
Data Descriptor: A dataset
quantifying polypharmacy in the
United States
Katie J. Quinn1 & Nigam H. Shah1

Polypharmacy is increasingly common in the United States, and contributes to the substantial burden of
drug-related morbidity. Yet real-world polypharmacy patterns remain poorly characterized. We have
counted the incidence of multi-drug combinations observed in four billion patient-months of outpatient
prescription drug claims from 2007–2014 in the Truven Health MarketScan® Databases. Prescriptions are
grouped into discrete windows of concomitant drug exposure, which are used to count exposure incidences
for combinations of up to five drug ingredients or ATC drug classes. Among patients taking any prescription
drug, half are exposed to two or more drugs, and 5% are exposed to 8 or more. The most common multi-
drug combinations treat manifestations of metabolic syndrome. Patients are exposed to unique drug
combinations in 10% of all exposure windows. Our analysis of multi-drug exposure incidences provides a
detailed summary of polypharmacy in a large US cohort, which can prioritize common drug combinations
for future safety and efficacy studies.
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Background and Summary
Concomitant use of multiple prescription drugs (‘polypharmacy‘) is increasingly common, with 10%
of the population1,2 and 30% of older adults in the United States taking five or more drugs
simultaneously1–3. Similarly high prevalence is reported in other countries (e.g., the United Kingdom4,
Sweden5, China6, Brazil7, and India8. The prevalence of polypharmacy is driven by high rates of
comorbidities (in the United States in 2012, 26% of all adults, and 61% of adults over 65 years of age had
two or more chronic conditions9), and exacerbated by clinical practices enabling overprescription and
insufficient monitoring10,11. Drug-related morbidity has become a substantial healthcare burden: in the
United States, adverse drug reactions are prevalent (causing 4 hospitalizations per 1000 people each
year10), serious (among top 10 common causes of death12), and expensive (with associated annual costs
estimated at US$30billion13 to US$180billion14).

Exposure to multiple drugs puts patients at additive risk of each single drug’s potential adverse
outcomes. In a study of an elderly cohort, the strongest predictor of a potentially harmful medication was
the number of drug prescriptions15. But drugs can also interact to increase risk beyond ‘the sum of the
parts’, either by canceling an intended drug action, enhancing existing risks, or creating new risks. It’s
estimated that over 20% of adverse drug reactions are due to underlying drug interactions16,17, and that
risk of drug interaction increases with the number of drugs taken18. However, despite increasing
awareness of morbidity related to polypharmacy, multi-drug exposure patterns remain poorly
characterized.

Insurance claims records enable analysis of prescription practices in a large patient cohort, even for
drug regimens that would be rare in smaller cohorts. The 21st Century Cures Act, enacted in December
2016, recognizes the value of, and mandates the use of, observational patient-experience data, such as
insurance claims, for drug surveillance19. The relative strengths of insurance claims for characterizing
population-level drug use are that data reflect prescriptions that are actually dispensed to the patient, and
capture prescription information across very large cohorts. As for most sources of drug use data, whether
patients actually ingested the drugs remains a limitation.

Here, we publish a dataset of multi-drug exposure incidence in a large insured cohort in the United
States, both in terms of drug ingredients and drug classes. We analyze outpatient prescription drug claims
from the Truven Health MarketScan® Research Databases, which contain health coverage records for over
100 million employees, dependents, and retirees in the United States from 2007–2014, amounting to over
4 billion months of patient observation. Table 1 summarizes relevant metrics of the database. Prior to our
work, Sutherland et al. have reported on co-prescription trends using self-reported data from a small but
nationally-representative cohort of 10,000 NHANES participants. The frequency of some drug-pair
exposures among elderly participants was also reported2. To our knowledge, ours is the first study to
quantify the incidence of specific combinations of more than two drugs. Figure 1 summarizes our
workflow of processing prescription drug claims into discrete exposure time-windows, and then counting
concomitant drug exposures for drug ingredients and ATC-II drug classes.

This dataset will benefit researchers who study multi-drug safety or efficacy. The most common multi-
drug combinations can be prioritized for subsequent studies of multi-drug safety or efficacy. As a side
benefit, by mapping drugs to disease based on indications, the dataset can also provide a summary of
comorbidities that drive the observed prescription trends.

