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� Abstract: Background: Cyclophosphamide (CPA) is the most widely prescribed cancer chemotherapeutic 

agent which shows serious neurotoxic side effect. Generation of reactive oxygen species at the cellular level 

is the basic mechanism of cyclophosphamide induced neurotoxicity. Edaravone is the synthetic drug used 

for brain stroke and has potent antioxidant property.  

Objective: This study aimed to investigate the effect of edaravone on neurobehavioral and neuropathologi-

cal alteration induced by cyclophosphamide in male rats.  

Methods: Twenty eight Sprague-Dawley rats were equally divided into four groups of seven rats in each. 

The control group received saline, and other groups were given CPA intraperitoneally (100 mg/kg), CPA 

(100 mg/kg) intraperitoneally + Edaravone (10 mg/kg) orally, or Edaravone (10 mg/kg) orally for one 

month.  

Results: Our data showed that CPA significantly elevated brain AChE activity in the hippocampal region. A 

decrease in the total antioxidant capacity and a reduction in the CAT, SOD, and GPX activity occurred in 

the brains of the rats exposed to CPA. CPA-treated rats showed a significant impairment in long-term-

memory and motor coordination. These results were supported by histopathological observations of the 

brain. Results revealed that administration of edaravone reversed AChE activity alternation and ameliorated 

behavioral and histopathological changes induced by CPA.  

Conclusion: This study suggests that co-administration of edaravone with cyclophosphamide may be a use-

ful intriguing therapeutic approach to overcome cyclophosphamide induced neurotoxicity.   
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1. INTRODUCTION 

Cyclophosphamide (CPA) is a cancer chemotherapy 
agent generally utilized in cancer management to enhance 
the life expectancy of malignant growth patient. Despite a 
restorative impact, CPA is additionally connected to numer-
ous unfortunate symptoms because of its metabolites, phos-
phoramide mustard and acrolein [1]. Other side effects in-
clude nephrotoxicity, hepatotoxicity, urotoxicity, cardiotoxi-
city, immunotoxicity, mutagenicity, genotoxicity, carcino-
genicity, teratogenicity, and neuronal toxicity [2-5]. The 
CPA metabolite acrolein builds lipid peroxidation and deliv-
ers exceptionally reactive oxygen species (ROS). These 
overabundant ROS interface with different cells and cause 
cellular impairments [6, 7]. The neurotoxicity of cyclophos-
phamide and its metabolites has been well established  
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[8-11]. By lessening the abundance of ROS, it is conceivable 
to limit the toxicity related to cyclophosphamide. 

Antioxidant compounds have been shown to shield tis-
sues from cyclophosphamide-induced oxidative impairment 
[12]. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a 
free extreme scavenger that is as of now utilized in the 
treatment of acute ischemic stroke as a neuroprotective rea-
gent, has been shown to essentially diminish the infarct size, 
enhance neurological scores, and decline ROS age [13]. 
More explicitly, it can balance toxicity from enacted micro-
glia [14]. Neuroinflammation in Middle Cerebral Artery Oc-
clusion (MCAO) might be weakened by edaravone which 
acts through concealment of the expression of proinflamma-
tory cytokines in enacted microglia [15]. 

2. MATERIALS AND METHODS 

2.1. Chemicals 

All essential chemicals were purchased from Sigma-
Aldrich, India. MDA, SOD activity, GSH level, and GPx 
activity assay kits were purchased from IBL International. 
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2.2. Animals 

Grown-up male Sprague-Dawley rodents (5 weeks old, 
180g) were obtained from Animal House, Jawaharlal Nehru 
Cancer Hospital and Research Center, Bhopal. Rodents were 
housed in plastic pens in an animal room with a temperature 
of 22 ± 2 ºC and humidity of 55 ± 5% and 12h light: dark 
cycle. The animals got nourishment (Altromin 1324) and tap 
water was not obligatory. The examinations followed the 
rules of the Institutional Animal Ethical Committee 
((IAEC/Truba/Proj/05). 

2.3. Experimental Design 

In this examination, rodents were arbitrarily partitioned 
into four gatherings (n = 7 for each gathering). The first 
gathering animals were administered intraperitoneally with 
0.9% saline once every week for about a month. The second 
gathering animals were administered intraperitoneally with 
CPA at 100 mg/kg once per week for about a month. The 
third gathering animals were administered intra peritoneally 
CPA at 100 mg/kg once every week for about a month with 
edaravone at 10 mg/kg orally, once daily for about a month. 
The fourth gathering animals were administered edaravone at 
10 mg/kg, orally, once daily for about a month. After all 
medications at about a month, the behavioral tests were done 
and after that, samples were gathered. The animals were ha-
bituated to the pimpairmentacology lab for one hour before 
beginning the test. 

