase (farnesylation) and geranylgeranyl

transferase I and II (protein geranylgeranylation), together

referred to as prenylation. These modifications play pivotal

regulatory roles by targeting proteins to membranes

subsequently stimulating downstream signaling pathways.

Finally, the enzyme UbiA prenyltransferase domain-

containing protein-1 (UBIAD1) uses GGPP to prenylate

menadione (MD, vitamin K3) released from dietary vitamin

K1 to produce a subtype of vitamin K2 called menaquinone-4

(MK-4). Remarkably, UBIAD1 plays an essential role in the

regulation of the mevalonate pathway and will be described later

in this review.

2.3 Farnesyl pyrophosphate to cholesterol

The second biosynthetic outcome of FPP is the synthesis of

cholesterol. Two FPP molecules are condensed to form squalene

by squalene synthase (also called farnesyl diphosphate

farnesyltransferase 1, FDFT1). Squalene is the first metabolite

committed to the synthesis of sterols and is converted to 2,3(S)-

oxidosqualene (monooxidosqualene) by squalene

monooxygenase (SM) also called squalene epoxidase (SQLE).
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SM (SQLE) is recognized as a key regulatory enzyme of the sterol

portion of the pathway and is subjected to post-translational

regulation by cholesterol (Gill et al., 2011). Monooxidosqualene

is cyclized by lanosterol synthase (cyclase) to generate lanosterol,

the first sterol metabolite produced exhibiting the characteristic

four ring steroid nucleus. Lanosterol has two fates: 1) it continues

through the Bloch pathway to produce cholesterol or 2) it is

hydoxylated by 3β-hydroxysterol Δ24-reductase (DHCR24/

Seladin-1) forming 24,25-dihydrolanosterol (DHL) that enters

the Kandutsch-Russell pathway to form cholesterol (Kandutsch

and Russell, 1960; Bloch, 1965). The flux through both pathways

has been recently measured in vitro and in vivo. These studies

revealed that many different cells and tissue types generate

cholesterol through both pathways. However, steroidogenic

tissues such as testes and adrenal glands utilize exclusively the

canonical Bloch pathway and the study demonstrated that

regulation of cholesterol biosynthesis was through the Bloch

pathway (Mitsche et al., 2015).

2.4 Shunt pathway

Monooxidosqualene is alternatively converted to 2,3(S)-

22(S),23-dioxidosqualene which is then cyclized by lanosterol

synthase (cyclase) to 24(S),25-epoxylanosterol as the first

metabolite in the Shunt Pathway. Through several steps

24(S),25-epoxylanosterol is metabolized to 24(S),25-

epoxycholesterol by CYP7B1. Studies indicate that

epoxycholesterols play a vital role in the development of the

brain as well as other tissues. Reports show 24(S),25-

FIGURE 2
Metabolic roles and regulation of sterols and nonsterol isoprenoids in the cell. The Scap-SREBP complex is translocated to the Golgi where
nuclear transcription factor SREBP-2 is released to increase transcription of HMGCR, LDLR, and other cholesterol biosynthetic enzymes. HMGCR
expression is increased and catalyzes the conversion of HMG CoA to mevalonate increasing flux through the mevalonate pathway. The nonsterol
metabolites (orange/yellow) serve as precursors for a variety of nonsterol isoprenoids that are vital for a number of cell processes. DMAPP is
utilized for tRNA isopentenylation. FPP is converted to dolichol used in protein glycosylation in the ER, heme A, and ubiquinone for themitochondria.
FPP and GGPP are used for prenylation of proteins targeting them to membranes. GGPP is utilized with menadione for the formation of MK-4 by
UBIAD1 in the Golgi. UBIAD1 cycles between the ER and the Golgi monitoring GGPP levels. As GGPP levels increase it binds UBIAD1 and is retained in
the Golgi. FPP is also converted to squalene and is the first metabolite committed to the sterol synthesis branch of the pathway (red circles represent
sterols). As cholesterol levels increase in ER membranes this inhibits Scap escorting SREBP to the Golgi for activation and oxysterols trigger Insig
binding to HMGCR resulting in ERAD. Abbreviations: Scap, SREBP cleavage activating protein; SREBP, sterol regulatory element binding proteins;
LDLR, low density lipoprotein receptor; HMGCR, 3-hydroxy-3-methylglutaryl (HMG) Coenzyme A reductase; IPP, isopentenyl diphosphate/
pyrophosphate; FPP, farnesyl diphosphate/pyrophosphate; ER, endoplasmic reticulum; GGPP, geranylgeranyl diphosphate/pyrophosphate; MK-4,
menaquinone-4; UBIAD1, UbiA prenyltransferase domain-containing protein-1.
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epoxycholesterol plays a variety of roles during development and

is abundant in mouse ventral midbrain. It activates the liver X

receptor (LXR) in the ventral midbrain during development to

induce stem cell differentiation into dopaminergic neurons

(Broccoli and Caiazzo, 2013; Theofilopoulos et al., 2019).

Findings demonstrate 24(S),25-epoxycholesterol inhibits IL-6

production and degranulation of bone marrow-derived

murine mast cells that express LXRβ (Nunomura et al., 2010).

It inhibits the conversion of desmosterol to cholesterol by

DHCR24/Seladin-1 in CHO-7 and SRD-1 cells (Zerenturk

et al., 2012). This inhibition suggests 24(S),25-epoxycholesterol

triggers feedback mechanisms to regulate the mevalonate

pathway and more understanding is needed.