Prescription claims database summary statistics:

Number of patients 82 million

Median months of patient observation 30

Range of months of patient observation (10% to 90%) 8 to 84

Number of months of patient observation 3.0 billion

Number of months with drug exposures 1.7 billion

Fraction of all months of patient eligibility with any
drug exposures

57%

Total number of prescription drug claims 3.2 billion

Drug combination counting summary statistics :

Number of discrete 30-day window drug exposures 5.1 billion

Number of unique drug ingredient combinations 220 million

Fraction of windows with unique drug ingredient
exposure

10%

Number unique drug class combinations 39 million

Fraction of windows with unique drug class exposure 2%

Table 1. Summary of Truven Health MarketScan Research Database prescription data and drug
combination counts.
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This dataset will also benefit practitioners by enabling risk stratification of patients based on the multi-
drug combinations they are on; for example, the dataset enables analyses identifying associations of
specific drug combinations with health outcomes (such as emergency department visits), which could
enable patient risk stratification at the time of medication reconciliation.

Ultimately combined analyses spanning both safety and risk stratification will enable systematic
progress towards safe polypharmacy. With roughly 40 million individuals experiencing polypharmacy in
the US and as many as 10% of all adults worldwide, the existence of such datasets is crucial for a data-
driven quantification of which drug combinations are risky.

Methods
Data source
Prescription drug claim data were derived from the Truven Health MarketScan 2007 to 2014 Commercial
Claims and Encounters and Medicare Supplemental and Coordination of Benefits Databases, which were
accessed via the Stanford Center for Population Health Sciences Data Core. Further details about the
Data Core and its operating procedures are available at http://med.stanford.edu/phs/phs-data-center.
html. These databases represent the health services of approximately 100 million employees, dependents,
and retirees in the United States with primary or Medicare supplemental coverage through privately
insured fee-for-service, point-of-service, or capitated health plans. The Commercial Claims and
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Figure 1. Data analysis workflow to generate drug combination exposure incidences from prescription

drug claims. Prescription drug claims (a) are scanned to create discrete exposure windows (c) for the set of

drugs (b). These windows are summarized to produce ‘exact’ exposure incidences at the drug ingredient level

(d). This table is the substrate for counting the incidence of exposure to ‘at least’ drug combinations (e).

Exposure counts for combinations of N= 1 to 5 drug ingredients are published in Data Record 1. Exact drug

ingredient combinations (d) are translated to drug class combinations (f), keeping only unique classes. Again,

these are used to count the exposure incidence of ‘at least’ drug class combinations (g). Exposure counts for

combinations of N= 1 to 5 drug classes are published in Data Record 2.
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Encounters, and Medicare Supplemental and Coordination of Benefits populations comprise 90 and 10%
of the total cohort respectively, with a mean age of 33 and 73 years and gender fraction of 49 and 45%
male, creating a combined cohort with a mean age of 37 years and 48% male. Patients are observed for a
median of 29 months. We analyzed the outpatient prescription drug claims of 150 million patients over
4.3 billion months of patient enrollment. We focus on outpatient prescriptions since 90% of all
prescriptions are in the outpatient setting20, and inpatient drug treatment patterns differ substantially.

Drug list curation and drug mapping
We curated a set of 1429 drugs, defined by RxNORM ingredient level, by beginning with the 1165 drug
ingredients occurring in all of DrugBank, RxNORM, and UMLS (previously curated in our lab21), adding
drug ingredients occurring commonly in the Truven Health MarketScan Databases, and removing
vaccines, and vitamins and minerals (which are more often obtained over-the-counter than by
prescription).

Of this set of 1429 drug ingredients, 864 occur in the Truven Health MarketScan Database
prescription claims. Drugs are identified in prescriptions using National Drug Codes (NDCs). We built a
mapping of NDCs to RxNORM-defined drug ingredients using the NLM’s RxMix API to match on
strings containing drug names, first with strict matching (which maps the majority of NDCs with very
low error), then with approximate string matching (which maps the remaining NDCs but requires
manual validation of string matches).

