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Knowledge-graph-based cell-cell commu-
nication inference for spatially resolved
transcriptomic data with SpaTalk

Xin Shao 1,2,6, Chengyu Li 2,6, Haihong Yang3,4,6, Xiaoyan Lu2, Jie Liao 2,
Jingyang Qian2, Kai Wang 1, Junyun Cheng2, Penghui Yang2,
Huajun Chen 3,4 , Xiao Xu 1 & Xiaohui Fan 1,2,5

Spatially resolved transcriptomics provides genetic information in space
toward elucidation of the spatial architecture in intact organs and the spatially
resolved cell-cell communications mediating tissue homeostasis, develop-
ment, and disease. To facilitate inference of spatially resolved cell-cell com-
munications, we here present SpaTalk, which relies on a graph network and
knowledge graph to model and score the ligand-receptor-target signaling
network between spatially proximal cells by dissecting cell-type composition
through a non-negative linear model and spatial mapping between single-cell
transcriptomic and spatially resolved transcriptomic data. The benchmarked
performance of SpaTalk on public single-cell spatial transcriptomic datasets is
superior to that of existing inference methods. Then we apply SpaTalk to
STARmap, Slide-seq, and 10X Visium data, revealing the in-depth commu-
nicative mechanisms underlying normal and disease tissues with spatial
structure. SpaTalk can uncover spatially resolved cell-cell communications for
single-cell and spot-based spatially resolved transcriptomic data universally,
providing valuable insights into spatial inter-cellular tissue dynamics.

Cell–cell communications via secreting and receiving ligands fre-
quently occur in multicellular organisms, which is a vital feature
involving numerous biological processes1. Standard algorithms for
inferring cell–cell communications mediated by ligand–receptor
interactions (LRIs) primarily incorporate a database of known LRIs and
single-cell transcriptomic data by delineating cell populations and
their lineage relationships2,3. One common strategy is to integrate the
abundance of ligands and receptors for the inference of signals from
senders to receivers based on the premise that highly co-expressed
ligands and receptors are likely to mediate inter-cellular
communications4,5. Another strategy applies the downstream targets

triggered by LRIs in receivers to enrich and score the
ligand–receptor–target (LRT) signaling network6–8. Although single-
cell transcriptomic data can provide information on the genes con-
tributing to cell–cell communications, the spatial information of cells
is inevitably lost when dissociating tissues into single cells, thereby
hindering the extension of current tools to investigate cell–cell com-
munications in tissues with spatial structure9.

Recent technological advances in spatially resolved tran-
scriptomics (ST) benefiting from spatial barcoding and imaging-based
approaches have enabled the measurement of whole or mostly whole
transcriptomes while retaining the spatial information10, which have
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been increasingly adopted to generate useful insights in the biological
and biomedical domains, with dramatically improved accuracy and
reliability in the inference of spatially proximal cell–cell
communications11. Given the space-constrained nature of juxtacrine
and paracrine signaling, such spatial gene expression information is
vital to understand cell–cell communications mediating tissue home-
ostasis, development, and disease12,13.

Several methods have recently emerged to decode the mechan-
isms of cell–cell communications in space14. For example, Giotto uti-
lizes preferential cell neighbors over single-cell ST datasets for each
pair of cell typeswith an enrichment test to evaluate the likelihood of a
given LRI based on proximal co-expressing cells and infer cell–cell
communication in space15. SpaOTsc applies structured optimal trans-
port mapping between scRNA-seq and ST data to assign a spatial
position for each cell, resulting in a cell–cell distance as a transport
cost to infer the ligand–receptor signaling network that mediates
space-constrained cell–cell communication16. However, Giotto and
SpaOTsc are limited to infer inter-cellular communications over single-
cell ST data rather than the spot-based ST data and between paired cell
types rather thanpaired cells. It still lacks ofmethods that can infer and
visualize spatially resolved cell–cell communications at single-cell
resolution over ST data to date, posing a great challenge for decoding
spatial inter-cellular dynamics underlying disease pathology.