3 Mechanisms of sterol sensing by
Scap-SREBP

Owing to its insolubility in aqueous solution, the

overaccumulation of cholesterol must be avoided because it

can form crystals that trigger cell death. Thus, a stringent

feedback regulatory system is employed to maintain

cholesterol homeostasis, while at the same time allowing

production of essential nonsterol isoprenoids. Exogenous

LDL-cholesterol is removed from the extracellular milieu by

the low-density lipoprotein receptor (LDLR) through receptor-

mediated endocytosis. The LDLR delivers LDL-cholesterol to

lysosomes where most of the liberated cholesterol is incorporated

into the plasma membrane. Once levels of cholesterol reach a

certain threshold in the plasma membrane, LDL-derived

cholesterol is delivered to the ER membrane through a

mechanism that involves phosphatidylserine and GRAMD1/

Aster proteins (Trinh et al., 2022). The precise mechanisms

for this intracellular trafficking of cholesterol remains to be

determined. The delivery of cholesterol to ER membrane

reduces de novo cholesterol synthesis by inhibiting

transactivation of genes encoding cholesterol biosynthetic

enzymes and the LDLR.

Transcriptional regulation of the mevalonate pathway is

mediated by a family of transcription factors called SREBPs

(sterol regulatory element binding proteins). SREBPs are

unusual transcription factors because they are synthesized

as precursors bound to membranes of the ER with an

N-terminal transcription factor domain, two

transmembrane helices separated by a short loop, and a

large cytosolic C-terminal regulatory domain (Figure 2).

SREBP precursors are associated with the escort protein

Scap. The N-terminal domain of Scap contains eight

membrane spanning helices and a C-terminal domain that

interacts with SREBPs through its regulatory C-terminal

domain (Nohturfft et al., 1998). When cells are deprived of

cholesterol, Scap escorts SREBPs to the Golgi (Radhakrishnan

et al., 2008). In the Golgi, the N-terminal DNA-binding

domain of SREBP-2 is released from the membrane (Brown

et al., 2018) by sequential cleavages catalyzed by a serine

protease called Site-1 protease (S1P) and the

metalloprotease Site-2 protease (S2P). The mature

N-terminal domain of SREBP translocates to the nucleus

and enhances transcription of target genes required for the

synthesis and uptake of cholesterol, including HMGCR and

LDLR genes respectively. Conversely, when cholesterol

accumulates and reaches 5 mol% of total ER lipids, Scap

binds to cholesterol, which triggers a conformational change

in the protein that allows it to bind to ER membrane proteins

called Insig-1 or Insig-2 (Yabe et al., 2002; Yang et al., 2002).

This binding blocks incorporation of Scap-SREBP complexes

into COPII-coated vesicles, resulting in their sequestration in

the ER (Espenshade et al., 2002). ER sequestration of Scap-

SREBP prevents proteolytic activation of SREBPs, blunting

cholesterol synthesis and uptake (Yang et al., 2002). Human

Insig-1 and Insig-2 contain six transmembrane domains and

exhibit 59% identity. Although they play redundant roles in the

regulation of Scap-SREBP, they are differentially regulated in

livers of mice. Insig-1 is a target gene of SREBPs, while

expression of Insig-2 is enhanced under fasting or hypoxic

conditions (Engelking et al., 2004; Hwang et al., 2017).

Scap contains within its membrane domain a region

compromising transmembrane helices 2-6 called the sterol

sensing domain (SSD) that mediates the sterol-induced

binding to Insig (Sever et al., 2003a; Feramisco et al., 2004).

Importantly, introduction of point mutations within the SSD of

Scap abolishes its binding to Insigs, permitting continued

transport to the Golgi and proteolytic activation of SREBPs in

the presence of sterols. Indeed, recent cryogenic electron

microscopy (cryo-EM) studies reveal that the Scap-Insig

complex is maintained by a hydrophobic interface comprised

of transmembrane domains 2, 4, and 5 of Scap and 1, 3, and 4 of

Insig (Kober et al., 2021; Yan et al., 2021). At least five other

proteins that are related to cholesterol metabolism contain an

SSD within their membrane domains (Nohturfft et al., 1998;

Sever et al., 2003b). These proteins include HMGCR, Niemann

Pick Type C 1 (NPC1) and NPC1-Like-1 (NPC1L1), which

mediate cellular uptake of LDL-derived and dietary

cholesterol, respectively (Davies and Ioannou, 2000; Kwon

et al., 2009; Kwon et al., 2011), and Patched and Dispatched

that are modulated by cholesterol-modified Hedgehog (Zhong

and Wang, 2022).

4 Sterol feedback regulation through
HMGCR

Since cloning of the cDNA encoding HMGCR in 1984 (Chin

et al., 1984), extensive studies have sought to understand the

complex regulatory mechanisms that govern the level and

activity of the enzyme. This regulatory system is multivalent
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and involves transcriptional, translational, and post-translational

mechanisms (Brown and Goldstein, 1980; Nakanishi et al., 1988).

Transcriptional regulation of HMGCR is mediated by SREBPs,

whose activation is described in Section 3. Nonsterol isoprenoids

mediate the translational regulation of HMGCR; however, the

mechanism for the response is completely unknown, but may

involve the 5’ untranslated region of HMGCRmRNA (Nakanishi

et al., 1988). Here we will focus on the post-translational

mechanism of the HMGCR regulatory system that is mediated

by sterols (lanosterol, DHL, and oxysterols) and the nonsterol

isoprenoid GGPP (Figure 3).

