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S l l l l l m s r y  

To explore mechanisms that prevent autoreactivity in nonautoimmune mice, endogenous 
immunoglobulin (Ig) light (L) chains that associate with a transgenic anti-DNA heavy chain 
were analyzed. The antibodies from splenic B cell hybridomas of such mice did not bind double- 
stranded DNA (dsDNA) and their L chain sequences showed a biased use of V~ and J~ gene 
segments. The 44 L chains in this survey were coded for by just 18 germline genes. Six of the 
genes, each belonging to a different V~ group, were used more than once and accounted for 
three fourths of all sequences. Based on the distribution of V~ genes, the L chain repertoire in 
this line of transgenic mice was estimated at 37 V~ genes. The most frequently observed gene, 
a member of the V~ 12/13 group, was identified in 16 hybrids. In addition, the majority of 
V~ genes used J~5. We interpret the skewed representation of V~ and J~ gene segments to result 
from negative selection. Based on the data, we suggest that V~ rearrangements giving rise to 
anti-dsDNA reactivity are removed from the repertoire by a corrective mechanism capable of 
editing self-reactive Ig. 

T olerance to self has been studied in Ig transgenic models 
of autoreactivity. By using Ig transgenes against facul- 

tative self-antigens, it has been shown that self-reactive B cells 
are selected against by anergy or deletion (1, 2). We have con- 
structed mice with transgenes that code for anti-DNA anti- 
bodies and obtained similar results. The majority of splenic 
B lymphocytes from mice with the V,3H9 and V~8 genes 
express anti-single-stranded DNA (ssDNA) 1 antibodies on 
their surface, but we do not detect them in the serum (3). 
By analogy to Goodnow et al. (1), anti-ssDNA B cells in 
those mice appear to be anergic. 

Analysis of splenic B cells from mice containing just the 
V,3H9 transgene suggested a second feature of tolerance to 
DNA. No anti-double-stranded DNA (dsDNA) activity was 
detected among hybridomas from these mice. This was sur- 
prising, since previous studies have established that the 3H9 
H chain can combine with a diverse range of L chains to 
yield antibodies capable of binding to both ssDNA and 
dsDNA (4, 5). The absence of hybrids producing anti-dsDNA 
suggested that dsDNA-spedfic B cells are functionally deleted. 

Nevertheless, V.3H9 mice have near normal numbers of 

1 Abbreviations used in this paper: dsDNA, double-stranded DNA; MLE, 
maximum likelihood estimate; rp, reciprocal products; ssDNA, single- 
stranded DNA. 

splenic B cells, and hybridomas can be readily obtained (3). 
Some of the antibodies produced by these hybridomas bound 
ssDNA, whereas others did not bind DNA at all. We have 
now examined the V~ and J~ gene segment use of hybrids 
obtained from two of these mice. The mAbs were character- 
ized by a sharply reduced repertoire of L chains. L chains 
that are found among spontaneous anti-DNA antibodies from 
MLR/lpr  (4) or NZB x N Z W  (6) mice were absent from 
our sample. In addition, J~5 was overutilized. The data sug- 
gested that the major driving force shaping the L chain use 
in V.3H9 mice is selection against dsDNA-binding B cells. 
Furthermore, the data are consistent with the notion that 
B cells can escape deletion if their autoreactive surface receptors 
are replaced through further rearrangements. 

Materials and Methods 
Hybridoma Fusions. B cell hybridomas were generated from the 

spleens of transgenic V.3H9 mice maintained in our animal 
colony. A 3-mo-old female mouse (No. 104) was injected intra- 
peritoneally with 50 #g LPS as described (3), and its spleen cells 
fused to the SP2/0 fusion partner 3 d later. The second fusion was 
carried out using splenic B cells from a 4-too-old male V,3H9 
mouse (No. 2352) which were sorted for the presence of the B220 
and V~ surface markers by FACS | (Becton Dickinson & Co., 
Mountain View, CA). B cells from the second mouse were stimu- 
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lated in vitro with 30/~g/ml LPS before fusion. Hybfidomas were 
selected using hypoxanthine-azaserine. Supernatants were tested 
for antibody production and H and L chain isotypes after colonies 
had grown suf~ciently. Randomly selected hybridomas were ex- 
panded for further analysis. 

Extensions oflg mRNA. Poly(A) + RNA was isolated from 42 
hybridomas (picked to be representative of both fusions) using the 
method of Badley et al. (7) and oligo-dT cellulose (Collaborative 
Research, Bedford, MA). Approximately 3/~g of poly(A) + R.NA 
was extended into cDNA using avian reverse transcriptase (Life 
Sciences, Inc., St. Petersburg, FL) and T4 polynucleotide kinase- 
labeled oligonucleotides complementary to the sense strand of each 
of the four functional JK segments. Since the SP2/0 fusion partner 
contains sterile transcripts from an out-of-frame V~21E-J~2 rear- 
rangement, J~2 oligo (5'-CCCTCCGAACGTGTAAGG-Y) exten- 
sions from each hybrid were compared with the products from 
SP2/0. Authentic V~-J~2 extension products could readily be de- 
tected using that approach. 

The J~4 (5'-TATTTCCAACTTTGTCCCCGAG-Y) and J~5 
(5'-GAGCTCCAGCTTGGTCCCAGCAC-Y) oligos that were 
used did not crosshybridize with other J~ segments or with each 
other, thus allowing unambiguous assignments. In contrast, it was 
found that the JK1 oligo (5'-TGATTTCCAGCTTCCTGCCTC- 
CAC-Y) was capable of extending mRNA starting from J~l and 
J~2 sequences. Therefore, unambiguous J~l or J~2 assignments 
were made after sequencing cDNAs obtained by reverse transcrip- 
tion from an end-labeled C~-specific oligo and gel purification of 
full size extension products from denaturing PAGE (4). 

