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IAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:ntroduction to itaconate

Itaconate is a mitochondrial metabolite, produced in high amounts by macrophages and

monocytes of mice and humans upon activation by several inflammatory stimuli. In 2013, the

identity of the itaconate-producing enzyme was revealed as aconitate decarboxylase 1, encoded

by the gene Acod1 (previously known as immune-responsive gene 1, Irg1). This clear linkage

of production of a mitochondrial metabolite in response to inflammatory signalling immedi-

ately raised a flurry of interest. Indeed, itaconate has significant immunomodulatory proper-

ties and may pave the way for new immunomodulatory drugs. Presented here are several

aspects of itaconate biology and a discussion of future research avenues.

How is itaconate synthesised and transported?

Upon inflammatory stimuli, including microbial components like lipopolysaccharide (LAU : PleasenotethatLPShasbeendefinedaslipopolysaccharideinthesentenceUponinflammatorystimuli; includingmicrobialcomponents::::Pleasecheckandcorrectifnecessary:PS)

and fungal cell wall sugars as well as several interferon cytokines, macrophages up-regulate

Acod1, the gene encoding aconitate decarboxylase 1 (or cAU : PleasenotethatasperPLOSstyle; “cis”isgenerallyinitalicsandhyphenated:is-aconitate decarboxylase). This

mitochondrial enzyme (Fig 1) uses cis-aconitate from the citric acid cycle to synthesise itaco-

nate. Following synthesis in the mitochondria, humans and other mammals can detoxify this

metabolite with mitochondrial enzymes that convert itaconate into acetyl-CoA and pyruvate

[1], but this metabolite does accumulate in high amounts for several hours after inflammatory

stimuli in vitro [2]. Current evidence suggests that a pool of itaconate is exported to the cyto-

sol, presumably by mitochondrial 2-oxoglutarate/malate carrier protein, although transporter

specificity and redundancy are yet to be determined [3]. Itaconate is likely transported from

the cytosol into the phagosome: Using gene-engineered bacterial sensors, itaconate was

detected in the phagosomal compartment [4], presumably to exert antimicrobial activity. Simi-

larly, addition of exogenous itaconate reverts many of the consequences of genetic deletion of

Acod1, suggesting that transport into cells is efficient. A more detailed knowledge of itaconate

transport within intracellular compartments and into neighbouring cells is urgently needed,

particularly when one considers that itaconate may affect neighbouring cells in tissues (dis-

cussed below).

Is itaconate antimicrobial?

Toxicity of itaconate to microbial pathogens is only observed at millimolar concentrations

since successful pathogens have evolved to detoxify, tolerate, and even commandeer itaconate

for their benefit.
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The role of itaconate in microbial lifestyle and microbe’s response to stress is unknown. Pro-

duction of itaconate is widespread in nature, produced by several fungi, including some Aspergil-
lus species, and bacteria, such as Bacillus subtilis [5], giving these and other microbes ample

opportunity to evolve the capacity to detoxify itaconate. An estimated 11% of all bacteria, includ-

ing human pathogens such as Yersinia pestis and Pseudomonas aeruginosa, possess homologues of

itaconate detoxifying genes, with conserved mechanisms producing acetyl-CoA and pyruvate

[6,7]. Itaconate can be used as fuel by microbes, and some pathogens have even evolved to take

advantage of itaconate production by the host. For example, P. aeruginosa isolates from cystic

fibrosis patients are more likely to preferentially use itaconate as a carbon source [8].

Itaconate may synergise with other antimicrobial molecules and nutritional restrictions in

the host phagosomal milieu to exert some antimicrobial effects. A very recent report showed

that itaconate antimicrobial activity is potentiated by low pH, suggesting that within the pha-

gosome, itaconate may become a significant microbicide [9]. However, the current data sup-

port that direct antimicrobial effects are not a major function of immune-derived itaconate.

Still, genetic deletion of Acod1 increases mortality of mice infected by Mycobacterium tuber-
culosis and increases bacterial burden in mice infected with Brucella and Salmonella [10–13],

likely due to a combination of direct and indirect effects in the host and in the pathogen. This

model of coordinated action of itaconate with other iAU : Pleasenotethatallinstancesof immuneregulatoryhavebeenreplacedwithimmunoregulatorythroughoutthetext:Pleasecheckandcorrectifnecessary:mmunoregulatory and antimicrobial fac-

tors is supported by findings that the combined actions of Acod1 and 5 other immune genes,

Nos2, Cybb, Irgm1, Irgm3, and Casp4, coordinate interferon gamma (IAU : PleasenotethatIFNghasbeendefinedasinterferongammainthesentenceThismodelofcoordinatedaction . . . :Pleasecheckandcorrectifnecessary:FNγ)-induced killing of

Legionella in bone marrow–derived macrophages [14]. Given that both itaconate and nitric

oxide (NO) [15,16] have important immunoregulatory effects on the host cell, including at the

metabolic level, it is complex to dissect the immunomodulatory versus direct antimicrobial

effects and requires the capability to precisely and reliably manipulate targets on each partner

of the host–pathogen interaction.

