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Oncogenic role of EAPII in lung cancer development and its activation

of the MAPK–ERK pathway
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Cancer progression involves multiple complex and inter-
dependent steps, including progressive proliferation, an-
giogenesis and metastases. The complexity of these
processes requires a comprehensive elucidation of the
integrated signaling networks for better understanding.
EAPII interacts with multiple cancer-related proteins, but
its biological significance in cancer development remains
unknown. In this report we identified the elevated level of
EAPII protein in non-small-cell lung carcinoma (NSCLC)
patients and NSCLC cell lines in culture. The oncogenic
role of EAPII in lung cancer development was demon-
strated using NSCLC cells with genetic manipulations
that influence EAPII expression: EAPII overexpression
increases proliferation of NSCLC cells with an acceler-
ated transition of cell cycle and facilitates xenograft
tumor growth in vivo; EAPII knockdown results in
apoptosis of NSCLC cells and reduces xenograft tumor
formation. To further explore the mechanism of EAPII’s
oncogenic role in lung cancer development and to elucidate
the potential signaling pathway(s) that EAPII may
impact, we employed antibody array to investigate the
alternation of the major signaling pathways in NSCLC
cells with altered EAPII level. We found that EAPII
overexpression significantly activated Raf1 and ERK1/2,
but not c-Jun N-terminal kinase and p38 pathways.
Consistently, the protein and mRNA levels of MYC and
cyclin D1, which are targets of the mitogen-activated
protein kinase/extracellular signal-regulated kinase
(MAPK–ERK) pathway, are significantly increased by
EAPII overexpression. Taken together, we demonstrated
that EAPII is an oncogenic factor and the activation of
MAPK–ERK signaling pathway by EAPII may contri-
bute to lung cancer development.
Oncogene (2011) 30, 3802–3812; doi:10.1038/onc.2011.94;
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Introduction

We previously identified EAPII (ETS1-Associated Pro-
tein II) as a new protein interacting with ETS1, a
transcription factor involved in tumorigenesis and
metastasis, and this association modulates the transcrip-
tional activity of ETS1 (Pei et al., 2003). EAPII was also
independently identified and designated as TTRAP
(TRAF and TNF receptor-associated protein) through
association with the cytoplasmic domain of CD40,
tumor necrosis factor (TNF) receptor-75, and TNF
receptor-associated factors (TRAFs); this association
inhibits nuclear factor kB activation (Pype et al., 2000).
EAPII protects neuroblastoma cells from apoptosis
induced by MG132, a proteasome inhibitor (Zucchelli
et al., 2009), but the mutant of DJ-1, an oncogene in
cooperation with Ras (Nagakubo et al., 1997), promotes
apoptosis through c-Jun N-terminal kinase (JNK) and
p38 mitogen-activated protein kinase (MAPK) path-
ways in an EAPII-dependent manner (Zucchelli et al.,
2009). EAPII expression also promotes apoptosis of
HL-60 cells induced by hydroquinone, a cytotoxic agent
(Zhang et al., 2007). Furthermore, EAPII is upregulated
in FOXO3a-induced apoptosis, in which FOXO3a turns
TNF receptor signaling to a proapoptotic JNK-depen-
dent pathway (Lee et al., 2008). EAPII also interacts
with promyelocytic leukemia protein (Xu et al., 2008),
which controls key pathways for growth suppression,
induction of apoptosis and cellular senescence (Salomo-
ni, 2009; Lallemand-Breitenbach and de The, 2010).
These observations suggest that EAPII may protect cells
from apoptosis or promote apoptosis in a cell-specific
manner. However, the biological significance of EAPII
in cancer development remains unknown. In this report
we examined expression patterns of EAPII in lung
cancer tissues and non-small-cell lung carcinoma
(NSCLC) cell lines. The data from this regard suggest
that EAPII may be involved in the development of
NSCLC. We further showed that re-expression of
EAPII in NSCLC cells promotes cell proliferation and
enhances xenograft tumor growth, whereas EAPII
knockdown using the short hairpin RNA (shRNA)
technique induces apoptosis and reduces xenograft
tumor growth. Results of the major signaling pathways
analysis using antibody array showed that EAPII
upregulates oncogenic protein MYC and cell cycle
machinery such as cyclin D1. Significantly, extracellular
signal-regulated kinases (ERK1/2), but not JNK or p38
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MAPK pathways, are activated in these models,
suggesting that EAPII is an upstream event of the
Raf–ERK signaling pathway and has an oncogenic role
in lung cancer development.

Results

Increased expression of EAPII in lung carcinomas
To understand the role of EAPII in lung cancer
progression, we carried out immunohistochemistry in a
tissue array (AccuMax, ISU ABXIS Co., Ltd, Korea)
containing 103 cases of lung carcinoma and 44 adjacent
non-neoplastic tissues. We had previously developed a
mouse monoclonal anti-EAPII antibody (42C), and this
antibody recognizes EAPII specifically in western blot
(Pei et al., 2003) and produces specific signals in human
tissue immunohistochemical staining, whereas normal
mouse IgG produces no signal (Figure 1A). EAPII
expression is significantly elevated in lung carcinomas:
Compared with 20% (9/44) in adjacent non-neoplastic
tissue, 90% (93/103) of lung carcinomas showed positive
staining (Figure 1B). In lung carcinomas, elevated
EAPII expression is observed in the cytoplasm, nucleus
or both (Figure 1C). The expression level and localiza-
tion of EAPII change along with the course of lung