Combination drugs (e.g., Norco) count as exposure to each drug ingredient (e.g., acetaminophen and
hydrocodone). The approximate drug cost per day was calculated as the median payment-per-days-
supply for all patient orders of that drug. Drugs are also classified by Anatomical Therapeutic Chemical
(ATC) class at the second level (‘therapeutic main group’), by mapping RxNORM identifiers to ATC
codes. The 864 unique drug ingredients in the dataset map to 79 unique second-level ATC classes.

Extracting discrete exposure windows from drug prescriptions
To count concomitant drug exposures from prescription claims, we first scanned drug prescriptions into
discrete exposure windows. We defined exposure periods as non-overlapping 30-day windows. We
selected a 30-day window because it is the most common prescription duration, and thus a natural
timescale for prescriptions. A patient is considered exposed to a drug starting from the date the
prescription and for the duration of the days-of-supply. If any of those days overlap with a window, the
patient is considered exposed in that window (Fig. 2a). This method is computationally efficient and
provides a good approximation of concomitant exposure.

As a known limitation, the method overestimates exposures, and thus concomitant exposures, if a
patient does not take the prescription for its full duration. As shown in Fig. 2b, non-overlapping windows
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Figure 2. Illustration of conversion of drug prescription date of service and days of supply into discrete

exposures. (a) Shows three typical prescription patterns, converted to exposure in three windows, using non-

overlapping 30-day windows. (b) Shows uncommon prescription patterns that introduce error in interpretation

of concomitant exposure: While A and B are separated by only a few days, and may be considered concomitant,

they are not counted as concomitant exposures; While Drugs C and D are separated by many days, they are

recorded as concomitant exposures in Window 2.
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introduce error when either: 1) non-concomitant prescriptions are separated by less than 30- days yet
both overlap with a particular exposure window; or conversely 2) when prescriptions separated by only a
few days fall into different exposure windows. We create exposure windows using a simple integer
division of patient age-in-days by 30, which is computationally efficient. However this creates partial
windows of observation at the beginning and end of each patient’s eligibility period, with a mean duration
of 15-days. Given that patients are observed for a median of 29 months, this error is present only in about
5% of windows. However, these 30-day non-overlapping windows simplify computation, with a low error
rate, for the purposes of ranking the most common multi-drug exposures.

Using this method, individual patient prescription claims were converted into drug exposures in
discrete windows (Fig. 1c), resulting in 5.1 billion drug exposures. This dataset was then used to count
concomitant drug exposure.

Counting concomitant multi-drug exposures
There are two ways to count multi-drug exposure: exposure to an ‘exact’ set of drugs (and no additional
drugs), and exposure to ‘at least’ a particular set of N-drugs (which may or may not be taken with
additional drugs). Each of these variants captures valuable information: ‘exact’ counts quantify the
absolute number of concomitant drug exposures, and how many patients are exposed to a precise sets of
drugs; ‘at least’ counts are important for knowing all patients exposed to any given drug combination.
See example shown in Fig. 1: Concomitant exposure to drug ingredients A (class Q), B (class Q), and
C (class R) will contribute a count to A+B+C for ‘exact’ drug ingredient exposure, and each of A, B, C,
A+B, A+C, B+C, and A+B+C for ‘at least’ drug exposure.

This method counted 220 million unique ‘exact’ drug combinations exposures, with patients exposed
to a median of 2 drugs and 95th-percentile of 8 drugs per window (Fig. 3a). In approximately 10% of
windows, patients were exposed to a unique set of drugs, never observed elsewhere in the entire database.
This is in agreement with a recent study of treatment pathways that found that 10% of diabetes and
depression patients and almost 25% of hypertension patients received therapeutic regimens that were
unique within a 250-million-large patient cohort22.

To count ‘at least’multi-drug exposures, we created a drug-based index to the summarized 220 million
‘exact’ counts. (This required much less computation than indexing on the original 5.1 billion exposure
windows.) We then performed an intersect operation for each ‘at-least’ drug combination of interest.
Counting all possible drug combinations is infeasible, and unnecessary since most combinations are
never observed. The challenge was to create a list of N-drug combinations likely to have high
concomitant exposures. We achieved this with a ‘greedy’ approach of constructing N-drug combinations
from N-minus-1 subset drug combinations observed in at least 1000 exposure windows, for each of N= 2,
3, 4 and 5 drugs.
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Figure 3. Distributions of the number of unique concomitant drug exposures per patient-months.