Sequence Analysis. All rearrangements to J~l or JK2 were se- 
quenced by chemical degradation of cDNAs obtained by reverse 
transcription with a C~-specific oligo, as described (8). Rearrange- 
ments to J~4 or J~5 were sequenced by a direct oligonucleotide- 
primed dideoxy chain termination method described by Geliebter 
et al. (9). 

Southern Blotting. Genomic DNA was purified from hybridomas 
and digested with BamHI for L chain analysis or EcoRI for H chain 
analysis. DNA was run on a 0.8% agarose gel in Tris/acetate/EDTA 
buffer and transferred to nylon membranes (Zeta Probe; Bio Rad 
Laboratories, Hercules, CA) in 0.4 N NaOH as described by Reed 
and Mann (10). Three DNA fragments were labeled by random 
priming and used as probes for hybridizations. The probe used to 
detect H chain rearrangements was pJ11, a fragment spanning the 
J. segments and including the H chain enhancer (11). L chain rear- 
rangements were analyzed by hybridization to pECK (12), a frag- 
ment containing all four functional J~ segments, as well as pKP6 
(13), a 0.9-kb EcoRI fragment directly upstream of J~l. 

DNA Binding Assays. All IgM antibodies were concentrated 
by ammonium sulfate precipitation, followed by resuspension and 
dialysis against PBS. Antibody concentrations were determined after 
adsorption to microtiter wells coated with goat anti-mouse IgM 
(Fisher Scientific, Pittsburgh, PA) and blocked with 1% BSA in 
PBS. Unbound material was washed off, and bound IgM was quan- 
titated following a 1-h incubation with alkaline phosphatase- 
labeled goat anti-mouse serum Ig (Fisher Scientific), washing, and 
reaction with p-nitrophenol. Absorbance was quantitated by spec- 
trophotometry in a microplate reader (Bio-Rad Laboratories) set 
at 405 nm. Binding to ss and dsDNA was measured as described 
(14). Salmon sperm DNA was treated with $1 nuclease (United 
States Biochemical Corp., Cleveland, OH) for 5 rain at 37~ ex- 
tracted with phenol, and precipitated by addition of 96% ethanol 
to obtain a stock of dsDNA. Photobiotinylation and solution phase 
equilibrium binding to ss and dsDNA were performed as described 
(5). Solutions containing antibody-DNA complexes and/or un- 

bound reagents were transferred to microtiter plates that were coated 
with avidin D (Vector Laboratories, Inc., Burlingame, CA) and 
blocked with 1% BSA in PBS. After adsorption for 60 min, plates 
were washed three times, and the retained IgM were quantitated 
using an alkaline phosphatase-conjugated goat anti-mouse IgM 
reagent (Fisher Scientific), as described above. 

Results 

Gene Segment Use in Hybridomas. To correlate Ig V re- 
gion expression in splenic B cells from V.3H9 mice with 
their binding properties, hybridomas from two mice of the 
transgenic line were generated. Two types of hybridomas were 
recovered: those whose antibodies bound ssDNA and those 
whose antibodies had no detectable binding to DNA (Table 
1). It was conceivable that the loss of DNA binding capacity 
observed in these hybridomas was due to inactivation of the 
H chain transgene and activation of endogenous V, genes. 
Since all hybrids in our collection produced only IgM anti- 
bodies, cDNA extension experiments were carried out using 
a C# oligonucleotide. None of the hybrids analyzed expressed 
an endogenous IgM mRNA. Instead, only the V.3H9- 
specific extension products were detected (data not shown). 
Moreover, the sequence of the transgene message from four 
hybrids showed no mutations. Therefore, the loss of dsDNA 
specificity in some hybrids and the complete loss of DNA 
binding in others must be due to the L chain. Although 12 
of the V~ genes identified here were observed only once, the 
remaining six occurred two or more times and together ac- 
counted for 32 of the 44 sequences (Table 1). Although some 
antibodies from V.3H9 mice bound to ssDNA with affini- 
ties that were comparable with antibodies from autoimmune 
mice, none bound dsDNA (data not shown). 

These L chains have an unusual distribution of V~ genes. 
Only nine of the more than twenty V~ groups were ob- 
served. Moreover, the representation of V~ groups that were 
observed was not proportional to their size. In addition to 
the disproportionate representation of certain VK groups, 
recurrent VK genes also characterized this sample, Although 
12 of the V~ genes identified here were observed only once, 
the remaining six occurred two or more times and together 
accounted for 32 of the 44 sequences (Table 1). 

The distribution of J~ genes is also unusual in that J~5 ac- 
counted for the majority (43%) of the rearrangements ob- 
served (Table 1). This is different from J~ gene segment fre- 
quencies in splenic B cells of nontransgenic mice. Various 
investigators have estimated that between 35 and 47% of VK 
genes rearrange to J~l, whereas only 6-25% use J~5 (15, 16). 
We compared the frequencies of all four J~ segments in our 
sample with published values using a two by four contin- 
gency table and a generalized hypergeometric test (STAT- 
XACT, 17). According to this method, our data were sig- 
nificantly different from the data obtained by analyzing J~ 
usage in LPS-treated splenic B cells of BALB/c mice described 
above (p ~<0.008). 