cancer development. In Figure 1D, we have listed the
representative images of each stage of lung cancer
development. No EAPII staining was observed in
normal bronchial epithelium (Figure 1Da). With in-
creased cell proliferation, weak staining of EAPII in the
nucleus occurs, and EAPII expression appears in
hyperplastic epithelium (Figure 1Db and c) and
dysplastic epithelium (Figure 1Dd). Furthermore, sig-
nificantly elevated EAPII expression is observed in lung
carcinomas (Figure 1De and f). Overall, cytoplasmic
staining was observed in 84% (78/93) and nuclear
staining in 56% (52/93) of cases analyzed. Whereas
nuclear staining of EAPII can be seen in the highly
proliferative tissue, the majority of lung carcinomas
showed cytoplasmic staining or cytoplasmic and nuclear
staining. This result suggests that EAPII may contribute
to both early and advanced stages of lung cancer
development.

EAPII is highly expressed in most of the lung cancer cell
lines
Antibody 42C was further used in western blot to
determine the EAPII expression level in cancer cell lines.
A single band, migrated at 49 kDa, was observed in
multiple cancer cell lines including breast, prostate, liver,
ovarian and colon cancers, but not in the Madin–Darby

Figure 1 Increased expression of EAPII in lung carcinomas. (A) The representative staining of anti-EAPII antibody 42C and normal
mouse IgG. (B) Percentages of EAPII-positive staining from the array containing 103 lung carcinomas and 44 matched peri-tumor
tissues. (C) Representative images of a tissue microarray stained with 42C: EAPII expression is observed in the nucleus (arrows in a),
cytoplasma (arrows in b) or both the nucleus and cytoplasm (c, d) of NSCLC tissues. (D) EAPII expression in the development of lung
cancer: no EAPII staining is observed in normal bronchial epithelium (a); EAPII is expressed in the nucleus of the hyperplastic
epithelium (arrows in b and c), dysplastic epithelium (arrows in d) and lung carcinomas (e, f).
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canine kidney epithelium, further showing the specificity
of the antibody. Consistent with the immunohistochem-
istry study, a high level of EAPII expression is observed
in nearly all lung carcinoma cell lines tested: In these
NSCLC cells, two bands, 49 and 43, were recognized by
anti-EAPII antibody, and 15 out of 17 lung cancer cell
lines (88%) showed detectable EAPII protein levels,
whereas barely detectable EAPII protein levels were
observed in the immortalized bronchial epithelial cell
lines HBEC3KT and BEAS2B (Figure 2b). Both 43 and
49 kDa bands are specifically recognized by multiple
EAPII antibodies, suggesting that the 43-kDa band is
likely a variant form of EAPII lacking the N-terminus
(see Supplementary Figure S1). Consistently, these
double bands of 43 and 49 kD EAPII protein can be
seen in other types of cancer such as ovarian cancer
(see Supplementary Figure S2).

Overexpression of EAPII promotes cell proliferation in
NSCLC cells
To demonstrate the oncogenic role of EAPII in lung
cancer development, we enforced expression of exogen-
ous EAPII in H292 cells, which have barely detectable
endogenous EAPII protein. H292 cells were infected
with lentiviral EAPII or a control lentiviral vector
FuGw. Like the endogenous EAPII protein, the
exogenous EAPII protein appears as two bands at 49
and 43 kDa, respectively (Figure 3a). Cell growth was

analyzed by the sulforhodamine B method and by
colony formation assays on plates in 10 days as
described in Materials and methods. Compared with
the cells containing the control vector (FuGw), EAPII-
expressing cells grow significantly faster (Figure 3b) and
form much larger clones (Figure 3c). To better under-
stand the impact of EAPII overexpression on cell
growth, we carried out the cell cycle analysis using flow
cytometry. Ninety percent of cells were synchronized in
the G1 phase after 72 h of serum starvation. After
addition of serum, control cells (FuGw) sequentially
proceed through S and G2/M phase, approaching
normal distribution of the cell phase at 48 h, but
EAPII-expressing cells return to normal distribution of
the cell cycle at 30 h, when 29% of control cells are still
in the S phase, suggesting that EAPII promotes G1/S
transition, leading to a faster restoration of the normal
distribution of cell cycle (Figure 3d). Because pulse
labeling of cells by brief BrdU exposures is a sensitive
measurement of cell proliferation, the BrdU assay was
applied in our model. Compared with FuGw control,
EAPII overexpression significantly enhanced the incor-
poration of BrdU into H292 cells from 4% to 19% after
40min of BrdU incubation (Figure 3e), demonstrating
that EAPII expression promotes cell proliferation.