Distributions are for concomitant exposures to (a) drug ingredients and (b) drug classes, truncated at 10, across

the 3.0 billion observed patient-months, including 1.7 billion with prescription drug exposures. (The 43%

(= 1.3/3 billion) of patient-months with no drug exposures are not shown on these plots.) Patients taking any

prescription drugs are exposed to a median of 2 and 95th-percentile of 8 drug ingredients, and a median of 2

and 95th-percentile of 7 unique drug classes.
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An additional metric of interest is the extent to which drug combinations are concomitant beyond
what would be expected by chance, given their marginal frequencies. Drug combinations’ over-
representation was defined as the ratio of the observed-to-expected drug combination incidence in two
ways: first (for N>1) based on single-drug frequencies, which gives the overall overrepresentation; and
second (for N>2) based on the minimum of each of N permutations of (N-1)+1 drug subsets, which is
greater than the single-drug overrepresentation, and gives the overrepresentation of the drug
combination beyond its subsets. (As an example, the co-incidence of drugs A+B+C is compared to the
incidence expected by chance based on the incidences of drugs A+B and C, A+B and B, and B+C and A.
The smallest overrepresentation is reported. The second method is only reported for N>2, because the
two methods are equivalent for N= 2.)

We repeated these computations of ‘exact’ and ‘at least’ exposure counts, and their overrepresentation,
for the 79 second-level ATC drug classes. Second-level ATC drug class names were extracted from the
website of the WHO Collaborating Centre for Drug Statistics Methodology. Though one drug ingredient
can map to multiple ATC classes, we count only the primary class. Continuing the example in Fig. 1,
concomitant exposure to drugs from classes Q and R would be counted as (iii) Q+R for ‘exact’ drug class
exposure, and (iv) Q, R, and Q+R for ‘at least’ drug class exposure. (Note that drug classes are counted
only once, even if a patient is taking two or more drugs from a particular class). This calculation yielded
39 million unique exact drug class exposures, with patients exposed to a median of 2 and 95th-percentile
of 7 drug classes per window (Fig. 3b).

Code availability
Code used to generate the dataset is available on a public github repository (https://github.com/katieq/
QuantifyingPolypharmacy). To avoid disclosing the format of the Truven Health Marketscan Databases,
the code begins at the step of analyzing prescription data extracted into a data-frame with columns for a
patient identifier, drug identifier, age of prescription, and days of supply.

Data Records
The dataset of exposure counts for drug and drug-class combinations is publicly available online at Dryad
(Data Citation 1) in 12 tab-delimited data files and a README.txt file. The tab-delimited data files are
outlined below and in Table 2. The accompanying README.txt file contains filenames and descriptions
of file contents. Data files can be accessed directly by their associated URLs, for example by reading into R
with the readr package’s read_tsv function. Table 2 summarizes attributes of the underlying patient
claims data in the 2007–2014 Truven Health MarketScan Commercial and Medicare Supplemental
Databases.

Data Record 1: Drug ingredient combination exposure counts
Data Record 1 contains the exposure incidences for the most common combinations of N= 1-to-5 drugs
in five files, with one row per combination. All single drugs (N= 1) and drug pairs (N= 2) are included;
for N= 3-to-5, drug combinations with at least 10,000 exposure counts are included. Exposure counts
below 100 patient-windows are reported as ‘o100’ to protect patient privacy. Each row contains N+5
tab-delimited columns comprising: the name for each drug ingredient, the count of windows with
concomitant exposure to this drug combination, potentially concomitant with additional drugs
(atleast_exposure_count), the count of windows with concomitant exposure to this drug combination and
no additional drugs (exact_exposure_count), the ratio of the two previous columns (fraction_exact), the
ratio of the atleast_exposure_count to the total number of observed windows with any prescription
(fraction_all_windows), overrepresentation beyond expected based on marginal frequencies of single
drugs (observe_per_expect_1s) and (N-1)+1 drug subsets (observe_per_expect_N1), and an estimate of the
daily cost of the drug combination (estimate_drug_combo_cost_per_day).