Most of the J~5 segments (17 of 19) were associated with 
VK genes that were isolated more than once in our survey 
(Fig. 1), whereas J~ use in single V~ isolates favored J~l (9 
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Table  1. Summary of V, and j ,  Segments Used in 42 Hybridomas from V,,3H9 Mice 

V, Group V, Gene J,1 J,2 J,4 J,5 Total ssDNA MLE 

1 (4-6)  1A 1 - - - 1 - 

1 B  - 1 2 - 3 - 

4/5 (25-50) 5A 1 - - - 1 - 

5 B  - 1 - 6 7 *  + 

8 ( 5 - 1 6 )  a A  1 - - 1 2 - 

8 B  1 - - - 1 - 

9 (6-11) 9A 1 - - - 1 - 

9 B  1 - - - 1 - 

9 C  1 - - - 1 - 

12/13 (2-8) 12A 2 4 - 10 16" - 

12B 1 - - - 1 - 

1 9  (4-6) 19A 2 - - - 2 + 

19B 1 - - - 1 - 

2 1  (6-13) 21A 1 - - - 1 - 

21D 1 - 1 - 1 - 

21I - - 1 - 1 - 

34 (2-3) 34C - - - 1 1 - 

New G4 - - - 1 1 - 

Total 15 6 4 19 44 

20 (18-25)  

37* (23-87) 

Hybridomas were grouped according to the V~ gene used. V~ genes were assigned to a V~ group and distinguished by a capital letter surf-ix. In 
keeping with this nomenclature, a new member of the V~21 group is called V~21I. Repeats of each V~ gene, numbers of rearrangements to each 
of the four J, segments, and ssDNA affinities were indicated. Two hybridomas. 2352-37 and 2352-46, expressed two in-frame V~ rearrangements, 
thus 42 hybrids yielded 44 L chain sequences�9 One V~ gene, 1G1, belonging to an as yet unclassified V, group (43), was the closest relative of 
the new gene listed here. MLE of the total L chain repertoire was calculated both with and without including the V,SB and V~12A genes�9 In the 
presence of those two most frequently used V~s, the MLE predicted a repertoire of 20-25 V~ genes�9 A more conservative calculation of the MLE 
is indicated by an asterisk and did not include these two genes�9 Therefore. those two V~ genes were simply added to the M_LE, bringing the total 
to 37 and the 90% confidence bounds to 23 and 87. By either measure, the extrapolated L chain repertoire in V,3H9 mice was much less than 
the potential germline repertoire of "~200 V, genes�9 
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Figure 1. J~ segments associated with single and recurrent V~ genes�9 
The number of rearrangements to each of the J~ segments was plotted 
for V~ genes seen only once in this survey (darker bars) and V~ genes that 
were seen at least twice (lighter bars). 

of  12 examples). Overall,  the J ,  use in single isolates and 
repeats was significantly different (p ~<0.0042). Thus,  the 
recurrent  V,  genes accounted for the overut i l izat ion of  J,5. 
Two of  the recurrent genes, V A 2 A  and V,SB, accounted for 
16 J,5 rearrangements,  a l though bo th  were also seen to as- 
sociate w i t h  other  JK segments. 

Independent Origin of Recurrent vcJ~ Pairs. Several of  the 
hybrids from either fusion expressed L chains composed of  
the same VK and J~ gene segments. O n e  possible reason for 
such recurrent VK-J~ combina t ions  a m o n g  a set of  hybrids 
is that they are derived from members  of  an expanded B cell 
clone. This  possibili ty was tested by Southern  blots of  H and 
L chain rearrangements  (Fig. 2). 

Representative hybridizat ion data f rom hybrids us ing  
V A 2 A  are shown in Fig. 2. Fig. 2 A shows results obtained 
using pECK,  a probe containing the germline J~ and C ,  seg- 
ments  (12). A n y  VK to J~ rearrangement  generat ing restric- 
t ion  fragments of  a different size than the fusion par tner  can 
be detected us ing this approach�9 Hybr ids  that give bands of  
different mobili t ies are likely to be independent ly  derived (4). 
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Figure 2. Southern blot hybridization of hybridomas using V~12A. Genomic DNA was isolated from hybridomas expressing V~12A, cut with BamHI, 
and analyzed by Southern blotting to pECK (A) or pKP6 (B). The following hybrids were represented: 2352-41 (lanes 1), 2352-37 (lanes 2), 2352-30 
(lanes 3), 2352-12 (lanes 4), 2352-33 (lanes 5), 2352-23 (lanes 6), 2352-57 (lanes 7), and 2352-9 (lanes 8). (A, ~ )  Location of the fragments containing 
the V~12A rearrangement. Sizes of fragments from different hybrids corrdate with the different J~ segment use. ( '~) Bands that are contributed by 
the fusion partner SP2/0. (*) Other potential rearrangements. Only the fragments in lanes 3 and 8 were used as evidence of independent origin (see 
Table 2). The other two had intensities that were indicative of submolar concentrations. Molecular weight marker positions were indicated on the margins. 

Despite the complex hybridization pattern of the fusion 
partner, SP2/0, it was possible to detect V~ rearrangements 
by hybridization to pECK (Table 2). For example, in the set 
of V~12A rearrangements shown in Fig. 2 A, the presumed 
V~12A containing band is between 17 and 18.5 kb. The 
differences in this range of sizes were found to correlate with 
the distinct J~ use in these hybrids (Table 2). Some hybrids 
rearranged both V~ alleles (e.g., 2352-30 in lane 3, and 
2352-9 in lane 8 of Fig. 2 A). Analogous experiments were 
performed using pJll (11), a probe extending across the JH 
segments (Table 2). 

Hybridization to pKP6, a fragment located immediately 
upstream of J~l (13), detects reciprocal products of inver- 

sional rearrangements whose size is different from the germ- 
line SP2/0 band. In the case of the V,12A set of hybrids 
shown (Fig. 2 B), the two rearrangements to J~l, 2352-12 
(lane 4) and 2352-57 (lane 7), share a band of 9.3 kb. How- 
ever, the reciprocal products in hybrids that showed V~12A 
rearrangements to other J~ segments provided additional evi- 
dence for their independence. By using probes for the J. and 
J~ loci as well as pKP6, sufficient data were obtained to dis- 
tinguish each of the hybrids (Table 2). Hence, the indepen- 
dent origin of hybridomas in this study was established by 
differences in their J~ use, genomic DNA hybridization 
results, and V~-J, sequences. 