EAPII knockdown induces apoptosis of NSCLC cells
To determine whether the elevated EAPII protein in
NSCLC cells is essential for proliferation and tumor
growth, shRNA was employed to silence EAPII gene
expression. Lentivirus-delivered EAPII shRNA was
used to knock down EAPII expression in NSCLC cells.
Three EAPII shRNAs were selected to target three
regions of human EAPII sequences (accession no.
AF201687) corresponding to the coding regions 300–
320 (clone B1), 791–811 (clone A-11) and 992–1012
(clone A-12) relative to the first nucleotide of the start
codon. All three shRNAs showed variable downregula-
tion of EAPII proteins (both 49 and 43 kDa bands) in
H460, H522 and H1975 lung cancer cells, whereas
EAPII levels did not change in the vector (PLKO) or
scramble control. Reduced cell growth was observed in
cells with lower expressions of EAPII protein compared
with cells infected with vector control or scramble
shRNA (Figure 4a). To determine whether the reduced
cell proliferation is due to apoptotic induction, ApoA-
lert Annexin V kit was employed to characterize the
death feature of H1975 cells with EAPII knockdown.
Clearly, a significant population of early and late
apoptosis (40%) was observed in cells with EAPII
knockdown compared with vector or scramble controls
(10%) 72 h after virus infection (Figure 4b), demonstrat-
ing that EAPII knockdown results in apoptosis of the
lung cancer cells. Furthermore, the time course of
EAPII knockdown was determined by western blot.
EAPII protein levels were significantly reduced at 48 h,
with maximum reduction at 72 h. Consistent with the
expected apoptosis induction by EAPII knockdown,
detection of the cleaved form of poly(ADP-ribose)
polymerase (PARP) protein (85 kDa), an early marker

Figure 2 The expression of EAPII protein from various cancer
cell lines was examined by western blot analyses. (a) EAPII is
expressed in multiple cancer cell lines. The cell lines used included
MCF7 (breast adenocarcinoma), MDA-MB-231 (breast adeno-
carcinoma), PC-3 (prostate adenocarcinoma), DU145 (prostate
carcinoma), SK-HEP-1 (liver adenocarcinoma), SKVO3 (ovarian
adenocarcinoma), DLD-1 (colorectal adenocarcinoma) and
MDCK (Madin–Darby canine kidney) cell lines. Lysates extracted
from cells overexpressing EAPII were used as EAPII marker
(MARK). Protein marker is indicated, and b-actin was used as a
loading control. (b) EAPII expression is determined in immorta-
lized human bronchial epithelial cells (HBEC): (1) HBEC3KT,
(2) BEAS2B and NSCLC cells (NSCLC), (3) H460, (4) H1792,
(5) A549, (6) H1299, (7) H157, (8) H522, (9) H358, (10) Calu-1,
(11) H226, (12) H292, (13) H322, (14) H1648, (15) H1650,
(16) H1944, (17) H1975, (18) HCC827 and (19) SK-MES-1.
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of apoptotic cell death (Kaufmann et al., 1993), tracked
closely along with the time course of EAPII knockdown
(Figure 4c) as significant difference of PARP cleavages
between EAPII knockdown and the control group
occurred in 72 h although trivial PARP cleavages were
seen after 24 h in both control and EAPII knockdown
groups due to cell spontaneous apoptosis or apoptosis
initiated by the lentivirus infection.

Altered EAPII expression in NSCLC cells regulates
growth of tumor xenografts in nude mice
To examine the effect of the altered EAPII expression
on the development and growth of lung cancer, EAPII-
expressing and EAPII-knockdown cell models were
employed in xenograft experiments in nude mice.
EAPII-expressing and FuGw-control H292 cells were
inoculated in nude mice, and their tumorigenicities were
compared. Consistently, tumor growth was strongly
enhanced in EAPII-expressing cells. At 4 weeks post-
inoculation the average tumor volume was 0.3 cm3 in
controls versus 1 cm3 in the EAPII-expressing group

(Figure 5a). Similarly, harvested tumor weight was
significantly increased in the EAPII-expressing group
compared with the control group (Figure 5b). The effect
of EAPII knockdown on tumor growth was determined
in H1975 and H460 cells. The cells were infected with
lentivirus-shRNAEAPII (A12) or control vector (PLKO).
After 24 h, the cells were subcutaneously injected into the
right flanks of the nude mice, and tumor formation was
measured twice a week. As significant apoptotic induc-
tion in vitro occurred 3 days after lentivirus infection
(Figure 4a), inoculation of the cells into mice within 24 h
should provide the equivalent live cells for both EAPII
knockdown and control groups at the starting point
of the experiment. Xenograft H1975 tumors grew very
slowly and became palpable in 8 weeks. Compared with
control, EAPII knockdown significantly reduces tumor
growth in both H1975 (Figure 5c) and H460 (Figure 5e)
regardless of the tumor growth rate. A significant
difference was further confirmed with the comparison
of the average of the tumor weights in both xenograft
tumors (Figures 5d and f). In addition, EAPII protein
levels in the xenograft tumors were checked at the end of

Figure 3 Overexpression of EAPII promotes proliferation of NSCLC cells and accelerates cell cycle progression. H292 cells were
infected with lentiviral EAPII or lentiviral empty vector FuGw, and cell growth was analyzed by sulforhodamine B (SRB) method (b)
and by colony formation assays on 12-well plates in 10 days (c). The protein level of EAPII in H292 clones was analyzed by western
blot with antibody 42C. b-Actin was used as a loading control (a). EAPII-expressing and control (FuGw) H292 cells were deprived of
serum for 72 h, and cells were released from G1 arrest by adding serum, then subjected to flow-cytometric analysis at the indicated time
points (d). EAPII-expressing and control (FuGw) H292 cells were pulse-labeled with 10 mM BrdU for 40min, and cells were stained
with FITC-conjugated anti-BrdU and DNA-content marker 7-AAD, then subjected to flow-cytometric analysis. FACS histogram and
the percentage of BrdU incorporation are shown (e).
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the experiments, and the result clearly showed that the
EAPII expression is correlated with tumor growth (see
Supplementary Figure S3). These results further demon-
strated that EAPII is essential for lung cancer tumor
growth and that the elevated expression of EAPII
contributes to lung cancer development.