Data Record 2: Drug class combination exposure counts
The contents of Data Record 2 are equivalent to Data Record 1, but for level-II ATC drug classes instead
of drug ingredients. The record also contains five files for combinations of N= 1-to-5 drug classes, with
one row per combination. As for Data Record 1, all single drug class (N= 1) and drug class pairs (N= 2)
are included, and drug class combinations with at least 10,000 exposure counts are included for N= 3-to-
5; exact exposure counts of less than 100 are reported as ‘>100’. Columns are equivalent to Data Record
1’s, with drug class names replacing drug ingredient names. However daily cost can not be calculated at
the drug class level.

Data Record 3: Drug mappings
Data Record 3 contains two tab-delimited files containing the list of 1429 drug ingredients and
93 corresponding ATC level-2 drug classes considered in this study. The drug ingredient file contains
one drug per row sorted alphabetically by drug ingredient name, with five columns for the drug
ingredient name, RxNorm CUI number, UMLS CUI, Drug Bank ID, ATC code, second-level ATC drug
class name, and estimated median cost per day. The drug class mappings file contains one ATC level-2
drug class per row sorted alpha-numerically by ATC class, with two columns for the ATC code and
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name. (Thus the ATC level-2 class names in the drug ingredient file are redundant, but included for
convenience).

Technical Validation
We validated our method in three ways. First, we compared our computational method’s results
to manual counting, by reading the dates and days-supply for a random sample of ten patients’ 260
drug prescriptions. The counts of concomitant drug exposures matched perfectly, indicating that our
method does indeed accurately extract concomitant drug exposures as intended without errors in
arithmetic.

Second, we conducted a sensitivity analysis on the duration of the discrete exposure window, by
counting concomitant drug exposures in a random sample of 10,000 patients with an exposure window of
10, 20, 30, 40, 50, 60, and 90 days. Since all prescriptions are considered ‘exposures’ for the entire

Description File or column name

Data Record 1: Drug ingredient combination exposure counts

Files 5 files, for combinations of N= 1-to-5 drug ingredients db_drugs_Ns.tsv

Columns Drug ingredient name (N columns) drug_name_A

Count of windows with concomitant exposure to this drug combination: potentially
concomitant with additional drugs

atleast_exposure_count

Count of windows with concomitant exposure to this drug combination and no
additional drugs

exact_exposure_count

Estimate of the daily cost of the drug combination estimate_drug_cost_per_day

Fraction of exposure counts that occur with no additional drugs (equal to the ratio of
the exact to at-least exposure counts)

fraction_exact

Ratio of the atleast_exposure_count to the total number of observed windows with
any prescription

fraction_all_windows

Ratio of the combination’s observed to expected incidence (atleast_exposure_count)
based on marginal frequencies of single drugs (applicable for N>1).

observe_per_expect_1s

Ratio of the combination’s observed to expected incidence (atleast_exposure_count)
based on marginal frequencies of (N-1)+1 subsets (applicable for N>2).

observe_per_expect_N1

Data Record 2: Drug class combination exposure counts

Files 5 files, for combinations of N= 1-to-5 drug classes db_atc_classes_Ns.tsv

Columns Drug class code (N columns) atc_code_A

Drug class name (N columns) atc_name_A

Count of windows with concomitant exposure to this drug combination: potentially
concomitant with additional drugs

atleast_exposure_count

Count of windows with concomitant exposure to this drug combination and no
additional drugs

exact_exposure_count

Fraction of exposure counts that occur with no additional drugs (equal to the ratio of
the exact to at-least exposure counts)

fraction_exact

Ratio of the atleast_exposure_count to the total number of observed windows with
any prescription

fraction_all_windows

Ratio of the combination’s observed to expected incidence (atleast_exposure_count)
based on marginal frequencies of single drugs (applicable for N>1).

observe_per_expect_1s

Ratio of the combination’s observed to expected incidence (atleast_exposure_count)
based on marginal frequencies of (N-1)+1 subsets (applicable for N>2).