4.1 Post-translational regulation of
HMGCR

The HMGCR cDNA encodes a protein that consists of 887 to

888 amino acids, which can be divided into an N-terminal

domain (388 amino acids) with eight transmembrane helices

integrated in ER membranes and a C-terminal domain projects

into the cytosol and exerts the enzyme’s catalytic activity

(Liscum et al., 1985; Jo and Debose-Boyd, 2010). In the

1970’s and 1980’s studies demonstrated that the activity of

HMGCR can be regulated by reversible phosphorylation that

is controlled by intracellular levels of cholesterol (Beg et al., 1978;

Mitropoulos et al., 1980; Von Gunten and Sinensky, 1989;

Smythe et al., 1998). This modification is regulated by AMP

activated protein kinase on the residue serine 871 of rat HMGCR

and quickly responds to changes in cellular energy levels

(Gillespie and Hardie, 1992; Sato et al., 1993). The

phosphorylation system has been extensively studied in

fission yeast with the homologues of human Insig-1 and

HMGCR termed, Ins1 and Hmg1p (Burg et al., 2008). The

Hmg1p can be phosphorylated on a conserved residues of

serine 1024 corresponding to serine 871/872 of rat/human

HMGCR respectively, and a nonconserved residue threonine

1028, which are responsible for rapidly responding to

physiological changes in nutrient levels. Here, Ins1-mediated

phosphorylation of Hmg1p is regulated by the yeast MAP kinase

called Sty1/Spc1. The functions of Insig-1 in the yeast and

FIGURE 3
Model for the regulatory mechanisms of HMGCR and UBIAD1 by the mevalonate pathway. Accumulation of intracellular sterols (DHL,
lanosterol, and certain oxysterols all represented as red circles) in the ER membrane (A) trigger Insig binding to the membrane domain of HMGCR.
Insig-associated E3 ligases ubiquitinate HMGCR on cytosolic lysine residues (K89, K248) marking the protein for degradation by 26S proteosomes
and subsequently diminishing mevalonate production and flux through the pathway. (B) Following Insig-mediated ubiquitination of HMGCR, a
subset of HMGCRmolecules is bound by UBIAD1 thereby inhibiting its ERAD. This allows the cell to continue to synthesize a low level of mevalonate
for nonsterol isoprenoids necessary for cellular processes illustrated in Figure 1. GGPP is the last nonsterol isoprenoid produced and serves as a
feedback molecule. (C) As GGPP levels increase to sufficient levels it binds UBIAD1 that is complexed with HMGCR, triggering UBIAD1 dissociation
from HMGCR, and UBIAD1 is transported from the ER to the Golgi in COPII vesicles. HMGCR released from UBIAD1 is subjected to ERAD.
Abbreviations: HMGCR, 3-hydroxy-3-methylglutaryl (HMG) Coenzyme A reductase; UBIAD1, UbiA prenyltransferase domain-containing protein-1;
DHL, 24,25-dihydrolanosterol; ER, endoplasmic reticulum; GGPP, geranylgeranyl pyrophosphate; PDP1, type I polyisoprenoid diphosphate
phosphatase 1 or phosphatidic acid phosphatase type 2 domain containing 2.
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mammalian systems are likely similar as a negative regulator of

Hmg1p in fission yeast and mammalian HMGCR, but the

mechanisms are somewhat different in the two different systems.

Here, we focus on a well-studied mechanism for post-

translational control of HMGCR by ER-associated degradation

(ERAD). Early studies disclosed that when cells are treated with

sterols, the degradation of HMGCR is accelerated more than 5-

fold. Two observations demonstrate that the membrane domain

of HMGCR is crucial for this ERAD (Roitelman and Simoni,

1992). First, deletion of the membrane domain of HMGCR

yielded a catalytically active C-terminal domain whose ERAD

was not accelerated by sterols (Gil et al., 1985). The second line of

evidence was provided by studies from Bob Simoni and co-

workers who showed that a chimeric protein consisting of β-
galactosidase fused to the membrane domain of HMGCR

exhibited sterol-accelerated ERAD similar to that of wild-type

HMGCR (Skalnik et al., 1988; Roitelman et al., 1992). These

findings form the basis for the conclusion that the membrane

domain is the target of post-translational regulation of HMGCR.

The complexity of HMGCR ERAD was first revealed by

studies that employed compactin, a competitive inhibitor of

HMGCR isolated from fungi and the first statin drug (Endo

et al., 1976). When cells were incubated with compactin and

lipoprotein deficient serum, HMGCR protein dramatically

accumulated (>200 fold), owing to depletion of mevalonate

metabolites that mediates feedback regulation of the enzyme

(Brown et al., 1978). Supplying cells with LDL or various

oxysterols accelerated ERAD of HMGCR; however, the

complete reversal of compactin-mediated effects required the

further addition of mevalonate (Roitelman and Simoni, 1992).

These results formed the basis for the conclusion that

mevalonate-derived sterol and nonsterol isoprenoids combine

to accelerate HMGCR ERAD, reducing its half-life more than 10-

fold (Von Gunten and Sinensky, 1989). Subsequent reports

indicated that sterols stimulated ubiquitination of HMGCR,

thereby marking the protein for proteasome-mediated ERAD

from membranes (Inoue et al., 1991; Ravid et al., 2000).

4.2 HMGCR regulation by Insig-mediated
sterol-accelerated ER-associated
degradation

Uncovering the roles of Insigs in the sterol-regulated ER

retention of the Scap-SREBP complex (Yabe et al., 2002)

provided key insight into mechanisms for sterol-accelerated

ERAD of HMGCR. Transmembrane helices 2–6 of both Scap

and HMGCR contain a SSD necessary for Insig binding

through a conserved tetrapeptide sequence YIYF;

mutations in this sequence abolish Insig binding and

render the HMGCR resistant to degradation. HMGCR and

Scap appear to bind to the same site on Insigs as

overexpression of the SSD of Scap titrates Insig from

HMGCR preventing its degradation (Sever et al., 2003a).