Altered EAPII level regulates the activation of the
MAPK–ERK pathway in lung cancer cells
To determine the major molecular events induced by the
altered EAPII expression, an array (cat #CSAA1,
Sigma, St Louis, MO, USA) comprising 224 antibodies
selected from a variety of pathways, including apoptotic
and major cell signaling pathways, was used in the

EAPII-expressing H292 and EAPII-knockdown H1975
cell models. The H292 cells with lentiviral EAPII or
control vector FuGw serve as an oncogenic model and
the H1975 cells with lentiviral shRNAEAPII or vector
control (PLKO) serve as an apoptotic model, as H292
does not express endogenous EAPII and H1975
expresses robust levels of both the 43 and 49-kDa forms
(Figure 2b). Cell lysates from each model were collected
48 h post-infection, and fluorescent dye labeling and
hybridization were carried out according to the manu-
facturer’s instruction (see Supplementary Materials and
Methods). After normalization within and between
arrays, a linear model was used to fit the data, and
the log odds for each protein were calculated. The
differentially expressed proteins or posttranslational

Figure 4 EAPII knockdown induces NSCLC cell apoptosis. H460, H522 and H1975 lung cancer cells were infected with lentivirus-
shRNAEAPII (B1, A11, and A12), control vector (PLKO) or scramble-shRNA and cell growth curves were analyzed by
sulforhodamine B (SRB) method (a). The efficiency of EAPII protein knockdown at 48 h after infection with shRNA was determined
by western blot (shown below each growth curve). Apoptotic cell death was determined by flow-cytometric analysis with annexin V and
PI staining. H1975 cells were infected with lentivirus-shRNAEAPII (B1 and A12), control vector (PLKO) or scramble-shRNA,
harvested 72 h postinfection, and then subjected to apoptosis assay. The percentage of apoptosis, including early and late stage of
apoptotic cell death in each group, is shown in the right panel (b). Time courses of EAPII knockdown and PARP induction after
lentivirus infection were determined in H1975 cells by western blots in vector controls (P) and EAPII knockdown groups (A12 and B1).
Protein marker is indicated on the left, and b-actin was used as a loading control (c).
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modified forms were those with p-values less than
0.05: Upregulation of phospho-Raf1, phospho-ERK1,
ERK5, MYC and cyclin D1 was identified in H292
cells with EAPII overexpression; downregulation of Bcl-
xl, Bcl10, cyclin A, p16ink4a and p19ink4d and upregulation
of caspase-3 active form and SMAC/DIABlO were
identified in H1975 cells with EAPII knockdown (see
Supplementary Figure S5, Table S1 and Table S2). To
generally evaluate the array results, we further validated
protein changes among a broad panel of altered proteins
using western blot. In the EAPII-expression model,
phospho-Raf1, phospho-MEK1/2 and phospho-ERK1/
2 were increased, although the total protein level of each
of these proteins remained the same. In contrast, we did
not detect any change for the JNK and p38 MAPK
pathways (phosphorylation state and total proteins)
(Figure 6a), suggesting that the MAPK–ERK pathway
is one of the downstream targets of EAPII-mediated
signaling. Furthermore, MYC and cyclin D1 were
upregulated and SMAC was downregulated in this
model (Figure 6a). MYC and cyclin D1 are the
downstream events in the MAPK–ERK pathway. This
prompted us to further determine whether MYC and

cyclin D1 are regulated at the mRNA level. To this end,
reverse transcription–polymerase chain reaction (RT–
PCR) was used to amplify specific target genes, and
indeed, results showed the elevated MYC and cyclin D1
at transcript level (Figure 6b). Furthermore, real-time
qRT–PCR was performed and the results showed that
EAPII overexpression increased Myc and cyclin D1
expression levels by 2.13 and 1.68-fold, respectively
(Figure 6c).

In the EAPII knockdown-induced apoptosis model
we validated the upregulation of caspase-3 active form
alone with the downregulation of both 49 and 43 kDa
bands of EAPII. Downregulation of cyclin D1 was
also observed (Figure 6d). PARP cleavage was also
observed along with cell death. Consistent with the
observed effect of EAPII overexpression, reduction of
the phospho-Raf1, phospho-MEK1/2, and phospho-
ERK1/2 occurred in this EAPII-knockdown model
although total protein level remained unchanged
(Figure 6d). To determine whether ERK activity is
important for EAPII’s function, we further tested the
effects of MEK inhibitor PD98059 on the proliferative
role of EAPII. The result showed that treatment with
MEK inhibitor PD98059 significantly reduced the
phosphorylation of ERK1/2 and abolished the cell
growth advantage induced by ectopic expression of
EAPII (see Supplementary Figure S4).