2.4. Behavioral Tests  

2.4.1. Passive Avoidance Test 
A detached evasion test was performed to assess the im-

pacts of SA or EA on the long-term memory in rodents. The 
investigations were carried out utilizing a step-through sort 
detached evasion apparatus (PACS-30, Columbus Instru-
ment, USA), comprised of equivalent estimated light and 
dark compartments (22×21×22cm), and isolated by a guillo-
tine entryway. A 40W light was fixed 30cm over the floor at 
the focal point of the light compartment. The floor was pro-
duced using stainless steel and associated with a stun trigger. 
Single electrical stuns (0.5mA, 75V, 50Hz) were conveyed 
to the matrix floor of the dark compartment by a trigger. Be-
fore the behavioral screening, the animal was prepared for 
the instrument. In the instructional meeting, each rodent was 
set in the lit up compartment and permitted 1min for habitua-
tion. The guillotine entryway was opened and shut promptly 
when the animal entered the dark compartment; at that point, 
an electric stun was conveyed through the matrix floor. In 
the test session, every animal was again set in the enlight-
ened compartment, 24h after the instructional meeting. The 
progression through inertness to enter the dark compartment 
was estimated in the two sessions. The cut-off time was 600s 
instructional course [16]. 

2.4.2. Rotarod Test 
Rotarod test is done by utilizing the rotarod gear (Rota-

mex, Columbus Instrument, USA) for screening the motor 
execution of animals. The unit comprises a pivoting axle, a 
power hotspot for turning the axle and lattices underneath 
the turning roller where the rodent can fall without damage. 

All animals were pre-prepared on the rotarod device so as to 
achieve a steady execution. Three separate preliminaries 
were incorporated into the animal trail on day 1, with some-
where around one hour of rest between preliminaries, under 
a quickening convention beginning at 4rpm and achieving 40 
rpm in 5 min and the dormancy to fall was recorded [17]. 

2.4.3. Sample Collection 
Rodents from various gatherings were executed by be-

heading after the finish of the behavioral test. Brain tissues 
were isolated and then washed with saline quickly. For histo-
logical studies, a part of cortex was fixed in 10% phosphate 
buffered formalin. For biochemical and AChE activity esti-
mations, the hippocampus of the brain was homogenized 
(1/10 w/v) in ice-cold Tris-HCl buffer (0.1M, pH7.4). 

2.4.4. Biochemical Measurements 
Hippocampi from various gatherings were homogenized 

for estimation of the antioxidant status of the mind [18]. In 
short, one gram of mind tissue was gauged and homogenized 
in 0.1 M chilled potassium phosphate support (PH 7.4) uti-
lizing Denville Ultra EZ grind tissue homogenizer for 5 min. 
The homogenate was centrifuged at 14000 rpm at 4 °C for 
15 min to acquire supernatant that was utilized to assess the 
centralization of malondialdehyde-lipid peroxidation marker-
(MDA) [19], and decrease glutathione (GSH) [20] with cata-
lase (CAT) [21], superoxide dismutase (SOD) [22] and glu-
tathione peroxidase (GPX) [23] exercises at Shimadzu spec-
trophotometer (UV120-02). 

2.4.5. Measurement of AChE Activity 
To gauge AChE action of the hippocampus, the tissues 

were homogenized in 10 volumes of a super cold (medium 
I), comprising 320 mM sucrose, 0.1 mM ethylenediamine 
tetraacetic acid, and 5 mM 4-(2-hydroxyethyl)- 1-piperazine 
ethanesulfonic acid, pH 7.5 in (TissueRuptor, Qiagen) ho-
mogenizer and Synaptosomes were confined utilizing an 
intermittent Percoll inclination [24]. At that point, the pellet 
was suspended in an isoosmotic arrangement, and the last 
protein focus was acclimated to 0.5 mg/mL. Synaptosomes 
were arranged new day by day, kept up at 4 °C all through 
the technique, and utilized for enzymatic examines. The re-
sponse blend (2 mL last volume) contained 100 mM K+ - 
phosphate cushion, pH 7.5 and 1 mM 5,5′-dithio-bis-
nitrobenzoic acid. The strategy depends on the arrangement 
of the yellow anion, 5,5′-dithio-bis-acid nitrobenzoic, esti-
mated by perusing absorbance at 412 nm amid a 2-min 
brooding at 25 °C. The protein was pre-incubated for 2 min, 
and the response started by including 0.8 mM acetylthiocho-
line iodide (AcSCh). All examples were kept running in 
copy or triplicate and catalyst action was communicated in 
μmol AcSCh/h/mg of protein [25]. 