observe_per_expect_N1

Data Record 3: Drug mappings

Files 2 files, for the drug ingredient list and drug class list

File: Drug ingredient mappings drug_mappings_ingredients.tsv

Columns Drug ingredient name drug_name

RxNORM CUI number rxcui

ATC code atc_code

Second-level ATC drug class name (redundant, provided for convenience) atc_name

Estimated median cost per day estimate_drug_cost_per_day

UMLS CUI UMLS_CUI

Drug Bank ID DrugBankID

File: Drug class mappings drug_mappings_atc_classes.tsv

Columns Second-level ATC code atc_class

Second-level ATC drug class name atc_class_name

Table 2. Data Records description.
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duration of the window, longer windows slightly increase the mean drug exposure counts (average drug
exposure count is 3.1, 3.2 and 3.8 for a 10-, 30-, or 90-day window respectively), and thus increase the
relative incidence (i.e., ranking) of prescriptions with short-durations (e.g., antibiotics or short-term pain
relief). Thus the choice of exposure window duration does affect the Data Records. Therefore we set the
window duration equal to the most common prescription duration. Prescriptions in this claims database
are most often for 30 days (50% of all prescriptions), with about 20% for 10 or fewer days. Thus a 30-day
window is an appropriate timescale to capture changes in drug exposures.

Finally, we tested the sensitivity to cohort size, by comparing the drug combination incidence
ranking obtained using the entire Truven Health MarketScan cohort (approximately 100 million patients)
to a random sample of 100,000 (1e5) patients, and 1,000,000 (1e6) patients. As expected, analysis of
smaller cohorts obtains a similar ranking of the common drug combinations, but inaccurately estimates
the incidence, and thus the ranking, of rare drug combinations. In addition, smaller cohorts overestimate
the patients exposed to unique drug combinations, never observed elsewhere in the database: In the
complete cohort, 10% of drug combinations are observed only once, but in a cohort of 1e5 patients, that
fraction is 20%. Thus while smaller cohorts are sufficient to rank the incidence of common drug
combinations, a large patient cohort is required to accurately estimate the incidence of drug
combinations.

Limitations
The accuracy of this dataset as a summary of multi-drug exposure incidences in the United States is
limited to some extent by the underlying data source and our method of computation. The Truven
Health MarketScan Research Databases cohort is commercial claims, and not a fully representative
sample of the United States population. We examine drug exposure based on filled prescriptions, but
patients may take none or only a fraction of the dispensed drugs. Since there is bias on adherence between
drugs, this will introduce bias in the resulting single drug and drug combination incidences. However,
billing data from filled prescriptions are more accurate than alternative sources, such as doctor’s notes or
prescription orders that may go unfilled.

We only observe and analyze prescription drugs, but over-the-counter drugs and supplements
contribute a significant portion of total drug exposures23. Though patient surveys can offer information
about exposure to over-the-counter drugs and supplements, they rely on patient memory, and lack the
cohort size and accuracy of prescription records.

Our method scans prescription drug claims according to 30-day exposure windows. Shorter or longer
exposure windows would increase or decrease apparent multi-drug exposures respectively. The size of the
exposure window affects drug combinations’ relative incidence (i.e., ranking), with longer windows
increasing the apparent incidence of combinations including drugs with short prescription durations
(e.g., antibiotics or short-term pain relief). However the rankings are agnostic to exposure window

Rank Drug combination Relative risk

1 acetaminophen oxycodone prochlorperazine 3.6

2 acetaminophen enoxaparin oxycodone 3.6

3 acetaminophen hydrocodone prochlorperazine 3.5

4 acetaminophen enoxaparin warfarin 3.5

5 acetaminophen enoxaparin hydrocodone 3.4

6 acetaminophen dexamethasone oxycodone 3.1

7 acetaminophen levofloxacin oxycodone 2.8

8 acetaminophen ciprofloxacin phenazopyridine 2.7

9 ondansetron sulfamethoxazole trimethoprim 2.7

10 acetaminophen codeine sulfamethoxazole 2.6

11 acetaminophen levofloxacin metoprolol 2.6

12 levofloxacin sulfamethoxazole trimethoprim 2.6

13 acetaminophen codeine trimethoprim 2.6

14 acetaminophen ciprofloxacin sulfamethoxazole 2.6

15 amoxicillin clavulanate ondansetron 2.6

Table 3. Common 3-drug combinations most overrepresented prior to ED visits. Patients prescribed
these common 3-drug combinations visit the ED at rates approximately 3-fold higher than the general
population. Overrepresentation is calculated by comparing the incidence of 3-drug combination exposures in
the 30-day window prior to ED visits (based on only the first ED visit per patient) to their overall incidence, as
recorded in Data Record 1. This table includes only common 3-drug combinations, with greater than 5000
occurrences in the database.
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duration with our choice of a window of 30-days, to match the days-of-supply of the majority of
prescriptions.