To address this challenge, we herein proposed SpaTalk, a spatially
resolved cell–cell communication inference method by creatively
integrating the principles of the ligand–receptor proximity and
ligand–receptor–target (LRT) co-expression to model and score the
LRT signaling network between spatially proximal cells relying on the
graph network and knowledge graph approaches17,18. The performance
of SpaTalk was evaluated on benchmarked datasets with remarkable
superiority over other methods. By applying to STARmap19, Slide-
seq20,21, and 10x Visium22 datasets, SpaTalk revealed the in-depth
communicative mechanisms underlying normal and disease tissues
with spatial structure. Collectively, these results demonstrate SpaTalk
as a useful and universal method that can help to uncover spatially
resolved cell–cell communications for both single-cell and spot-based
ST data, providing insights into the understanding of spatial inter-
cellular dynamics in tissues.

Results
Overview of the SpaTalk method
Figure 1 provides an overview of the workflow for developing and
testing SpaTalk, comprising twomain components: (1) dissect the cell-
type composition of ST data and (2) infer spatially resolved cell–cell
communications over decomposed single-cell ST data (Fig. 1a). In the
first component, the non-negative linear model (NNLM)23–25 was
applied to decode the cell-type composition for a single-cell or spot-
based ST datamatrix using the scRNA-seq datamatrix with k cell types
as the underlying reference. By incorporating Lee’s multiplicative
iteration algorithm and relative entropy loss25, the model was trained
with default hyperparameters until convergence, producing a weight
matrix representing the optimal proportion of cell types for each cell/
spot. For single-cell ST data, the cell type with the maximum weight
was assigned to label each cell. For spot-based ST data, the cell types
with different weights were used as the reference to project the cells
from scRNA-seq data onto the spatial spot (Fig. 1b). Through random
sampling and deep iteration processes, the optimal cellular combina-
tion that most resembled the spatial spot was refined to reconstruct
the single-cell ST data for spot-based ST data.

The second component of SpaTalk is to infer spatially resolved
cell–cell communications and downstream signal pathways. To iden-
tify possible communications among cells mediated by LRIs, the
principles of ligand–receptor proximity and ligand–receptor–target
(LRT) co-expression were incorporated based on a recent review11. In
detail, the KNN algorithm is first applied to each cell in space to

construct the cell graph network inspired by Giotto15. For a given
ligand of the sender (cell type A) and a given receptor of the receiver
(cell type B), the number of ligand–receptor co-expressed cell–cell
pairs is obtained from the graph network by counting the 1-hop
neighbor nodes of receivers for each sender. A permutation test filters
and scores the significantly enriched LRIs, generating the inter-cellular
score (Fig. 1c).

The knowledge graph (KG) was then introduced to model the
intracellular signal propagation process from the receptor to its
downstream signals, i.e., TFs and target genes. In practice, LRIs from
CellTalkDB26, pathways from Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Reactome, and TFs from AnimalTFDB27 were
integrated to construct the LRT-KG, wherein the weight between
entities represents the co-expressed coefficient. Taking the recep-
tor as the query node, we incorporated the randomwalk algorithm28

into the LRT-KG to filter and score the downstream activated TFs
and calculate the intracellular score of the LRI from senders to
receivers as the LRI that mediates the cell–cell communication is
supposed to activate at least one TF and its target gene in the
receiver cell type and the greater number of co-expressed TFs and
their target genes will lead to a higher score for a given LRI pair
between the sender cell type and the receiver cell type. Inter-
cellular and intracellular scores are combined to rank the LRIs that
mediate spatially resolved cell–cell communications.

SpaTalk also includes numerous visualization functions to char-
acterize the cell-type composition and spatially resolved cell–cell
communications, such as the diagram of the LRI from senders to
receivers in space and LRT signaling pathways, over the reconstructed
single-cell ST data (Fig. 1d). Five broad ranges of different spatial
technologies and corresponding representative datasets were ana-
lyzed and visualized: spot-based ST data (Slide-seq20,21 and 10x
Visium22) and single-cell ST data (STARmap19, MERFISH29, and seq-
FISH+30).