In addition, we determined the phosphorylated form
of H2A histone family member X (g-H2AX), which is
a marker of DNA double-strand break (Fernandez-
Capetillo et al., 2004). With EAPII knockdown,
accumulation of g-H2AX was increased although total
H2AX remained unchanged (Figure 6d), supporting the
recent discovery that EAPII participates in DNA repair
processes for double-strand breaks (Cortes Ledesma
et al., 2009).

Discussion

In this study, we identified elevated expression of EAPII
protein in lung cancer tissues and NSCLC cell lines,
which suggests the biological significance of EAPII
expression during lung cancer development. We further
demonstrated that forced alteration of EAPII expression
modulated cell proliferation in vitro and xenograft lung
cancer in mice. These observations support our hypoth-
esis that EAPII has an oncogenic role in lung cancer
development. Additionally, using antibody array and
western blots we identified the activation of the Raf1–
MEK1/2–ERK1/2 cascade, as evidenced by the phos-
phorylation of Raf1, MEK1/2 and ERK1/2, demon-
strating the role of EAPII in the regulation of MAPK–
ERK pathway. Consistently, MAPK–ERK activation
leads to transcriptional regulation of MYC and cyclin
D1, resulting in increased cell proliferation, accelerated
G1/S transition and tumor formation, suggesting that
the ERK–MYC–cyclin D1 axis can be, at least partly,
an oncogenic mechanism by which EAPII contributes to
lung cancer development.

Figure 5 Modulation of NSCLC xenograft growth by altered
EAPII expression. H292 cells infected with control (FuGw) or
EAPII (a, b), H1975 cells with control (PLKO) or shRNAEAPII
(A12) (c, d), or H460 cells with control (PLKO) or shRNAEAPII
(A12) (e, f) grew in nude mice. Tumors were measured twice a week
unless otherwise indicated, and the mean tumor volume growth
curves were compared (a, c, e). At the end of the experiments, the
tumors were removed and weighed. The comparisons of final
tumor weights were analyzed by the Student t-test. Results
represent means±s.d. (n¼ 6) (b, d, f).
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NSCLC constitutes around 85% of all lung tumors
(Molina et al., 2008). A diverse range of genetic
abnormalities is observed in lung cancer cells, which
may include most common alterations such as inactiva-
tion of the p16/pRb pathway, expression of hTERT and
TP53 mutations, and less common genetic changes in
NSCLC (Singhal et al., 2008; Blanco et al., 2009). These
genetic changes may have a direct role in lung cancer
etiology or an indirect role in regulating cancer-related
signal networks in the context of gene–environment
interactions (Borczuk et al., 2009; Sanchez-Cespedes,
2009). The complexity of cancer demands a comprehen-
sive understanding of the integrated signaling networks.

Overexpression of EAPII occurs in over 80% of
NSCLCs, suggesting that EAPII may have a role in
lung cancer etiology. Among the EAPII-expressing
tissues, 84% (78/93) of lung carcinomas showed
cytoplasmic staining of EAPII. In particular, we
observed that nuclear staining of EAPII occurs in the
highly proliferative tissue, and the majority of lung
carcinomas showed cytoplasmic staining or cytoplasmic
and nuclear staining (Figure 1d). This observation
suggests that cytoplasmic EAPII may be more closely
related to its potential oncogenic role. It has recently
been shown that EAPII functions as a 50-Tyr-DNA
phosphodiesterase and promotes DNA topological