Conversely, under low sterol conditions, Insigs do not

bind SCAP or HMGCR and the unbound Insig quickly

undergoes ERAD with a half-life of approximately 1 h.

Extensive studies identified the E3 ubiquitin ligase, gp78,

responsible for Insig-1 ubiquitination and degradation by the 26S

proteasome (Figure 3A) under steady state condition (Song et al.,

2005a). In contrast, when cellular sterols are high, Insig-1

associates with sterols, which leads to stabilizing

conformational changes in Insig-1 where it is recruited to

HMGCR bringing with it gp78. Other ER resident E3 ligases,

TRC8 and RNF145, have additionally been shown to ubiquitinate

HMGCR in an Insig dependent manner (Jo et al., 2011; Menzies

et al., 2018). In knock down or knock out experiments targeting

ligases gp78, TRC8 and RNF145, ERAD of HMGCR was

abolished. The ubiquitination sites on the HMGCR membrane

domain were identified as two cytosolically exposed lysine

residues that are adjacent to transmembrane helices 3 and 7,

respectively. When residues K89 and K248 are mutated to

arginine by site-directed mutagenesis, the membrane domain

of HMGCR is no longer ubiquitinated and degradation of the

protein is blocked (Sever et al., 2003a). However, HMGCR

(K89R, K248R) still interacts with Insig proteins further

demonstrating the role these sites play in the ubiquitination of

HMGCR. This overall regulatory system is conserved in

Drosophila and yeast suggesting that the feedback loop is

fundamental in cell survival (Nguyen et al., 2009; Faulkner

et al., 2013).

Two mouse models were generated to explore the

physiological significance of HMGCR ERAD. In the first

model, mice were generated that express in the liver a

transgene encoding the membrane domain of HMGCR

[HMGCR (TM1-8)] (Hwang et al., 2016). Expression of this

transgene was driven by the human apolipoprotein E (apoE)

promoter which is widely used to generate a liver-specific

expression of a gene of interest. Thus, any change in

expression of HMGCR (TM1-8) could be attributed to

modulation of the protein’s ERAD. Feeding transgenic mice

with a diet supplemented with cholesterol led to acceleration

of HMGCR (TM1-8) ERAD. Conversely, the protein

accumulated when the mice were challenged with a diet

containing the statin lovastatin. The second mouse model

constituted mice harboring knock-in mutations that changed

lysines 89 and 248 to arginine. These mice were designated

HmgcrKi/Ki(Hwang et al., 2016). HMGCR accumulated in livers

of HmgcrKi/Ki; this accumulation occurred despite the

overaccumulation of cholesterol that suppressed activation of

SREBPs and reduction of HMGCR mRNA. When HmgcrKi/Ki

mice were fed a cholesterol diet, HMGCR protein was resistant to

ERAD compared to that in wild type counterparts. Finally, the

statin induced accumulation of hepatic HMGCR is blunted 5-

fold in these mice when compared to wild-type, indicating that

ERAD contributes to the statin induced accumulation of
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HMGCR and is a potential novel drug target to lower cholesterol

synthesis.

Since cholesterol itself does not regulate HMGCR ERAD

in vitro, many studies have sought to identify the sterol product

responsible for these feedback mechanisms. Models focus on the

influence of hydroxylated sterols, of which roles were

demonstrated in early studies (Brown and Goldstein, 1974;

Kandutsch and Chen, 1975). These reports indicate that

oxygenated sterols, especially 25-hydroxycholesterol and 7-

ketocholesterol, can suppress the activity of HMGCR

substantially. However, for complete suppression of HMGCR

activity, oxygenated sterols also require a nonsterol product

provided through the addition of mevalonate. An additional

study demonstrates that the 24,25-dihydrolanosterol regulates

the activity of HMGCR, but still needs mevalonate for complete

degradation of the HMGCR (Song et al., 2005b). Together, this

data concludes that both sterol and nonsterol products are

required for complete suppression of HMGCR activity. The

mechanism of lanosterol or 24,25-dihydrolanosterol in

ubiquitination of HMGCR is not clear, and it is unknown if

these sterols directly associate with HMGCR.

5 Nonsterol isoprenoid regulation
through HMGCR ERAD

5.1 Nonsterol requirement

The identity of the nonsterol isoprenoid that combines with

sterols to maximally accelerate HMGCR ERAD remained a

mystery until 2003 (Sever et al., 2003a). This study showed

that the nonsterol requirement for HMGCR ERAD could be

fulfilled by the addition of geranylgeraniol (GGOH), the alcohol

derivative of GGPP. It is believed that the treated GGOH is

converted to a biologically active form, GGPP, in cells by an

unknown kinase. Our recent work indirectly supports this idea by

showing that when the GGPP dephosphorylating enzyme is

transiently overexpressed in vitro the effect of GGOH on

HMGCR ERAD is blunted (Elsabrouty et al., 2021) as

described in Section 5.3. The effect of GGOH was remarkably

specific in that farnesol (FOH), the alcohol derivative of FPP, did

not combine with sterols to accelerate HMGCR ERAD (Sever

et al., 2003a). Although GGOH triggered ERAD of HMGCR, the

isoprene did not enhance its sterol-induced binding to Insigs or

ubiquitination. Instead, GGOH modulated one of the two

sequential post-ubiquitination steps in HMGCR ERAD. The

first post-ubiquitination step involves the extraction of

ubiquitinated HMGCR across ER membranes by valosin-

containing protein (VCP)/p97, which belongs to the ATPases

associated with diverse cellular activities (AAA) superfamily of

ATPases. Biochemical evidence indicates that GGOH enhances

VCP/p97-mediated extraction of HMGCR (Elsabrouty et al.,

2013). In the second post-ubiquitination step, extracted

HMGCR is dislodged from the ER membrane into the cytosol

by the 19S regulatory particle of the proteasome (19S RP), which

contains six AAA-ATPases. Following cytosolic dislocation,

HMGCR is delivered into the core of the 20S proteasome for

degradation.