2.4.6. Histopathological Examination 
Tissue tests were settled in 10% unbiased formalin for 

24h and paraffin squares were obtained and routinely han-
dled for light microscopy. Cuts of 4-5 µm were acquired from 
the readied squares and recolored with H and E. The arrange-
ments obtained were envisioned utilizing Omano microscopy 
(OM150-MK 40X-400X) at amplification of ×400. 
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Fig. (1). Cyclophosphamide effect on long-term memory impairment in passive avoidance test. Values are expressed as mean +SB (N=7). 
Data were analyzes by two-way ANOVA followed by Bonferroni post-test. *p <0.05 significant difference retention latency as compared to 
the initial latency same groups, #p <0.05 significant difference as compared to CPA-treated group. 

2.4.7. Statistical Analysis 

Information examination was performed with GraphPad 
Prism programming (form 5). All the outcomes were communi-
cated as mean ± SD. Every measurable correlation was made by 
methods for one-way ANOVA test pursued by Tukey's post hoc 
investigation and p-esteem < 0.05 was viewed as huge. 

3. RESULTS 

3.1. Behavioral Tests  

3.1.1. Effect of Edaravone on Learning and Memory Im-
pairment Induced by Cyclophosphamide 

As shown in Fig. (1), organization of cyclophosphamide 
fundamentally diminished the progression through inactivity 
when contrasted with the control gathering (p<0.05), while the 
multi-week organization of edaravone altogether turned around 
the memory weakness incited by cyclophosphamide (p< 0.05). 

3.1.2. Effect of Edaravone on Motor Coordination Impair-
ment Induced by Cyclophosphamide 

The result of the rotarod analysis demonstrates that or-
ganization of cyclophosphamide diminished the falling inac-
tivity when contrasted with the control gathering (p<0.001). 
Besides, the multi-week edaravone organization essentially 
expanded the dormancy to fall initiated by cyclophospha-
mide (p<0.001) (Fig. 2). 

3.2. Biochemical Measurements 

3.2.1. Effect of Edaravone on Cyclophosphamide-induced
Oxidative Imbalance in the Brain 

There is unevenness induced in the middle of oxidative 
and antioxidant parameters in brain homogenate after cyclo-
phosphamide organization. Oxidative unevenness was shown 

by a factually huge (p< 0.05) increment in hippocampus 
MDA focus with a noteworthy decline in GSH dimension of 
rodents after cyclophosphamide when contrasted with con-
trol rodents (Table 1). Additionally, the brain exercises of 
CAT, SOD, and GPX estimated a critical (p< 0.05) decline 
in cyclophosphamide-treated rodents. Normalizing these 
oxidative changes following the multi-week organization of 
edaravone in cyclophosphamide-treated rodents affirmed the 
cell reinforcement job of edaravone in the hippocampus. 

3.3. AChE Activity 

3.3.1. Effects of Cyclophosphamide on AChE Activity in 
the Hippocampal Homogenates 

In the control gathering, AChE activity was 4.41 μmol 
AcSCh/h/mg proteins in the hippocampal homogenates. Or-
ganization of cyclophosphamide indicated increased AChE 
action essentially 56.4% as a contrast with vehicle-treated 
gathering. Multi-week continuous edaravone treatment fun-
damentally lessened the AChE activity (Fig. 3). 

3.4. Histopathological Study 

Minuscule examination of the cortex demonstrated that 
cyclophosphamide caused degeneration in the most analyzed 
districts portrayed by the nearness of necrotic and apoptotic 
cores (Fig. 4). 

4. DISCUSSION 

This examination was completed to research the impact 
of edaravone treatment on cyclophosphamide and uncovered 
rodents’ hippocampus oxidative status, AChE action, and 
conduct modification. The discoveries of present examina-
tions are in consonance with prior investigations, where re-
searchers announced that memory and learning conduct is 
represented by the hippocampal district of the mind and  
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Fig. (2). Effect of edaravone treatment on latency to fall in CPA-induced motor coordination and equilibrium impairment. Values are means + 
SD (n=7). Data were analyzed by one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. significant difference in 
comparison with the control group (**p < 0.001). #significant difference in comparison with the CPA-treated group (###p < 0.001). 

Table 1. Effect of cyclophosphamide on oxidative status of brain with the role of edaravone. 