Estimate of the Total V~ Repertoire. Based on the observed 
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Figure 3. Diagram of two alternative rearrangement pathways that could lead to a VK12A/J~5 L chain. Two successive recombination events on 
the same chromosome are necessary to explain the fact that a productive VK12A/J,5 rearrangement is not linked with its reciprocal joint. The diagram 
on the left (Pathway A) depicts the completion of the V~12A/J~5 rearrangement before the rearrangement of gene X to an orphaned J~. Retention 
of the rp demands that both rearrangements occur by inversion. However, approximately half of the secondary rearrangements should result in deletion 
of sequences upstream of J~l (e.g., genes pointing away from C~ should have an equal chance of rearranging as genes pointing toward C~, according 
to data in reference 21). Hybridization data obtained using pKP6 did not support pathway A. Pathway B (right) assumes that gene X rearranges first 
by inversion to any other J~ except J,5. In this case, the rearrangement of V~I2A to J~5 in a second recombination event would retain the rp regardless 
of whether V,12A or gene X (shown here) are CK proximal. Data in Table 2 are more consistent with pathway B. 
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Table 2. Southern Blot Analysis of the H and L Chain Rearrangement Status in Hybridomas that Share V~ and J, Elements 

Hybrid V, J, pECK pKP6 p J l l  

104-10 1 4 9 ND* gl, tg 
104-76 1 4 ND ND ND 

104-85 4 5 ND ND -, tg, 5.6 
104-12 4 5 6.4 14.2 -, tg, 5.7, 6.1 
104-41 4 5 6.4 14.2 gl, tg, 9.0 
104-68 4 5 6.4, 8.4 15 -, tg, 5.6 
104-89 4 5 6.4, 8.6 14.2, 13.5 -, tg, 6.2 
104-92 4 5 6.4 7.5 -, tg, 6.1 

2352-12 12 1 18.5 9.3, 14.2 -, tg 
2352-57 12 1 18.5 9.3 -, tg, 5.7 
2352-23 12 2 18 14.2, 19 -, tg 
2352-33 12 2 18 10.5 -, tg 5.6 
104-9 12 2 ND ND gl, tg 
104-71 12 2 18 10.5 ND 
104-14 12 5 17 9.3 -, tg, 5.6, 6.1 
104-30 12 5 17, 9 8.0 -, tg 
104-116 12 5 17 - ND 

2352-9 12 5 17, 8.1 14.2 -, tg 
2352-25 12 5 ND ND -, tg, 4.2 
2352-30 12 5 17, 4.0 - -, tg, 5.7 
2352-34 12 5 ND ND -, tg, 5.6 
2352-37 12 5 17 10.5 gl, tg, 13 

2352-38 12 5 ND ND -, tg, 4.1, 4.3 
2352-41 12 5 17 9.3 -, tg, 4.3, 5.7 

104-74 19 1 ND ND -, tg 
104-78 19 1 11.0 ND gl, tg 

Hybridomas with identical V~-J~ gene segment use from the 104 and 2352 mouse fusions are listed. The table identifies the V~ and J~ segments 
used and lists the sizes of restriction fragments that hybridized to pECK, pKP6, or pJ11 (for details see Materials and Methods). Most hybrids could 
be distinguished by at least one of the probes, whereas certain other hybrids were distinguished by their V-J junction sequences (Radic, Marko Z., 
manuscript in preparation). 
* No hybrids had the SJL pKP6 gl band, suggesting that both mice were heterozygous (B16/BALB/c) upstream of J. 

V~ gene use and the independent nature of  each hybrid, one 
can estimate the total pool of  endogenous L chains that are 
likely to be associated with  the V ,3H9  H chain in vivo. 
Using the number  of  single, double and triple occurrences 
of  the observed V~ genes, we calculated the maximum likeli- 
hood estimate (MLE) for different L chains in the repertoire 
as a whole. The V~SB and VA2A genes that were isolated 
7 and 16 times, respectively, were not used in deriving the 
MLE, because they may be favored by the editing mecha- 
nism (see above) and therefore may not be appropriate for 
estimating the overall V~ repertoire. The MLE for the L 
chain repertoire in V ,3H9  mice was 35, with two-sided 
90% confidence bounds of 21 and 85. Since the two most 
frequent V~ genes were not used in this conservative esti- 
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mate, we subsequently added them to the total, thus raising 
the estimate of  the available repertoire to 37 genes. 

Analysis of Reciprocal Products. In theory, functional rear- 
rangements to any J~ segment can be the initial event that 
yields a functional L chain. Yet, in practice, many V~ loci 
show evidence of multiple rearrangements. For example, most 
of  the J~5 rearrangements in the antihemagglutinin Sb re- 
sponse are preceded by a previous rearrangement on the same 
allele (18). As our sample was also characterized by a high 
frequency of  J~5, we examined the likelihood of  secondary 
rearrangements. 

We focused our analysis on VA2A rearrangements (Fig. 
3). This group of rearrangements contained examples in which 
the same V~ gene was joined to different J~ segments. Rear- 



rangements to J~l must be the results of primary events. 
Therefore, they allowed us to determine whether V~12A 
rearranges by a deletion or an inversion. Since both hybrid- 
omas, 2352-2 (Fig. 2 B, lane 4) and 2352-57 (Fig. 2 B, lane 
7), which had a V~12A/J~l rearrangement also shared a 
9.3-kb pKP6 band, it is highly likely that V~12A rearranges 
by inversion. However, the size of pKP6 containing fragments 
from other V~12A hybrids is incompatible with the idea that 
these are reciprocal products (rl0) of the functional rearrange- 
ment (Table 2). 