5.2 Geranylgeranyl pyrophosphate
sensing through UbiA prenyltransferase
domain-containing protein 1

Our group sought to identify the target protein of GGOH and

understand its role in regulating HMGCR ERAD (Figures 3B,C).

Through a proximity biotinylation assay of associated HMGCR

proteins, a protein called UbiA prenyltransferase domain-

containing protein 1 (UBIAD1) was identified by mass

spectrometry (Schumacher et al., 2015). UBIAD1, also

referred to as transitional epithelial response protein-1

(TERE1), was initially discovered for its role in the synthesis

of the vitamin K2 subtype menaquinonen-4 (MK-4) (Nakagawa

et al., 2010). UBIAD1 catalyzes transfer of a geranylgeranyl group

from GGPP to menadione (MD or vitamin K3) that is, derived

from phylloquinone (PK or vitamin K1), obtained through

dietary green leafy vegetables and meats.

We discovered that sterols stimulate the binding of

UBIAD1 to HMGCR through a reaction that required the

presence of Insigs (Schumacher et al., 2015). Contrastingly,

GGOH caused dissociation of the HMGCR-UBIAD1 complex.

Our group characterized the role UBIAD1 plays in the

stabilization of HMGCR and continues to investigate how it

regulates the nonsterol isoprenoid pathway. Overexpressing

UBIAD1 in a cell system stabilizes the HMGCR protein in the

ER, even under excess amounts of sterols administered in

conjunction with compactin (Schumacher et al., 2015).

GGOH-induced dissociation of this complex was specific

inasmuch as FOH failed to block the interaction. The

stabilization of UBIAD1-HMGCR is dissociated by the

addition of GGPP or GGOH, leading to maximal HMGCR

degradation, and the UBIAD1 enzyme is transported from the

ER to Golgi. The dissociation is specific to GGPP, and FPP or

FOH did not have any effect, suggesting that UBIAD1 is a sensor

of GGPP for inhibiting HMGCR degradation. When

UBIAD1 expression was silenced by RNA interference-

mediated knockdown or CRISPR/Cas9-mediated knockout,

HMGCR ERAD is no longer stimulated by GGPP further

confirming its regulatory role in HMGCR ERAD relieved the

requirement of GGOH for maximal ERAD of HMGCR. In these

UBIAD1 deficient cells sterols alone stimulate HMGCR

ubiquitination and degradation even in the presence of

compactin, indicating the UBIAD1 inhibits the reaction.

During our studies, we found that UBIAD1 unexpectedly

localized to the medial-trans Golgi when cells were cultured

under isoprenoid-replete conditions (Schumacher et al., 2016).
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However, when the cells were deprived of nonsterol isoprenoids

by compactin, UBIAD1 rapidly translocates from the Golgi to the

ER. Golgi localization of UBIAD1 was restored by GGOH, but

not by FOH. In addition, blocking protein export from the ER

results in the accumulation of UBIAD1 in the ER, even when cells

are replete with isoprenoids. Taken together, these findings

indicate that UBIAD1 constitutively cycles between

membranes of the Golgi and ER. Upon depletion of GGOH

(or GGPP), UBIAD1 becomes trapped in the ER to block

HMGCR ERAD, allowing synthesis of mevalonate that

becomes incorporated into nonsterol isoprenoids.

Clinical studies identified missense mutations in human

UBIAD1 that cause the autosomal-dominant eye disease

Schnyder Corneal Dystrophy (SCD) (Weiss et al., 2007). Patients

harboring SCD-associated mutations in UBIAD1 exhibit

progressive opacification of the cornea owing to abnormally high

levels of cholesterol/lipids in the tissue. This opacification results in

vision loss and many patients require corneal transplants (Weiss

et al., 2008; Al-Ghadeer et al., 2011; Du et al., 2011; Tao et al., 2012;

Xie and Li, 2021). Structures of bacterial UbiA prenyltransferases

have been reported; the active sites of UbiA prenyltransferases

are well-conserved across species. SCD-associated mutations

can be mapped around the GGPP binding site of UbiA

prenyltransferases, suggesting they may interfere with GGPP

sensing. Indeed, all SCD-associated variants of UBIAD1 are

sequestered in the ER and refractory to GGOH-induced

transport to the Golgi. Moreover, they block ERAD of

HMGCR in a dominant-negative fashion.

Point mutations that change asparagine-102 in

UBIAD1 to serine (N102S) is one of the most frequent

mutations in SCD families. To examine the physiological

role of UBIAD1 in HMGCR ERAD, we generated mice

designated Ubiad1Ki/Ki that harbor knock-in mutations that

change asparagine-100 to serine (N100S) (Jo et al., 2019). This

mutation corresponds to the N102S mutation in human

UBIAD1. Similar to results with HmgcrKi/Ki mice (Section

4.2), HMGCR protein accumulated in liver and other

tissues of Ubiad1Ki/Ki mice and the protein was resistant to

ERAD stimulated by cholesterol feeding. As a result of this

resistance, the animals overproduced cholesterol as well as

nonsterol isoprenoids including GGOH and ubiquinone-10.