Treatment Control Group CPA Treated Group CPA + Edaravone Treated Group Edaravone Treated Group 

GPX (µmol NADPH/g tissue) 10.97 ± 0.54ᶲ$ 14.89 ± 0.78ᶲ 4.23 ± 1.67# 9.96 ± 0.94$ 

MDA (µmol/g tissue) 32.12 ± 1.33# 27.98 ± 0.98$ 47.97 ± 1.87ᶲ 33.45 ± 0.97# 

SOD (U/g tissue) 20.98 ± 1.34$ 29.23 ± 1.32ᶲ 11.89 ± 0.78# 21.24 ± 1.22$ 

GSH (mg/g tissue) 18.94 ± 0.98$ 28.09 ± 1.23ᶲ 13.45 ± 0.98# 20.12 ± 1.97$ 

CAT (µmol H2O2 decomposed/g tissue) 52.02 ± 1.32$ 59.89 ± 1.87ᶲ 37.23 ± 2.12# 52.89 ± 0.96$ 

Values are expressed as mean ± SD for each group. #, ᶲ, $ are the means within the same column and bearing different superscripts are significantly different at p < 0.05. 
 

 
Fig. (3). Acetylcholinesterase (AChE) activity in hippocampal synaptosomes. Values are means + SD (n=7). Data were analyzed by one-way 
ANOVA followed by turkey’s post hoc test multiple comparisons. significant difference in comparison with the contro; group (***p < 0.001). 
#significant difference in comparison with the CP A-treated group (#p < 0.04). 
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Fig. (4). Histopathological lessions of brain tissue. A) Control group showing normal histological features of cortex with well-formed neu-
rons. B) CPA group showing cyclophosphamide (CPA) treated rats with damaged cortex. C) CPA + Edaravone group showed with better 
recovery in tissues and well-formed nuclei without vacuolation and irregular features. D) Edaravone group showing edaravone treated animal 
brain with normal tissues as control group H&E 20 mm. 

cyclophosphamide incites hippocampal toxicity [26-29]. The 
decline in the action dimension of AChE in the mind area 
exhibited in this investigation demonstrates a decrease of 
cholinergic neural connections in the cyclophosphamide un-
covered hippocampus rodents. A recent report identified 
with cyclophosphamide neurodegenerative conduct likewise 
shows the inhibitory capacity of cyclophosphamide on a 
cholinergic framework [30, 31]. Thus, an adjustment in con-
duct parameters, for example, memory weakness and motor 
coordination in cyclophosphamide uncovered rodents can be 
the consequence of concealment of the cholinergic frame-
work by cyclophosphamide. 

A few investigations have demonstrated that oxidative 
stress is a significant component of cyclophosphamide incit-
ed neurotoxicity. In the hippocampus, it actuates impairment 
to mitochondria and causes mitochondrial brokenness, bring-
ing about unnecessary ROS age [32]. This component is spe-
cifically connected with cell oxidative stress, which impairs 
the antioxidant resistance framework and results in cell pass-
ing and neuronal impairment [33]. Additionally, different 
reports estimated the endogenous antioxidant proteins and a 
few oxidative stress markers to assess the dimension of oxi-
dative worry in cyclophosphamide uncovered animals, and 
prompts over the top oxidative stress and causes cell toxicity 
[34, 35].  

By considering oxidative worry as a fundamental com-
ponent of cyclophosphamide actuated neurotoxicity, we as-
sessed edaravone as a neuroprotective remedial specialist. 
Edaravone is principally utilized as the neuroprotective spe-
cialist in different neurodegenerative conditions related to 
over the top oxidative stress age [36]. Edaravone fills in as 
an antioxidative specialist and avoids lipid peroxidation [37]. 
Also, edaravone indicates a defensive job on isoproterenol-
induced myocardial dead tissue in rodents where oxidative 
stress and aggravation assume the pivotal job in ailment ac-
tivity [38]. Furthermore, the ongoing investigation uncov-
ered that edaravone enhanced the cholinergic framework, 
shielded neurons from oxidative toxicity and improved spa-
tial learning and memory shortfalls in the rodents [39]. 