Figure 6 Protein regulation in EAPII overexpression and EAPII knockdown models. Cell lysates were collected from H292 cells with
control or EAPII lentivirus after 72 h of infection and subjected to western blots for the indicated proteins (a). Total RNA, extracted
from H292 cells with control or EAPII lentivirus after 72 h of infection, was used for RT–PCR. PCR analyses of EAPII, MYC, cyclin
D1 and GADPH were conducted under the following conditions: EAPII, 52 1C, 28 cycles; MYC, 52 1C, 28 cycles; cyclin D1, 52 1C, 28
cycles; and GADPH, 55 1C, 28 cycles. Each of these genes and the size of the products are indicated (b). Real-time qRT–PCR was used
to measure the relative gene expression of EAPII, MYC and cyclin D1 in H292 cells infected with lentiviral EAPII and the FuGw
control. Relative gene expression for each gene was obtained by dividing the expression of each gene by the expression of GADPH.
The size of each amplicon is indicated. These results represent at least two independent experiments (c). Cell lysates were collected from
H1975 cells with control (PLKO, Scramble) or EAPII (A12 and B1) shRNA-lentivirus after 72 h of infection and then subjected to
western blot of the indicated proteins (d). Protein marker is indicated on the left, and the asterisks indicate the cleaved forms of
caspase-3 or PARP proteins. b-Actin was used as a loading control.
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conformational changes during DNA synthesis (Cortes
Ledesma et al., 2009). Therefore, it is possible that an
elevated nuclear expression of EAPII favors enhanced
proliferative activity in both normal bronchial epithe-
lium and tumor cells, implying that EAPII may have
different roles in the cytoplasm or nucleus. In addition,
two bands (49 and 43 kDa) of EAPII protein were
detected for both endogenous (Figure 2) and exogenous
EAPII (Figure 3a), suggesting that EAPII variant forms
may exist. It is currently unknown how the function and
subcellular distribution are associated with the specific
form. However, forced expression of the exogenous
EAPII provided both forms of EAPII and EAPII
knockdown silenced both of them (Figures 3a and 4a),
which allows us to analyze the oncogenic role of EAPII
as a whole. Undoubtedly, these observations also raised
critical questions such as: (1) Is the short form the
cleaved product or a variant form? (2) Does the short
form function differently? An independent study is
warranted to fully address these questions. The onco-
genic role of EAPII was first suggested by its pro-
proliferation and pro-tumor activity in H292 and H1650
cells with EAPII overexpression (Figures 3 and 5) and
further validated by the indispensable role of EAPII in
the survival of lung cancer cells using EAPII knock-
down technique (Figures 4 and 5). Protein sequence
alignment of EAPII indicates that EAPII contains an
Exo_endo_phos domain (88–332 aa). Exo_endo_phos is
a conserved domain retaining all six motifs that are
hallmarks for an endonuclease/exonuclease/phospha-
tase superfamily (Exo_endo_phos, PF03372) (Rodri-
gues-Lima et al., 2001). Many lines of evidence indicate
that EAPII may be a component of the signal
transduction pathway with functions other than the
removal of 50-phosphate termini at double-strand DNA
break: (1) EAPII is associated with multiple signal
transduction pathways, including the TNF (CD40)
(Pype et al., 2000) and TGF-b receptor (ALK4)
(Esguerra et al., 2007). EAPII modulates the transcrip-
tional activity of multiple transcription factors. Besides
ETS1, EAPII directly interacts with SMAD3, which is a
transcription factor that mediates TGF-b1 signaling and
represses its activity (Esguerra et al., 2007). (2) EAPII
also responds to extracellular stress. The expression of
EAPII could be induced by IFN-g (Xu et al., 2008). (3)
EAPII is differentially localized in the nucleus and/or
the cytoplasm. EAPII has a role in DJ-1 mutant-
mediated apoptosis through activation of JNK1/2 and
p38 MAPK pathways in neuroblastoma cells (Zucchelli
et al., 2009). In the present study, however, over-
expression of EAPII in lung cancer cells activates the
Raf–MEK–ERK cascade, but not the JNK or p38
MAPK pathway (Figure 6). These results not only
reveal the involvement of EAPII in signaling transduc-
tion but also provide a potential mechanism of the
oncogenic role of EAPII: activation of MAPK–ERK
pathways. It is well known that the Ras–MAPK
signaling pathway regulates cell proliferation (Karnoub
and Weinberg, 2008) and the activation of Ras oncogene
causes lung carcinoma in mice (Johnson et al., 2001). We
speculated that elevated EAPII in lung cancer is one of

the genetic alterations that provide constitutive activa-
tion of Ras–MAPK signaling and subsequently drive
cell proliferation and tumor formation. In support of
this hypothesis, upregulation of MYC and cyclin D1 is
observed in EAPII-expressing cells. This is a logical
outcome of the activation of the MAPK–ERK pathway,
as both MYC and cyclin D1 are oncogenic factors
implicated in lung cancer development (Little et al.,
1983; Schauer et al., 1994; Mitani et al., 2001; Gautschi
et al., 2007; Rapp et al., 2009). MYC promotes cell
proliferation by transcriptionally regulating a broad
spectrum of genes (Eilers and Eisenman, 2008), and
cyclin D1 interacts with cell cycle machinery by
promoting G1/S transition (Aktas et al., 1997). In
contrast to the proapoptosis activity of EAPII in
neuroblastoma cells, EAPII provides a promalignant
activity through the MAPK–ERK pathway.

EAPII knockdown induced severe apoptosis of
H1975 cells and moderate apoptosis in H522 and
H460 (Figure 4). Apoptotic induction by EAPII knock-
down was confirmed by PARP cleavage and activation
of caspase-3 (Figure 4c). It is likely that these lung
cancer cells are highly dependent on the activity of
EAPII in continued cell proliferation. This phenomenon
is called ‘oncogene addiction’ (Hubner et al., 2006).
Although the mechanism of ‘oncogene addiction’ is not
fully understood (Weinstein and Joe, 2008), results from
the antibody array and western blot suggested that
apoptotic induction by silencing EAPII could be due to
(1) blockage of the survival signal such as MAPK–
ERK1/2 or Bcl-xl and (2) upregulation of pro-apoptosis
proteins such as SMAC/DIABLO. Elevated EAPII in
lung cancer may provide pro-survival signals necessary
for the aberrant growth of lung cancer cells through a
constitutive activation of RAS–ERK–MAPK pathway,
which is known to modulate survival factors such as
nuclear factor kB. In addition, both MYC and cyclin D1
are downstream targets of ERK–MAPK pathway
(Chang et al., 2003), and many cancer cells have been
shown to have ‘oncogene addiction’ to these genes
(Weinstein and Joe, 2008; Lee et al., 2010).