The statin-induced accumulation of HMGCR was also blunted

in livers of Ubiad1Ki/Ki mice. Subcellular localization studies

revealed that lovastatin caused UBIAD1 to translocate from

the Golgi to ER in livers of wild type mice, whereas the protein

remained in hepatic ER membranes of Ubiad1Ki/Ki regardless

of absence or presence of lovastatin. Aged Ubiad1Ki/Ki mice

(>1 year) exhibited signs of corneal opacification, sterol

accumulation, and down-regulation of SREBP processing

(Jiang et al., 2019; Jo et al., 2019). Importantly, studies

using mouse embryonic fibroblasts (MEFs) from Ubiad1Ki/Ki

provided direct evidence that UBIAD1 inhibits a post-

ubiquitination step in HMGCR ERAD. Despite the marked

accumulation of HMGCR in Ubiad1Ki/Ki (compared to wild

type control), the protein continued to become ubiquitinated

in the presence of sterols. In vitro studies together with cryo-

electron microscopy structures of the HMGCR-

UBIAD1(N102S) complex revealed HMGCR TM 7 interacts

with TMs 2-4 of UBIAD1, and complex formation is disrupted

by mutagenesis of specific residues. Our group continues to

study the precise mechanisms through which UBIAD1

inhibits HMGCR ERAD, and the implications of these

interactions have on the statin-induced accumulation of

HMGCR (Chen et al., 2022).

A group characterized the role of UBIAD1 in MK-4

biosynthesis in cells distinct from PK which is supplied

from diet, and from other forms of vitamin K2 provided

by gut bacteria (Nakagawa et al., 2010). This group also

reported the germ line knockout of UBIAD1 in mice,

which demonstrated embryonic lethal and failed to rescue

by the feeding of MK-4 through pregnancy, concluding the

important role of MK-4 in development (Nakagawa et al.,

2014). However, we observed that our UBIAD1 deficient cell

lines displayed accelerated HMGCR ERAD resulting in

reduced products of the mevalonate pathway. This gave us

the idea to use our previously discussed HmgcrKi/Ki mice that

are resistant to degradation and have an overproduction of

HMGCR in their tissues, to rescue the embryonic lethality of

UBIAD1 deficiency. Using this approach, we successfully

generated UBIAD1 knockout mice in HmgcrKi/Ki mice

(Ubiad1KO; HmgcrKI). As reported previously, Ubiad1KO

mouse line expressing normal HMGCR did not give birth

to any UBIAD1 knockout homozygotes, while Ubiad1KO;

HmgcrKI produced homozygotes UBIAD1 knockout mice at

the expected Mendelian ratio. This indicated that the

nondegradable form of HMGCRKI can rescue the

embryonic lethality of Ubiad1KO mouse line (Jo et al.,

2020). We characterized the Ubiad1KO; HmgcrKI mice

which displayed a lack of MK-4 synthesis in all tested

tissues and physiological defects in bone growth and

muscle regeneration, demonstrating potential roles of

UBIAD1 and MK-4 in these tissues and in-depth studies

are underway. Experiments were attempted to rescue the

phenotype by feeding a MK-4 supplemented diet, but it

was not successful. We suspect this is because all forms of

vitamin K undergo the cleavage of side chains and are

converted to MD in enterocytes, making UBIAD1 vital to

fill this role (Ellis et al., 2022).

5.3 Dephosphorylation of geranylgeranyl
pyrophosphate by polyisoprenoid
diphosphate phosphatase 1

Our work demonstrates that cells monitor nonsterol

isoprenoid needs by using UBIAD1 as a sensor to screen
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levels of GGPP and thereby regulating ERAD of HMGCR

(Elsabrouty et al., 2021). These studies show GGPP is the

most effective isoprenoid for regulating the UBIAD1-

HMGCR complex dissociation, indicating the significant

physiological roles of GGPP in regulating downstream

functions such as vitamin K synthesis or modification of

various proteins as shown in Figure 2. Our group sought to

understand what regulates GGPP levels in the cell. Another

group previously identified and characterized an enzyme

called type I polyisoprenoid diphosphate phosphatase 1

(PDP1 or PPAPDC2) (Miriyala et al., 2010). PDP1 is

localized in the ER membrane and plays a role in

hydrolysis of polyisoprenoid diphosphates FPP and GGPP

preferentially over various phospholipids and sphingolipids

(Figures 1, 3C). Our studies showed overexpression of

PDP1 led to depletion of polyisoprenoid diphosphates

FPP and GGPP, causing decreases in protein prenylation

in targets such as Rho family GTPases, resulting in defective

cytoskeletal organization and eventually cell death. The role

of PDP1 in dephosphorylation of FPP and GGPP has a

significant effect on the reduced prenylation of small

GTPases and ERAD of HMGCR through UBIAD1

(Elsabrouty et al., 2021). The knock down of PDP1 by

RNA interference led to an increase in cellular GGPP

levels, which facilitated the dissociation of UBIAD1 and

HMGCR accelerating ERAD of HMGCR. This

accumulation of GGPP resulting from PDP1 knockdown

is marked by an increase in MK-4 synthesis. This

increased cellular GGPP also affects small GTPase

geranylgeranylation, which leads to translocation of small

GTPases to target membrane organelles, and to accelerated

HMGCR ERAD making it a potential future drug target.

However, the endogenous kinase involved in the

phosphorylation of the alcohol forms of isoprenoids FOH

or GGOH is not yet identified.