Performance comparison of SpaTalk with other methods
The cell-type decomposition by SpaTalk is the foundation for sub-
sequent analyses. To evaluate its performance, four single-cell ST
datasets from the mouse cortex, hypothalamus, olfactory bulb (OB),
and sub-ventricular zone (SVZ) were utilized (Supplementary Fig. 1a).
All cells were split according to the fixed spatial distance and then
merged into simulated spots as the benchmark datasets (Fig. 2a). The
quality of predicted cell-type decompositions and expression profiles
was evaluated by Pearson’s correlation coefficient and the root mean
square error (RMSE) based on the ground truth, wherein SpaTalk
exhibited fantastic performance over the benchmark datasets (Sup-
plementary Fig. 1b, c). Although the majority of existing cell-type
deconvolution methods (RCTD31, Seurat32, SPOTlight33, deconvSeq34,
Stereoscope35, and Cell2location36) can achieve a decent correlation
coefficient and low RMSE on spot deconvolution, SpaTalk out-
performed these methods on most benchmark datasets with the top-
rankedperformance, except for the evaluation indices on theMERFISH
dataset and the mean RMSE on the STARmap dataset (Fig. 2b). The
MERFISH dataset only includes 155 genes, whereas the STARmap and
seqFISH+ datasets cover 1020 and 10,000 genes per cell, respectively,
suggesting that SpaTalk is potentially more effective for spatial data
with higher gene coverage.

For the inference of cell–cell communication, we demonstrate
that SpaTalk enables the identification of known LRIs in space as
shown in the cases based on the STARmap and Slide-seq mouse brain
ST datasets (Supplementary Fig. 2). Thus, we next compared the per-
formance of SpaTalk with that of existing cell–cell communication
inference methods with their default LRI databases (Supplementary
Fig. 3a). Consequently, most methods exhibited a large fraction of
overlapped predictions with the rest of the methods despite the dif-
ferent number of inferred cell–cell communications (Supplementary
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Fig. 3b, c), indicating the reproducible inference across thesemethods.
Regarding the inferred LRIs (Supplementary Fig. 3d), we reasoned that
the spatial distances of the inferred LRI between sender-receiver pairs
will be shorter than those between all cell–cell pairs and thus the
inferred LRI will be more co-expressed in local space as cells that are
close are more likely to signal (Fig. 2c). The one-sided Wilcoxon test

was performed to evaluate the spatial proximity significance of the
inferred LRIs, and the co-expressed percentage of the LRI was calcu-
lated as the co-expression level using the cell–cell graph network.
Although most LRIs inferred by other methods showed significantly
closer spatial distances between sender-receiver pairs than that
between all cell–cell pairs, superior performance of SpaTalk was
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Fig. 1 | Workflow of the SpaTalk method and visualization. a Overview of
SpaTalk, including the input, intermediate process of decoding spatially
resolved cell–cell communications, and output. b Conceptual framework of
cell-type decomposition with SpaTalk. Five different spatial technologies and
datasets were selected and analyzed: spot-based ST data (Slide-seq and 10x
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observed, ranking first for both evaluation indices for STARmap
datasets (Fig. 2d). Similarly, SpaTalk obtained ahighermedian–log10P-
value and co-expression percent on the seqFISH+OB and SVZ datasets
but not for SpaOTsc16, CellPhoneDB37, and CellChat38 on individual
evaluation indices (Fig. 2e).