The dimension of lipid peroxidation in the rodent mind 
was assessed in this examination by estimating MDA level 
in the rodent hippocampus. MDA is one of the real pointers 
of lipid peroxidation since it is created towards the finish of 
lipid peroxidation. Lipid peroxidation is straightforwardly 
connected with over the top oxidative stress, in this way es-
timating MDA level is an often utilized technique [40, 41]. 
In this investigation, edaravone improved cyclophosphamide 
initiated increment of MDA level, proposing that edaravone 
treatment diminished the dimension of oxidative stress. With 
MDA in this investigation, we additionally assessed the 

AA BB
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SOD, GPx exercises and GSH levels as these catalysts and 
synthetic compounds are straightforwardly related to cell 
reinforcement framework. SOD is one of the vital antioxi-
dant enzymes in the host guard framework against oxidative 
stress. Superoxide (O¯2) is one of the real ROS that causes 
oxidative stress on different cells and organs, and SOD 
changes it to sub-atomic oxygen and less poisonous hydro-
gen peroxide (H2O2), bringing about the diminished oxida-
tive impairment in the brain. It is commonly realized that the 
dimensions of SOD and GPx exercise increment with ex-
panding oxidative stress cells. Nonetheless, according to 
announced examinations, it tends to be reasoned that antiox-
idant proteins, for example, SOD and GPx could be impaired 
and diminished by exorbitant oxidative stress, bringing about 
a decline of cell reinforcement protection [42, 43]. GPx is 
likewise imperative in cell reinforcement framework. It is an 
essential cell reinforcement protein since it changes H2O2 to 
water (H2O). The dimension of GPx diminished with ex-
panded oxidative worry in cells [44].  

GSH is known to be a vital cofactor of GPx-intervened 
redox response. Low dimensions of GPx and GSH have 
corresponded with oxidative stress related conditions [45]. In 
this examination, cyclophosphamide introduction induced 
reductions in SOD, GPx, and GSH levels in the rodent hip-
pocampus when contrasted with the control gathering and 
edaravone kept these cyclophosphamide actuated declines in 
antioxidant catalysts and related synthetic concoctions in 
check. Consequences of the above investigation show that 
the defensive impact of edaravone could be credited to im-
prove cyclophosphamide incited reductions in SOD, GPx, 
and GSH levels. This defensive impact of edaravone can be 
because of its property as cell reinforcement that searches 
free radicals and keeps antioxidant catalysts from extreme 
oxidative impairment in the brain [46]. The atomic instru-
ment of edaravone is to repress both water solvent and lipid 
dissolvable peroxyl radical-induced peroxidation framework. 
Its belongings are, in this manner, like the consolidated im-
pacts of nutrients C and E. Edaravone represses both nonen-
zymatic lipid peroxidation and lipoxygenase pathway through 
its electron giving properties and has powerful antioxidant 
impacts against mind hoisted oxidative stress conditions [47]. 

We have, in our investigation, additionally shown that 
cyclophosphamide presentation instigates impedance in con-
duct and diminishes AChE activity which was additionally 
enhanced by edaravone treatment. Expanded AChE action 
levels mirror the expanded acetylcholine discharge which 
would encourage the synaptic transmission of neurons. The 
upgrade of subjective capacities by edaravone treatment as-
cribed to its capacity to improve mind AChE activity. An 
ongoing report has announced that the ameliorative impact 
of edaravone against psychological brokenness intervened 
through the decrease of AChE level [39]. As indicated by 
past investigations, edaravone has a solid helpful potential to 
secure neurons [48], glia (microglia, astrocytes, and oli-
godendrocytes) [49-51], and vascular endothelial cells [52] 
against oxidative stress and has been shown to stifle the in-
cendiary reaction of enacted microglial cells [53]. Ongoing 
findings appreciated that edaravone demonstrates defensive 
activity against STZ-induced intellectual impedance, oxida-
tive stress, cholinergic brokenness and changed protein ex-
pressions in streptozotocin incited psychological hindrance 

in rodents [54]. It is likewise detailed that edaravone im-
proves learning and memory and advances the development 
of neurons [55]. 

All in all, it may very well be determined from the pre-
sent outcome that edaravone offers huge neuroprotective 
potential against cyclophosphamide-induced neurotoxicity in 
exploratory rodents. The introduction of cyclophosphamide 
caused motor incoordination, learning and memory shortfalls, 
and expanded AChE and oxidative worry in the hippocampus. 
Treatment of edaravone produces an ameliorative impact on 
rodents by expanding motor activity, intellectual capacity, and 
AChE action and decreasing oxidative stress. Consequently, 
this examination expresses the use of edaravone amid 
cyclophosphamide chemotherapy which may viably keep the 
chemotherapy-instigated psychological deficiencies. 

CONCLUSION 

It can be concluded by this study that edaravone can be 
therapeutically beneficial for overwhelming the toxic effect 
of cyclophosphamide by improving the brain antioxidant 
status and normalizing brain neurotransmitter level.  
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