6 Regulation through squalene
monooxygenase/epoxidase

Synthesis of one cholesterol molecule from acetyl CoA

through the mevalonate pathway requires 11 oxygen

molecules (Summons et al., 2006; Brown and Galea, 2010).

Squalene (30-C) is synthesized by squalene synthase

(FDFT1) from two FPP (15-C) molecules, and oxidized by

squalene monooxygenase (SM, squalene epoxidase, SQLE) to

produce 2,3-epoxysqualene, the first step of oxygenation in

sterol biosynthesis. This conversion by squalene

monooxygenase is considered the second regulatory step

in the cholesterol synthetic pathway (Gill et al., 2011;

Yoshioka et al., 2020). This regulation was first observed

when cholesterol treated cells displayed a marked

accumulation of squalene, and accelerated degradation of

SM/SQLE by proteasomal activity through its N-terminal

degron (Gill et al., 2011). This group further demonstrated

that the N-terminal region of SM is responsible for direct

interaction with cholesterol rather than squalene leading to

cholesterol-induced degradation of SM/SQLE through

MARCH6 (Membrane-associated Ring Finger protein 6,

TEB4, RNF176) E3 ubiquitin ligase (Zelcer et al., 2014).

There are striking differences between the degradation of

SM/SQLE and HMGCR. SM/SQLE degradation is not likely

mediated by Insig proteins or regulated by 24,25-

dihydrolanosterol or oxysterols, but rather by cholesterol.

SM/SQLE activity and protein expression is unchanged by

statins, and a SM/SQLE inhibitor and been identified, NB-598.

Several studies have suggested that SM/SQLE is increased in a

pan-cancer genome wide screening, which indicates genes

related to survival of cancer under hypoxia conditions

(Haider et al., 2016). In colorectal cancers displaying

cholesterol accumulation, SM/SQLE expression was

decreased, and correlated with accelerated cancer

progression and metastasis (Jun et al., 2021). A recent

study in advanced prostate cancer showed SM/SQLE was

increased and its regulator microRNA-205 (miRNA-205)

was lowered. Here, the progression of cancer was able to be

down regulated by the overexpression of miRNA-205 or by the

treatment of SM/SQLE inhibitors (Kalogirou et al., 2021).

Some cancers such as lymphoma showed elevated levels of

squalene and displayed cholesterol auxotrophy. The

lymphoma displayed down regulation of SM/SQLE which

led to increased squalene and altered lipid profiles resulting

in ferroptosis inhibition and cancer cell survival (Kalogirou

et al., 2021).

7 Regulation of mevalonate pathway
through hypoxia

Oxygen deprivation (hypoxia) is sensed by mevalonate

pathway intermediates, and results in increased HMGCR

ERAD. The multi-step conversion of squalene to cholesterol

consumes 11 oxygen molecules. During hypoxic conditions

the demethylation of lanosterol and its close metabolite

24,25-dihydrolanosterol is slowed and accumulates in the

cell (Nguyen et al., 2007). Additionally, Insig proteins are

increased by transcriptional activation through hypoxia-

inducible factor (HIF)-1α. Insigs, particularly Insig-2 in

human fibroblast cells and mouse liver, is actively

transcribed and synthesized by HIF-1α. Increased Insig

proteins together with 24,25-dihydrolanosterol

accumulation triggers accelerated HMGCR ERAD. These

findings were further confirmed in mouse models (Hwang

et al., 2017). However, it is not known whether SM/SQLE is

also regulated by hypoxia. Since hypoxia is tightly associated

with the tumor environment, further investigation is needed
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for cell or cancer type-specific regulation of HMGCR, Insigs

or lanosterol species through HIF-1α for clinical therapeutic

applications.

8 Traveling between the organelles

The development of the electron microscopy

ultrastructure of cellular organelles redefined our

understanding of cellular transport (Palade, 1975). Well

characterized intracellular transport systems include

clathrin-coated vesicles for the endocytic pathway from the

plasma membrane to endosomes, COPII vesicles from the ER

to Golgi anterograde, and COPI from Golgi to ER retrograde

transport (Lee et al., 2004; Mehrani and Stagg, 2022). Cells

utilize ER to Golgi transport to regulate sterol and nonsterol

biosynthesis by two mechanisms, the recycling of Scap-SREBP

and UBIAD1 which is mediated by COPII and COPI protein

complexes. Regulation of Scap-SREBP transport is controlled

by cholesterol and 25-hydroxycholesterol induced Insig

binding which blocks the Scap-SREBP transport to COPII

vesicles on the ER by inhibition of Sar1-dependent coat

protein binding Sec23/24 (Espenshade et al., 2002; Sun

et al., 2005). Under low sterol conditions, the COPII

binding site on amino acid residue Y640 in loop 6 of Scap

is exposed facilitating the movement of the Scap-SREBP

complex to the Golgi. Sec23, one of the coat proteins of

COPII components, is delayed being turned over under

sterol depleted condition, to facilitate the budding of the

cargo (Sun et al., 2007; Brown and Goldstein, 2009; Zhang

et al., 2013). Another study also suggests that cholesterol binds

to loop1 of Scap, causing the conformational change

preventing the exit of Scap by precluding the COPII

binding (Motamed et al., 2011). The other regulatory

protein that cycles between the ER-Golgi is UBIAD1. It

most likely utilizes COPII and COPI vesicles to cycle

between the two organelles as evidenced in a simple

budding assay from isolated microsomes where GGPP can

induce the budding of UBIAD1 in small vesicles (Aridor et al.,

1998; Schumacher et al., 2016; Elsabrouty et al., 2021). Our

studies show UBIAD1 resides in the Golgi under high GGPP

conditions and is translocated to the ER when GGPP levels are

low stabilizing a portion of HMGCR for continued isoprenoid

synthesis. Therefore, our model is that UBIAD1 cycles

between the ER and Golgi sampling GGPP levels using

anterograde and retrograde transport systems. However, the

exact molecular mechanism has not yet been dissected.