Contrary to previous reports showing that EAPII
represses the activation of transcription factors includ-
ing ETS1 (Pei et al., 2003) and nuclear factor kB (Pype
et al., 2000), EAPII provides a different scenario in the
current setting with lung cancer. The possible causes for
the discrepancy are (1) cell-context specificity and (2) the
limit of analysis methods, in which the read-out was
mainly based on the luciferase reporter assays. It is
noteworthy that accumulation of g-H2AX, a marker for
DNA double-strand breaks, occurs in lung cancer cells
following EAPII knockdown, supporting the claim of
the enzymatic activity of 50-Tyr-DNA phosphodiester-
ase of EAPII (Cortes Ledesma et al., 2009). Therefore,
we had speculated that accumulation of double-strand
breaks by EAPII knockdown might lead to apoptosis.
However, our results showed that EAPII knockdown
induces apoptosis in both cells with wild-type p53
(H1975, H460) and with mutant p53 (H522), and
neither antibody array nor western blot analysis
showed a significant augmentation in p53 level or its

Oncogenic role of EAPII in NSCLC
C Li et al

3809

Oncogene



phosphorylation status (data not shown). These results
suggest that lack of EAPII is not sufficient to trigger
p53-dependent apoptosis in this case, although it is
possible that EAPII knockdown-induced apoptosis can
be boosted by p53-dependent or -independent pathways
in cells exposed to genomic insults or DNA-damaging
agents. Further exploring the biochemical role of EAPII
in the regulation of signaling networks and the down-
stream target(s) will be critical to understanding the
biological significance of EAPII.

In conclusion, our results showed that EAPII exerts
proproliferative and antiapoptotic activities in lung
cancer development, and EAPII is involved in the
modulation of MAPK–ERK signaling. Lung cancer cell
growth and survival can be impaired by the inactivation
of EAPII, suggesting the oncogenic role of EAPII and
potentially a novel target in chemointervention.

Materials and methods

Cell lines, transfections, western blots and antibodies
The NSCLC cell lines H460, H1792, A549, H1299, H157,
H522, H358, Calu-1, H226, H292, H322, H1648, H1650,
H1944, H1975, HCC827 and SK-MES-1 were purchased from
ATCC and cultured as previously described (Li et al., 2010).
The immortalized human bronchial epithelial cell line HBEC3KT
was kindly provided by Dr JD Minna (University of Texas
Southwestern Medical Center, Dallas, TX, USA) and BEAS2B
by Dr R Lotan (University of Texas MD Anderson Cancer
Center, Houston, TX, USA). Western blots were developed by
enhanced chemiluminescence. Anti-EAPII rabbit polyclonal
antibody (220) and monoclonal antibody (42C) were previ-
ously described (Pei et al., 2003). Antibodies against activated
caspase-3 (no. 9662), PARP (no. 9542), phospho-Raf1 (no. 9421),
phospho-MEK/1/2 (no. 9154), phospho-ERK1/2 (no. 9101)
and phospho-p38MAPK (no. 9215) were purchased from
Cell Signaling, Inc. (Danvers, MA, USA); phospho-JNK1/2/3
(sc-6254), MYC(sc-764) and g-H2AX(sc-101696) from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); and cyclin
D1(#MS-210-P0) from Lab Vision Products (Fremont, CA, USA).

Immunohistochemistry study and tissue array
Paraffin-embedded lung carcinoma tissue sections were ob-
tained from the Tumor Bank at the Winship Cancer Institute
of Emory University with approval from Emory IRB. Tissue
array was purchased from AccuMax (ISU ABXIS Co., Ltd.),
which contains 103 cases of lung carcinoma and 44 adjacent
non-neoplastic tissues. All samples were anonymous, and the
diagnosis of normal or tumor tissue was reconfirmed by one of
the authors (Fan, pathologist). Immunohistochemical staining
was done as follows: Sections were deparaffinized and re-
hydrated; microwave-heated antigen retrieval was performed
in 10mM citrate buffer, pH 6.0, for 3� 5min followed by
incubation in proteinase K (DAKO, Carpinteria, CA, USA)
for 10min. Sections were treated with 3% H2O2 for 10min to
quench endogenous peroxidase activity and blocked with 1.5%
normal serum for 20min. 42C (a monoclonal EAPII antibody)
was incubated at a dilution of 1:50 at room temperature for
1 h. Secondary biotinylated anti-mouse antibody was used at a
dilution of 1:200 (Vector Laboratories, Burlingame, CA, USA)
for 30min at room temperature. The sections were counter-
stained with hematoxylin. A mouse negative IgG (DAKO) was
used as a negative control in each staining process.

Generation of EAPII-expressing or shRNA lentiviruses
EAPII-expressing lentiviruses (EAPII-FuGw) were generated
in the FuGw vector, a self-inactivating and replication-
incompetent lentiviral green fluorescent protein-expressing
vector (Lois et al., 2002), by inserting the PCR fragment of
EAPII with BamHI/EcoRI sites into a FuGw to replace green
fluorescent protein DNA. FuGw was used as a control.
Lentiviral shRNAs against human EAPII (AF201687), empty
vector control (pLKO.1 empty vector control) and the control
lentiviral scrambled shRNAs were purchased from The RNA
Consortium lentiviral shRNA library (TRC-Hs1.0) (Open
Biosystems, Huntsville, AL, USA). 293FT cells were seeded in
a 10-cm culture dish in DMEM medium supplemented with
10% fetal bovine serum (Sigma), L-glutamine (10ml/l),
penicillin and streptomycin (100 units/ml) the night before
transfection. 293FT cells were transfected at a confluence of
40–50% with 8.5 mg each of the lentiviral vectors along with
4.2mg of pVSVG and 6.25mg of D8.91 plasmids using Fugene
VI (Qiagen, Valencia, CA, USA) as per the manufacturer’s
directions, and 20% FBS was added 24 h post-transfection.
Cell supernatant was collected 48 h post-transfection and then
used for further infections.