At least two alternative pathways exist which could ex- 
plain the observed results (Fig. 3). In pathway A, the 
V~12A-J~5 joint is formed first, leaving upstream J~s free to 
further rearrange. Further rearrangements of inverted J~s 
have recently been shown to occur (19). In pathway B, an 
unknown V~ rearranges first to any J~ except J~5. The reten- 
tion of the rp in the first rearrangement is expected, according 
to the results of Harada and Yamagishi (20) which indicate 
that the majority of primary rearrangement events are inver- 
sions. In this scheme (Fig. 3), the VK12A rearranges second. 
The pKP6 hybridization data (Table 2) show that eight of 
ten V~12A rearrangements to downstream J~s retained at 
least one pKP6 fragment. These results support pathway B 
because the secondary rearrangement of V~I2A should re- 
tain the first rp regardless of the relative positions of V~12A 
and the V~ gene that participated in the first rearrangement. 
Our data did not support pathway A which, since about half 
of all V~ genes face away from the J~ locus (21), should re- 
sult in approximately equal numbers of deletions and inver- 
sions. It is therefore probable that rearrangements involving 
V~12A and downstream J~s were preceded by other rear- 
rangements. 

Discussion 

Optimum combinatory (H x L) diversity of antibodies 
requires that the use of L chains should not be biased by the 
identity of the H chains. This rule should also apply in the 
presence of a transgenic H chain. Nevertheless, we found that 
only a minority of possible L chains was represented in splenic 
B cell hybridomas from anti-DNA IgM H chain transgenic 
mice. We sequenced these L chains in order to reveal the cause 
and the mechanism of the repertoire restriction. Our anal- 
ysis showed that only 18 V~ genes could account for all 44 
L chain transcripts from V.3H9 mice. This limited L chain 
repertoire was expressed by hybrids that produced anti-ssDNA 
antibodies and those with no DNA specificity (Table 1), The 
biased representation of L chains led to the absence of entire 
V~ groups from our sample, and to the disproportionate use 
of other V~ groups. For example, the group bias that exists 
in V,3H9 mice was most evident among V~12/13 genes. 
This V~ group is estimated to contain between two and 
eight genes (22), or <5% of the total available repertoire, 
yet it gave rise to nearly 40% of the expressed L chains (Table 
1). A further consequence of L chain bias was that certain 
V~ genes dominated their respective groups (Table 1). In our 
survey, V~12A was found in 16 of 17 hybrids expressing 
genes of the V~12 group. We could extrapolate from these 

data to predict that the available VK repertoire of the V,3H9 
mouse is 37 genes, far less than the 200 V~ genes available 
to normal mice (23). 

Although group representation in nontransgenic mice 
reflects each group's complement of V~ genes (24, 25), the 
use of V~ genes within a group is not uniform, perhaps 
reflecting their differential capacity to interact with antigens. 
This was recently demonstrated by Milstein et al. (26) who 
analyzed the use of 14 members of the VK4/5 group. The 
authors found a ten to one preference for certain members 
of this V~ group over others. It is not possible to directly 
compare the biased representation of the V~4/5 group by 
V~5B seen here (Table 1) with the results of Milstein et al. 
(26), since their approach did not score for V~SB. Neverthe- 
less, it appears that the intra-VA/5 bias in VH3H9 mice may 
be even more extreme. 

Additional examples of V~ (27, 28) and V, (28-30) reper- 
toire bias have been observed. These occur early in life (27, 
29) or in association with the Ly-1 B cell lineage (28, 30). 
In addition Gu et al. (30) demonstrated that in adult mice 
the V. repertoire is more restricted in mature B cells than 
in pre-B cells. A substantially biased repertoire of V, and VL 
characterizes the autoimmune strain MRL/lpr. In mice with 
signs of progressed disease, the J558 H chain family accounts 
for the majority of Ig transcripts in the spleen, whereas 
different V~ groups may be overrepresented in different mice 
(31). It is unlikely that the V~ gene bias seen here parallels 
any of the studies above since none of the V~ genes shown 
in Table I matched genes whose overrepresentation was pre- 
viously reported (27, 28). 

J~ segment use in our L chain survey (Table 1 and Fig. 
1) also differs from the J~ use in B cells of normal, adult 
mice. Whereas normal use is biased toward J~l and J~2 (15, 
16), nearly half of the 44 rearrangements from V,3H9 mice 
were to J~5. The high frequency of J~5 along with the V~ 
repeats in turn leads to the recurrence of V~-J~ pairs. Since 
the use of identical gene segments raises the possibility that 
these hybridomas are from one or a few expanded B cell clones 
(4), we compared their silent H and L chain rearrangements. 
There was no evidence for clonal relatedness among the 
hybrids, including those with V~12A-J~5 rearrangements. 
Clearly, other reasons must account for the J~ segment bias. 

One reason for the restricted V~ and J~ repertoire may be 
correction of rearranged V genes. Two kinds of corrective 
mechanisms are known. In V. replacement a V-D-J can be- 
come a substrate for further rearrangements because of a se- 
quence, embedded in most VH genes, that is identical to the 
conserved heptamer signal which is required by the V-D-J 
recombinase (32). Nonfunctional L chain rearrangements can 
be corrected using a different mechanism. As mentioned above, 
most V-J rearrangements involve J~l or J~2, thus leaving the 
downstream J~ segments intact and available for further V~ 
rearrangements. Correction by secondary rearrangements can 
occur as shown by the linkage of two V~-J~ rearrangements 
on the same chromosome (13). Both editing mechanisms re- 
duce the repertoire. If the primary rearrangement is deletional, 
then the pool of editing donors will be smaller. Furthermore, 
the J~ repertoire will be reduced, since the number of J~s 

1170 VK Editing in Anti-DNA Transgenic Mice 



available for editing will be less than the four J~ segments 
available to the primary rearrangement. Further editing may 
delete the V~ locus entirely, and lead to the expression of Vx 
L chains (33). 