Fig 1. Itaconate modifies immune responses by controlling metabolism and posttranscriptionally regulating immune cascades,

which is posited to prevent excessive tissue damage. IAU : TheabbreviationlistofFig1hasbeenupdated:Pleaseverifythatallentriesarecorrect:FNβ, interferon beta; IFNγ, interferon gamma; IL, interleukin; Acod1/Irg1:

aconitate decarboxylase 1/immune-responsive gene 1; KEAP1, Kelch-like ECH-associated protein 1; LPS, lipopolysaccharide; LTx,

leukotriene; MHC, major histocompatibility complex; mtROS, mitochondria-derived reactive oxygen species; NRF2, nuclear factor

erythroid 2–related factor 2; OxPhos, oxidative phosphorylation; PG, prostaglandin; SDH/CII, succinate dehydrogenase and complex II

of the respiratory chain; TCA cycle, tricarboxylic acid cycle.

https://doi.org/10.1371/journal.ppat.1010361.g001
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How does itaconate act as an immunomodulator?

The general framework is that itaconate acts as a negative regulator of innate immunity to limit

host tissue damage, with some notable exceptions. The detailed molecular mechanisms of how

itaconate exerts these effects are a very active area of research, with multiple mechanisms uncov-

ered. Early on, a zebrafish (zebra danio) model of Salmonella infection showed the homologue

of Acod1 to be induced in macrophage lineage cells, in a manner dependent on the Jak/Stat

pathway and glucocorticoid pathway [17]. Expression of the zebrafish (zebra danio) homologue

of Acod1 leads to mitochondrial reactive oxygen species (RAU : PleasenotethatROShasbeendefinedasreactiveoxygenspeciesinthesentenceAcod1expressionleadsto::::Pleasecheckandcorrectifnecessary:OS) production in this model.

First, itaconate acts on mitochondria by competitive inhibition of succinate dehydrogenase

(SDH) [18]. SDH is part of both the tricarboxylic acid cycle and the respiratory chain (complex

II); thus, itaconate simultaneously interrupts the tricarboxylic acid cycle and reduces SDH-

dependent oxygen consumption [16,19]. This results in succinate accumulation and a direct

reduction of mitochondrial ROS (in contrast to the zebrafish (zebra danio) model). From the

mitochondrial matrix, itaconate is transported into the cytosol where it can regulate metabo-

lism at the glycolysis step, inhibiting key enzymes in this pathway to decrease glycolysis [20].

Thus, itaconate mediates several of the metabolic changes during inflammation; these direct

effects are observed in most in vitro inflammatory models. Whether this occurs in vivo, and

how it may be influenced by tissue microenvironment during acute inflammation and resolu-

tion stages, is still to be fully demonstrated: In a mouse model of pulmonary fibrosis, tissue-

resident macrophages showed decreased oxygen consumption rate (OAU : PleasenotethatOCRhasbeendefinedasoxygenconsumptionrateinthesentenceWhetherthisoccursinvivo::::Pleasecheckandcorrectifnecessary:CR) in the absence of

itaconate [21], in contrast to what is predicted by in vitro models.

Once in the cytosol (Fig 1), itaconate acts by directly modifying proteins via alkylation of

cysteines [3]. In particular, alkylation of Kelch-like ECH-associated protein 1 (KEAP1) releases

nuclear factor erythroid 2–related factor 2 (NRF2) [3], a potent antioxidant regulator, which

then activates a second pathway to reduce cellular ROS.