Cell proliferation, colony formation, cell cycle and BrdU assays
Cell proliferation assay. Cells were seeded at densities of
approximately 2� 103 cells per well in 96-well tissue culture
plates. Surviving cell numbers were estimated by sulforhoda-
mine B assay as previously described (Li et al., 1999). Colony
formation assays were carried out as described previously
(Wang et al., 2008). Briefly, cells (single-cell suspension) were
plated in six-well plates at a density of 100 per well. The
medium was replaced every 3 days, and cell colonies were
stained for 14 days with crystal violet (0.1% in 20%
methanol). Pictures were taken using a digital camera to
record the result. Cell cycle analysis was performed by
propidium iodide staining: 5� 105 cells were harvested and
fixed in 70% ethanol overnight; cells were washed twice in cold
phosphate-buffered saline and resuspended in 1ml of phos-
phate-buffered saline containing propidium iodide (20mg/ml)
and 50ml RNase A (10mg/ml). Cells were subjected to
fluorescence-activated cell sorting (FACS) analysis using BD
FACSCanto II (32) (BD Biosciences, San Jose, CA, USA).
Annexin V-PE apoptosis detection kit (BD Biosciences, San
Jose, CA, USA) was used to detect apoptotic cells as
previously described (Pei et al., 2005). The rate of DNA
synthesis was determined by the BrdU Flow Kit (BD
Biosciences, San Diego, CA, USA) according to the manu-
facturer’s protocol. Briefly, 1� 106 cells were seeded in 10-cm
dishes. After overnight culture, cells (B50% confluent) were
labeled with 10mM BrdU for 40min, harvested by trypsiniza-
tion, and then fixed and permeabilized with BD Cytofix/
Cytoperm buffer (BD Biosciences, San Jose, CA, USA). The
incorporated BrdU was immunostained with FITC-conjugated
anti-BrdU, and 7-AAD was used to stain DNA contents.
Cells were subjected to FACS analysis. FLOWJO software
(Ashland, OR, USA) was used for flow cytometry analysis.

Reverse transcription–PCR and real-time qRT–PCR analysis
Reverse transcription–PCR assays were performed as pre-
viously described (Li et al., 1999). First-strand cDNA was
produced from total RNA, extracted from H292 cells with
control or EAPII lentivirus after 48 h of infection using the
iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA),
and were PCR-amplified with primers specific to EAPII,
MYC, cyclin D1 or glyceraldehyde-3-phosphate dehydrogenase
(GADPH): MYC-F, 50-CCTCAACGTTAGCTTCACCAA-30;
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MYC-R, 50-TTTGATGAAGGTCTCGTCGTC-30; cyclin D1–F,
50-CCCTCGGTGTCCTACTTCAAA-30; cyclin D1–R, 50-CCA
GGTTCCACTTGAGCTTGT-30; EAPII-F, 50-GAATGTGTCA
GGAAATGAGC-30; EAPII-R, 50-AATAATGTGTCCCTCT
TCTGC-30; GADPH-F, 50-CACAGTCAAGGCTGAGAATG
GGAA-30; and GADPH-R, 50-GTGGTTCACACCCATCAC
AAACAT-30. Real-time amplification was performed in a final
volume of 25ml, containing 30 ng of cDNA from the reversed
transcribed reaction, primer mixture (0.3 mM each of sense and
antisense primers) and 12.5ml of 2� SYBR Green Master Mix
(A&B Applied Biosystems, Foster City, CA, USA) using the
Sequence Detector System (7000 Sequence Detection System
and software; A&B Applied Biosystems). The following primers
were used: MYC-F, 50-TCAAGAGGTGCCACGTCTCC-30;
MYC-R, 50-TCTTGGCAGCAGGATAGTCCTT-30; GAPDH-F,
50-TTCAACAGCGACACCCACTC-30; GAPDH-R, 50-GTG
GTCCAGGGGTCTTACTC-30; EAPII-F, 50-CTGCTGCTT
GTAAACTTCGT-30; EAPII-R, 50-AGGAAATCTACCAC
AGTCCAG-30; cyclin D1-F, 50-CCTCGGTGTCCTACTTC
AAA-30; cyclin D1-R, 50-CTCCTCGCACTTCTGTTCCT-30.
The standard amplification program, comprising 40 cycles of
15 s at 95 1C and 30 s at 60 1C, was used. Fluorescent product
was detected at the last step of each cycle. The relative level of
each amplicon was normalized by GADPH mRNA level using
the comparative CT method (Schmittgen and Livak, 2008).

Xenograft tumor model in nude mice
Under an IACUC-approval protocol, 2� 106 cells in 100 ml of
phosphate-buffered saline of each cell line with altered EAPII

expression, and controls were injected subcutaneously into
the right anterior flank of 6- to 8-week-old athymic nude mice
(Charles River Laboratories, Wilmington, DE, USA). Tumors
were measured twice weekly, unless otherwise indicated, with a
calipers, and tumor volumes were calculated using the formula
[0.52(L�S2)], where L represents the largest tumor diameter
and S represents the smallest tumor diameter as previously
described (Pei et al., 2005).
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