The same mechanism that allows the correction of non- 
functional V~-J~ joints may also operate when selective pres- 
sure is applied against the surface receptor containing the 
V~-J~ product. Immunotherapy with an antiidiotype toxin 
conjugate was applied against a murine B cell lymphoma 
and led to variants that had replaced the productive V~-J~ 
joint with secondary rearrangements to downstream J~ seg- 
ments (34). 

This way of changing the idiotype of a B cell receptor sug- 
gests a hypothesis for explaining the L chain bias in V.3H9 
mice. We propose that tolerance to dsDNA (and presumably 
certain other autoantigens) can cause autoreactive B cells to 
edit their L chains. Consistent with this hypothesis is that 
L chains which remain in the Va3H9 repertoire prevent 
dsDNA binding. In the case of the V,3H9 transgene, the 
hypothesis predicts a limited repertoire of V~ genes, since 
many L chains of the mouse bind dsDNA when combined 
with V,3H9 (4-6). Although simple deletion of self-reactive 
B cells from an initially random population could lead to a 
similar V~ bias, the concomitant, high frequency of JK5 is 
more consistent with an editing mechanism that activates 
secondary rearrangements. 

Negative selection may even be capable of editing transgene- 
encoded Ig receptors. Gay et al. (35) analyzed transgenic mice 
capable of producing both the H and the L chains of the 
original 3H9 antibody. As neonates, these 3H9 H chain/V~4 
L chain mice are profoundly B cell-deficient, but as adults 
they have near normal numbers of B cells. Hybridomas de- 
rived from these adult mice did not bind dsDNA even though 
they expressed both transgenic H chain and L chain. These 
hybrids also express endogenous L chains which are identical 
to the L chains described here (Table 1). It is thought that 
these endogenous L chains preferentially associate with the 
3H9 H chain and thereby yield antibody that does not bind 
dsDNA. Thus, preferential H-L association can edit dsDNA- 
specific receptors and permit B cells to escape deletion. 

Secondary, and indeed multiple, rearrangements of L chain 
alleles may account for the overexpression of Vx L chains as 
seen in other Ig transgenic lines (36-38). As stated above, 
L chain editing is expected to increase the proportion of Vx 
L chains in the repertoire (33). In fact, an elevated propor- 
tion of V• was interpreted as evidence of L chain editing 
(37). An increased frequency of Vx would also be the 
predicted outcome here, were it not for the fact that this L 
chain forms anti-dsDNA antibodies in combination with 
V.3H9 (5). 

Receptor editing in normal, i.e., nontransgenic mice may 
be a common occurrence. This is supported by the remains 
of edited V~ genes that show no obvious defects (20). There- 
fore, functional genes may be edited in analogous ways as 
aberrant V~-J~ joints. A case in point is the in-frame rear- 
rangement of a V~8 gene to J~l found as remnant in the 
PC3609 plasmacytoma (13). A possible reason for the replace- 
ment of this functional VK gene may be the rare arginine 
codon that was generated during V~-J~ joining (13). Argi- 
nines are frequently involved in DNA binding and they play 
an important role in anti-DNA antibodies (8). Indeed, TiUman 
et al. (6) found arginines at the V~8-J~l junction of anti- 
DNA antibodies. This example suggests that L chain editing 
as described here is part of a normal cellular mechanism that 
regulates autoreactive Ig receptors. 

Editing may also occur during TCR assembly. Studies have 
shown that functional V~-J~ joints can be replaced by addi- 
tional rearrangements (39). In fact, recent evidence suggests 
that in the absence of a positive growth signal, T cells may 
fail to shut down recombination, possibly reflecting the in- 
creased frequency of secondary rearrangement events (40). 
It is intriguing to note that a shift to downstream J~ seg- 
ments may also be associated with ontogenic progression (41). 

Editing may be invoked for other reasons besides aberrant 
rearrangement and self-reactivity. For example, some L chains 
may form unstable H-L pairs with V.3H9. Poor H-L 
pairing has been suggested to explain that biased repertoire 
of endogenous L chains in a H chain-only transgenic (42), 
as well as the replacement of functional VK-J~ rearrange- 
ments by secondary events (20). Inefficient pairing could also 
account for the L chain bias in other Ig transgenics which 
show a restricted use of endogenous L chains (36-38). 
Nevertheless, unstable H-L pairing does not fully explain the 
J~ bias in V,3H9 mice, since, based on in vivo and in vitro 
data (4-6), we expect VH3H9 to be competent for pairing 
with a wide range of L chains. 

In conclusion, we interpret the restricted V~ gene use in 
VH3H9 transgenic mice as evidence for an editing mecha- 
nism that excludes a large fraction of endogenous L chains 
from the repertoire. In our view, editing must be the out- 
come of the surface expression of Ig receptors whose affinity 
for dsDNA is dictated by many of the potential V.3H9-VL 
pairs. Since editing is proposed to occur via secondary L chain 
rearrangements, it follows that the regulation of anti-dsDNA 
specificity allows sufficient time for the rescue of B cells by 
the replacement of dsDNA binding L chains with L chains 
that do not. 

The authors thank Ms. Anita Cywinski for technical assistance and insights into cDNA extension and 
sequencing procedures; Ms. Joni Brill-Dashoff for skillful assistance with DNA hybridizations; and Ms. 
Violet Hay for assistance with cell culture and animal husbandry. Thanks also go to Dr. Richard R. Hardy 
for FACS | time. The secretarial assistance of Ms. Christine Hamilton is appreciated. 