Itaconate shows a lasting anti-inflammatory effect after LPS stimulation, generally decreas-

ing levels of inflammatory cytokines interleukin (IAU : PleasenotethatILhasbeendefinedasinterleukininthesentenceItaconateshowsalasting::::Pleasecheckandcorrectifnecessary:L)-6, IL-1β, and via a negative feedback loop

with interferon beta (IAU : PleasenotethatIFNbhasbeendefinedasinterferonbetainthesentenceItaconateshowsalasting::::Pleasecheckandcorrectifnecessary:FNβ) [3]. Itaconate controls monocyte priming and immune paralysis

after LPS treatment through an SDH-dependent mechanism in a model of human endotoxe-

mia [22]. In other models, such as delayed inflammasome priming in murine bone marrow–

derived macrophages, itaconate controls inflammasome activation via a novel posttransla-

tional modification: itaconation [23]. Additional regulatory mechanisms of itaconate are still

being uncovered. For example, itaconate controls the number of lipids bodies of macrophages

after mycobacteria challenge [11]. Control of lipid bodies and lipid metabolism is likely a

major regulatory pathway of itaconate [24,25], since lipid bodies are precursors for important

inflammatory molecules such as prostaglandin and leukotrienes [26].

How does itaconate regulate immunity at the tissue level?

Itaconate produced by myeloid cells can directly affect neighbouring cells. In a murine model

of bleomycin-induced pulmonary fibrosis, itaconate produced by alveolar macrophages

improved the healing pattern of lung fibroblasts; exogenous addition of itaconate influenced

fibroblast healing pattern to ameliorate lung function [21]. Itaconate may also be produced by

cells other than myeloid cells. Neurons were found to produce itaconate after challenged with

Zika virus in vitro [27]. Curiously, neurons are able to take up exogenous itaconate, and itaco-

nate application improved neurological function upon reperfusion injury [28]. Thus, itaconate

can control tissue function by acting on nonmyeloid cells.

IAU : PleasecheckwhethertheeditstothesentenceInmycobacterialinfections; deletionof :::arecorrect; andamendifnecessary:n mouse models of mycobacterial infections, deletion of Acod1 leads to differential recruit-

ment of immune cells in the lung, such as an increase in neutrophils [10] and in lymphocytes
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[11]. However, it is still unclear which immune signal is influencing this differential recruit-

ment and whether itaconate may influence the development of adaptive immunity. Thus far, a

single study observed that itaconate did not affect protective immunity by the Bacillus Calm-

ette–Guérin (BAU : PleasenotethatBCGhasbeendefinedasBacillusCalmette � Gu�erininthesentenceThusfar; asinglestudy::::Pleasecheckandcorrectifnecessary:CG) vaccine strain [11]. This observation fits current models at a conceptual

level, as an attenuated strain BCG vaccine strain will not trigger excessive inflammation, but it

is very intriguing at a mechanistic level, i.e., at which point is there enough inflammation to

activate itaconate and through which cellular mechanisms? Is it possible that in vivo there is a

need for tissue damage, and danger associated molecular patterns, to trigger production of ita-

conate? Thus, further studies understanding impact of itaconate in tissue homeostasis and

influence on adaptive immunity are urgently required.

Are analogues of itaconate potential immunomodulatory therapies?

In human studies, low levels of itaconate in plasma are associated with excessive inflammation

in rheumatoid arthritis [28] and during Coronavirus Disease 2019 (CAU : PleasenotethatCOVID � 19hasbeendefinedasCoronavirusDisease2019inthesentenceInhumanstudies; lowlevelsofitaconate::::Pleasecheckandcorrectifnecessary:OVID-19) [29], which

strongly supports that supplement of itaconate and its analogues would be useful in clinic.

Currently, several analogues of itaconate show potent immunomodulatory properties.

However, while these mimic several of itaconate functions, they show important differences

from endogenously produced itaconate [25,29,30]. For example, analogues of itaconate pre-

vents cycloxigenase-2 expression and production of several prostaglandin species in response

to a Toll-like receptor (TAU : PleasenotethatTLRhasbeendefinedasToll � likereceptorinthesentenceForexample; analoguesof ::::Pleasecheckandcorrectifnecessary:LR)1/2 agonist Pam3CSK4, a possibly clinically useful anti-inflamma-

tory effect, an effect not replicated by endogenous itaconate [25]. This is attributed to different

reactivity of these analogues to act as cysteine modifiers and electrophilic molecules. Itaconate

analogues showed beneficial effects in mouse models of psoriasis [31] and others autoimmune

diseases. Interestingly, both dimethyl fumarate, a compound in clinical use to control psoriasis,

and itaconate analogues were able to decrease prostaglandin expression in macrophages [25],

suggesting some mechanistic and clinical overlap of itaconate analogues to existing therapies.

Overall, itaconate, and the immunobiology under its control, is revealing a wealth of knowl-

edge on delicate equilibrium required of a successful immune response. While considerable

work is still needed to fully understand these cascades, this knowledge holds great potential to

improve our management of infectious and immune diseases.
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