Finally, our analysis uses all data from 2007–2014, ignoring the likely non-stationarity of prescription
patterns24 (as suggested by the increase in prevalence of polypharmacy from 8% to 15% between the
1999–2000 and 2011–2012 NHANES surveys23,25). Nonetheless, our multi-drug exposure dataset
provides a ranking of common concomitant prescription drug exposures for a large population in the
United States.

Usage Notes
This summary of multi-drug prescription patterns in a large cohort enables further analysis of the trends,
safety, or efficacy of multi-drug use.

Prioritize common multi-drug combinations for adverse event association analysis
The common multi-drug combinations identified here can now be prioritized for analysis of association
with adverse health outcomes. An example illustrating this use case is identifying which of the common
3-drug combinations in Data Record 1 are most overrepresented in the 30-days prior to Emergency
Department visits (Table 3). It is important to note that this association tells us nothing about causation,
but merely identifies drug combinations taken at increased rates by patients prior to ED visits. Thus, as
indicators of patients’ health state, multi-drug combinations could potentially be used to identify patients
at risk of an ED visit in the near-future. Similar association analysis can be completed with any desirable
or undesirable outcome, in any cohort of interest, for various study designs.

Identify drugs used concomitantly with a given drug of interest
This dataset can be used to profile the common co-exposures for any drug ingredient or class of interest.
Table 4 shows this analysis for the first line diabetes drug metformin and the opioid oxycodone.
The summary was obtained by extracting rows containing metformin or oxycodone from the 2-drug table
of Data Record 1, and normalizing by the total exposure counts for metformin or oxycodone. Code to
perform this analysis for any drug ingredient or drug class of interest is provided in the R-script

Rank Drug ingredient P(co-exposure | exposure) Observed/Expected Incidence

Metformin co-exposures, top 5, ranked by incidence:

1 hydrochlorothiazide 0.26 2.2

2 lisinopril 0.25 3.0

3 simvastatin 0.22 2.7

4 atorvastatin 0.15 2.6

5 amlodipine 0.13 2.2

Metformin co-exposures, top 5, ranked by overrepresentation:

1 glyburide 0.10 12.6

2 saxagliptin 0.02 11.9

3 sitagliptin 0.11 11.7

4 rosiglitazone 0.03 11.2

5 dapaglifozin o0.01 10.8

Oxycodone co-exposures, top 5, ranked by incidence:

1 acetaminophen 0.78 11.1

2 hydrocodone 0.16 3.1

3 hydrochlorothiazide 0.11 0.9

4 alprazolam 0.10 3.7

5 zolpidem 0.09 3.1

Oxycodone co-exposures, top 5, ranked by overrepresentation:

1 methylnaltrexone o0.01 23.7

2 oxymorphone 0.01 22.1

3 fentanyl 0.04 16.7

4 morphine 0.04 15.5

5 methadone 0.02 14.6

Table 4. Summary of the most common and most overrepresented drug ingredient co-exposures with
metformin and oxycodone.
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get_codrugs.R at the code repository (https://github.com/katieq/QuantifyingPolypharmacy). This could
be repeated for larger drug combinations using the 3-, 4-, or 5-drug tables.

Stratify patients by risk of adverse health outcomes, based on prescription set
This dataset can now be used to calculate the increased risk of undesirable health outcomes associated
with a particular set of prescriptions. Such a risk estimate can be used to stratify patients according to risk
of future adverse health events, and then to flag prescription changes that place patients in a higher risk
category, or to identify prescription combination changes that lower patients’ risk category. Of course,
such risk stratification implies no causality whatsoever; however, such analyses can provide a succinct
report on the risks experienced by a cohort of similarly-treated patients.
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