1171 Radic et al. 



Support for this work was provided to M. Z. Radic by the Julius Erving Lupus Research Fund and an 
allocation made to the Dean of the Medical College of Pennsylvania by the Allegheny Singer Research 
Institute; to J. Erikson by the National Institutes of Health (NIH AI-32137); to S. Litwin by a Fox Chase 
Cancer Center Core Grant; and to M. Weigert by the NIH (GM-2094, CA-06927, and RR-05539), an 
appropriation from the Commonwealth of Pennsylvania, and the Sheryl N. Hirsch Award from the Lupus 
Foundation of Philadelphia. 

Address correspondence to Dr. Martin Weigert, Institute for Cancer Research, Fox Chase Cancer Center, 
7701 Burholme Avenue, Philadelphia, PA 19111. 

Receivecl for publication 28 September 1992 and in revisecl form 14January 1993. 

References 

1. Goodnow, C.C.,J. Crosbie, S. Adelstein, T.B. Lavoie, S.J. Smith- 
Gill, R.A. Brink, H. Pritchard-Briscoe, J.S. Wotherspoon, 
R.H. Loblay, K. Raphael, R.J. Trent, and A. Basten. 1988. 
Altered immunoglobulin expression and functional silencing 
of self-reactive B lymphocytes in transgenic mice. Nature (lord.). 
334:676. 

2. Nemazee, D.A., and K. Burki. 1989. Clonal deletion orB lym- 
phocytes in a transgenic mouse bearing anti-MHC class I anti- 
body genes. Nature (Lord.). 337:562. 

3. Erikson, J., M.Z. Radic, S.A. Camper, R.R. Hardy, C. Car- 
mack, and M. Weigert 1991. Expression of anti-DNA immu- 
noglobulin transgenes in non-autoimmune mice. Nature (Lord.). 
349:331. 

4. Shlomchik, M., M. Mascelli, H. Shan, M.Z. Radic, D. Pisetsky, 
A. Marshak-Rothstein, and M. Weigert. 1990. Anti-DNA an- 
tibodies from autoimmune mice arise by clonal expansion and 
somatic mutation. J. Extx Med. 171:265. 

5. Radic, M.Z., M.A. MasceUi, J. Erikson, H. Shan, and M. 
Weigert. 1991. Ig H and L chain contributions to autoimmune 
specificities. J. lmmunol. 146:176. 

6. Tillman, D.M., N.-T. Jou, R.J. Hill, and T.N. Marion. 1991. 
Both IgM and IgG anti-DNA antibody are the products of 
clonally selective B cell stimulation in (NZB x NZW)F1 
mice. J. Exp. Med. 176:761. 

7. Badley, J.E., G.A. Bishop, T. St. John, andJ.A. Frelinger. 1988. 
A simple, rapid method for the purification of poly A+ RNA. 
Biotechniques, 6:114, 

8. Radic, M.Z., M.A. Mascelli, J. Erikson, H. Shan, M. Shlom- 
chik, and M. Weigert. 1989. Structural patterns in anti-DNA 
antibodies from MRL/lpr mice. Cold Spring Harbor Syrup. 
Quant. Biol. 54:933. 

9. Geliebter, J., R.A. Zeff, R.W. Melvoid, and S.G. Nathenson. 
1986. Mitotic recombination in germ cells generated two major 
histocompatibility mutant genes shown to be identical by RNA 
sequence analysis K bin9 and m bm6. Proc. Natl. Acad. Sci. USA. 
83:3371. 

10. Reed, K.C., and D.A. Mann. 1985. Rapid transfer of DNA 
from agarose gels to nylon membranes. Nucleic Acids Res. 
13:7207. 

11. Marcu, H.B., J. Banerji, N.A. Penncavage, R. Lang, and N. 
Arnheim. 1980.5' flanking region of immunoglobulin heavy 
chain constant region genes displays length heterogeneity in 
germlines of inbred mouse strains. Cell. 22:187. 

12. Coleclough, C., D. Cooper, and R.P. Perry. 1980. Rearrange- 
ment of immunoglobulin heavy chain genes during B-lympho- 
cyte development as revealed by studies of mouse plasmacy- 
toma cells. Proc. Natl. Acad. Sci. USA. 77:1422. 

13. Feddersen, R.M., and B.G. VanNess. 1985. Double recombi- 
nation of a single immunoglobulin K-chain allele: implications 
for the mechanism of rearrangement. Pro~ Natl. Acad. Sci. USA. 
82:4793. 

14. Yui, K., A. Bhandoola, M.Z. Radic, S. Komori, M. Katsu- 
mata, and M.I. Greene. 1992. Inhibition of abnormal T cell 
development and autoimmunity in gld mice by transgenic T 
cell receptor 3 chain. Eur. j. Immunol. 22:1693. 

15. Wood, D.L., and C. Coleclough. 1984. Different joining re- 
gion J elements of the murine K immunoglobulin light chain 
locus are used at markedly different frequencies. Proa Natl. Acad. 
Sci. USA. 81:4756. 

16. Nishi, M., T. Kataoka, and T. Honjo. 1985. Preferential rear- 
rangement of the immunoglobulin g chain joining region J~ 
and J~2 segments in mouse spleen DNA. Pro~ Natl. Acad. Sci. 
USA. 82:6399. 

17. Mehta, C.R., and N.R. Patel. 1983. A network algorithm 
for performing Fisher's exact test in vxc contingency tables. 
Journal American Statistics Assoc. 78:427. 