9 Conclusions and future scope

This overview of the regulatory mechanisms that govern

the mevalonate pathway, combines early discoveries made

with recent studies from our group. In summary, cells work

to maintain flux through the sterol and nonsterol isoprenoid

branches of the pathway by influencing HMGCR ERAD

through distinct mechanisms. Sterol metabolites

produced, such as the oxysterol 25-HC, interact with

Insig proteins which in turn bind HMGCR and target it

for ERAD. However, methylated sterols such as DHL and

lanosterol trigger HMGCR ERAD, but do not bind Insigs or

activate SREBP processing. Additionally, the

bisphosphonate esters SR-12813 and apomine mimic

methylated sterols in triggering HMGCR ERAD without

binding Insigs, and current efforts are underway to

determine if they act through direct interactions with

HMGCR or through an associated protein. Understanding

the mechanisms for sterol sensing will shed light for future

drug development.

When sterol levels are abundant in the ER membranes,

cells maintain a low level of HMGCR for isoprenoid synthesis.

This portion of HMGCR is protected from ERAD by the

binding of UBIAD1 which is regulated by GGPP levels.

Accumulation of GGPP disrupts UBIAD1 binding to

HMGCR, and UBIAD1 is translocated to the Golgi until

GGPP levels change. The unbound HMGCR protein is then

subjected to ERAD. UBIAD1 cycles between the Golgi and the

ER monitoring GGPP levels and regulating HMGCR ERAD to

maintain the necessary mevalonate needed for isoprenoid

synthesis. A newly discovered point of regulation by our

group is the conversion of GGPP to GGOH by

PDP1 which could potentially be targeted to modulate

GGPP levels, and thereby influence HMGCR stabilization

by UBIAD1.

A hallmark of many cancer types is increased flux

through the mevalonate pathway to ensure continuous

growth and survival. This is achieved through numerous

mechanisms including dysregulating key enzymes and

altering transcriptional tumor suppressors to support cell

proliferation and tumor metastasis (Gobel et al., 2020; Juarez

and Fruman, 2021). Although statins, competitive inhibitors

of HMGCR, have been widely prescribed for decades to treat

hypercholesterolemia, these drugs have been recently

repurposed for anti-cancer therapy. These studies utilizing

various cancer cell lines and animal models have revealed

statin treatment can trigger tumor-specific apoptosis (Gupta

et al., 2013; Tsubaki et al., 2016; Alizadeh et al., 2017; Deng

et al., 2019; Gobel et al., 2019; Kuzyk et al., 2020). Some

patients in clinical trials have exhibited promising results

while others experience statin resistance, illustrating the

need for other drug targets and alternative approaches

(Clendening et al., 2010; Kimbung et al., 2016). It is

highly controversial whether UBIAD1 plays a role in anti-

cancer effect or cancer progression. UBIAD1 has been

known as a tumor suppressor for urological cancer,

castrate-resistant prostate cancer and renal cell carcinoma
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(Fredericks et al., 2013). Also, the role of UBIAD1 in

synthesis of non-mitochondrial CoQ10 was beneficial for

the melanoma cells since it prevented lipid peroxidation and

cell death (Arslanbaeva et al., 2022). It is speculated that the

UBIAD1 product, MK-4, has a beneficial role in the

protection of diverse types of cancer, however an in-depth

investigation is needed in these areas.
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Glossary

25-HC 25-hydroxycholesterol

DHCR24 3β-hydroxysterol Δ24-reductase also called Seladin-1

DHL 24,25-dihydrolanosterol

DMAPP dimethylallyl diphosphate/pyrophosphate

EC epoxycholesterol

ERAD Endoplasmic reticulum associated degradation

FDFT1 farnesyl diphosphate farnesyltransferase 1fanesyl

diphosphate farnesyl transferase 1

FPP farnesyl diphosphate/pyrophosphate

FDPS/FPPS farnesyl diphosphate synthase

FDFT1 farnesyl diphosphate farnesyltransferase 1fanesyl

diphosphate farnesyl transferase 1

GGPP geranylgeranyl diphosphate/pyrophosphate

GGPPS1 GGPP synthase 1

GPP geranyl diphosphate/pyrophosphate

HIF hypoxia-inducible factor

HMGCR 3-hydroxy-3-methylglutaryl (HMG)CoenzymeA reductase

Insig insulin-induced gene

IPP isopentenyl diphosphate/pyrophosphate

LDL low density lipoprotein

LDLR low density lipoprotein receptor

LSS lanosterol synthase

LXR liver X receptor

MD menadione, vitamin K3

MK-4 menaquinone-4, one of the vitamin K2

NPC Niemann Pick Type C

NPC1L1 NPC1-Like-1

PDP1 or PPAPDC2 type I polyisoprenoid diphosphate

phosphatase 1 or phosphatidic acid phosphatase type 2 domain

containing 2

PMK phosphomevalonate kinase

Scap SREBP cleavage activating protein

SM squalene monooxygenase also called SQLE

SREBP sterol regulatory element binding proteins

SSD sterol sensing domain

SQLE squalene epoxidase also called SM

UBIAD1 UbiA prenyltransferase domain-containing

protein-1
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