18. Clarke, S., and S. McCray. 1991. A shared K reciprocal frag- 
ment and a high frequency of secondary J,5 rearrangements 
among influenza hemagglutinin specific B cell hybridomas. J. 
Immunol. 146:343. 
Huber, C., H.-G. Klobeck, and H.G. Zachau. 1992. Ongoing 
V~-J~ recombination after formation of a productive V~-J~ 
coding joint. Eur. j. Immunol. 22:1561. 
Harada, K., and H. Yamagishi. 1991. Lack of feedback inhibi- 
tion of V~ gene rearrangement by productively rearranged al- 
leles. J. Extz Med. 173:409. 
Shapiro, M.A., and M. Weigert. 1987. How immunoglobulin 
V~ genes rearrange. J. Immunol. 139:3834. 
Strohal, R., A. Helmberg, G. Kroemer, and R. Kofler. 1989. 
Mouse V~ gene classification by nucleic acid sequence simi- 
larity. Immunogenetics. 30:475. 
Honjo, T. 1983. Immunoglobulin genes. Annu. Rev. lmmunol. 
1:499. 
Kalled, S.L., and P.H. Brodeur. 1991. Utilization of V~ fami- 
lies and VK exons: implications for the available B cell reper- 
toire, j.  Immunol. 147:3194. 
Teale, J.M., and E.G. Morris. 1989. Comparison of V~ gene 
family expression in adult and fetal B cells.J. Immunol. 143:2768. 
Milstein, C., J. Even, J.M. Jarvis, A. Gonzalez-Fernandez, and 
E. Gherardi. 1992. Non-random features of the repertoire ex* 
pressed by the members of one V~ gene family and of the V-J 
recombination. Eur. J. Immunol. 22:1627. 
Lawler, A.M., J.F. Kearney, M. Kuehl, and P.J. Gearhart. 1989. 
Early rearrangements of genes encoding murine immunoglob- 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

1172 V~ Editing in Anti-DNA Transgenic Mice 



ulin tc chains, unlike genes encoding heavy chains, use variable 
gene segments dispersed throughout the locus. Proa Natl. Acad. 
Sci. USA. 86:6744. 

28. Hardy, R.R., C.E. Carmack, S.A. Shinton, K.J. Riblet, and 
K. Hayakawa. 1989. A single V, gene is utilized predomi- 
nantly in anti-BrMRBC hybridomas derived from purified Ly-1 
B cells. 1989. f ImmunoL 142:3643. 

29. Yancopoulos, G.D., S.V. Desiderio, M. Paskind, J.F. Kearney, 
D. Baltimore, and F.W. Alt. 1984. Preferential utilization of 
the most J.-proximal V, gene segments in pre-B cell lines. Na- 
ture (Lond.). 292:629. 

30. Gu, H., D. Tarlinton, W. Mfiller, K. Rajewsky, and I. Frrster. 
1991. Most peripheral B cells in mice are ligand selected. J. 
Exp. Med. 173:1357. 

31. Teale, J.M., K.M. Sievers, R..K. Crawley, and B.L. Kotzin. 
1992. Ig V~ family repertoire of plasma cells derived from au- 
toimmune MRL mice. J. Immunol. 148:142. 

32. Khinfield, K., K.R. Hardy, D. Tarlinton, J. Dangl, L.A. Her- 
zenberg, and M. Weigert. 1986. Recombination between an 
expressed immunoglobulin heavy-chain gene and a germline 
variable gene segment in a Lyl B cell lymphoma. Nature (Lond.). 
322:843. 

33. Durdik, J., M.W. Moore, and E. Selsing. 1984. Novel x light- 
chain gene rearrangements in mouse )~ chain-producing B lyrn- 
phocytes. Nature (Lond.). 307:749. 

34. Levy, S., M.J. Campbell, and R. Levy. 1989. Functional im- 
munoglobulin light chain genes are replaced by ongoing rear- 
rangements of germline VK genes to downstream J~ segments 
in a murine B cell line. J. Exla Med. 170:1. 

35. Gay, D., T. Saunders, S. Camper, and M. Weigert. 1993. 
Receptor editing: an approach by autoreactive B cells to es- 
cape tolerance, f Extx Meal. In press. 

36. Rath, S., A. Nisonoff, E. Selsing, and J.M. Durdik. 1991. B 
cell abnormalities induced by a # Ig transgene extend to L chain 
isotype usage, f Immunol. 146:2841. 

37. Nemazee, D., D. Russell, B. Arnold, G. Haemmerling, J. Al- 
lison, J.F.A.P. Miller, G. Morahan, and K. Buerki. 1991. Clonal 
deletion of autospecific B lymphocytes. Immunol. Rev. 122:117. 

38. Jacomini, J., N. Yannoutsis, S. Bandyopadhay, and T. Imanishi- 
Kari. 1991. Endogenous immunoglobulin expression in mu 
transgenic mice. Int. Immunol. 3:185. 

39. Marolleau, J.-p., J.D. Fondell, M. Malissen, J. Trucy, E. Bar- 
bier, K.B. Marcu, P.-A. Cazenave, and D. Primi. 1988. The 
joining of germ-line Vot to Jot genes replaces the preexisting 
Vot-Jot complexes in a T cell receptor ot, B positive T cell line. 
Cell. 55:291. 

40. Borgulya, P., H. Kishi, Y. Uematsu, and H. yon Boehmer. 
1992. Exclusion and inclusion of ot and B T cell receptor al- 
leles. Cell. 69:529. 

41. Thompson, S.D., M. Larche, A.R. Manzo, andJ.L. Hurwitz. 
1992. Diversity of T-call receptor alpha gene transcripts in the 
newborn and adult periphery. Immunogenetics. 36:95. 

42. Brombacher, F., G. Kohler, and H. Eibel. 1991. B cell toler- 
ance in mice transgenic for anti-CD8 immunoglobulin # chain. 
f Exp. Med. 174:1335. 

43. Goshorn, S.C., E. Retzel, and R. Jemmerson. 1991. Common 
structural features among monoclonal antibodies binding the 
same antigenic region of cytochrome c.J. Biol. Chem. 266:2134. 

1173 Radic et al. 