Considering the different default LRI database utilized in cell–cell
communication inference methods, we benchmarked the perfor-
mance of SpaTalk and other methods by unifying the LRI database,
wherein CellTalkDB17, CellPhoneDB37, CytoTalkDB7, CellChatDB38, and
CellCallDB8 were used by turns. As shown in Supplementary Fig. 3e,
several methods showed decent performance on some individual LRI
databases. For example, Giotto obtained the highest median –log10 P

among all methods over the STARmap dataset based on CellPhoneDB
and CellCallDB, while CytoTalk is the top-ranked method over the
STARmap dataset based on CellPhoneDB and CellChatDB considering
the median co-expression percent. Over the seqFISH+ OB dataset
based on CellChatDB, both of CellPhoneDB and CellChatDB perfectly
identified the significantly proximal LR pairs in space. For SpaOTsc, it
exhibited the highestmedian co-expressionpercent over the seqFISH+
SVZ dataset across all LRI databases. Nevertheless, SpaTalk obtained
the most times of the first place across the benchmarked datasets and
the underlying LRI databases, outperforming other existing methods
for inference of spatially proximal LR pairs that mediating cell–cell
communication in space.
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numbers of data points for the seqFISH+ OB dataset are 1,559, 38, 3,972, 1,223, 375,
675, 10, and 404, respectively; the numbers of data points for the seqFISH+ SVZ
dataset are 9817, 50, 3337, 1424, 1553, 7798, 258, and 291, respectively. f Schematic
illustration of the procedure and rationale for single-cell ST data to evaluate pre-
dicted downstream target and pathways underlying LRIs. g Performance compar-
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bers of data points for the seqFISH+ SVZ dataset are 121,693, 25,216, 15,454, and
225,231, respectively.
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Next, we compared the performance of SpaTalk for inference of
intracellular signal pathways of the receiver cell type triggered by the
LRI with those of NicheNet, CytoTalk, and CellCall that also infer the
downstreamtargets of LRIs.We reasoned that amore accuratemethod
would be more likely to enrich the receptor-related biological pro-
cesses or pathways using the inferred downstream target genes in the
receiver cell type (Fig. 2f); hence, the Fisher-exact test was adopted for
pathway enrichment analysis with the KEGG and Reactome databases
on target genes in receivers. The target genes inferred by all methods
enriched the most intracellular pathways or biological processes trig-
gered by the inter-cellular LRI (Fig. 2g). Nevertheless, SpaTalk exhib-
ited the top-ranked performance over three benchmarked datasets,
exceeding other existing methods in inference of the LRT signal
network.

In addition, the computation time for each method was also
evaluated. For the decomposition step, SpaTalk and other deconvo-
lution six methods were compared over four simulated (STARmap,
MERFISH, seqFISH+ OB and SVZ) and one real spot-based (10x Visium)
ST datasets, wherein the computation time of SpaTalk was within
minutes similar to RCTD and Seurat, outperforming SPOTlight,
deconvSeq, Stereoscope, and Cell2location (Supplementary Table 1).
For the inferring cell–cell communication step, SpaTalk and other
seven methods were benchmarked over three single-cell ST datasets
(STARmap, seqFISH+ OB and SVZ) and one reconstructed single-cell
ST dataset (10x Visium) with SpaTalk. As shown in Supplementary
Table 2, the computation time of SpaTalk, Giotto, SpaOTsc, NicheNet,
CellCall, and CellPhoneDB were all within minutes, superior to that of
CytoTalk and CellChat. In short, the present results indicated that the
SpaTalk is relatively accurate and efficient method for dissecting the
cell-type composition of ST data and inferring spatially resolved
cell–cell communications.

Metabolic modulation of periportal hepatocytes on pericentral
hepatocytes
We first applied SpaTalk to the Slide-seq ST dataset (v1) of the mouse
liver covering 17,545 unique genes among 25,595 spots in space
(Fig. 3a). To explore the cell-type composition of Slide-seq data, a
mouse liver scRNA-seq reference integrating the non-parenchymal
cells from the Mouse Cell Atlas (MCA)39 and the parenchymal hepatic
cells from the “GSE125688 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE125688]” dataset40 were utilized (Supplementary
Fig. 4a), containing 6,029 cells, including major immune cells such as
macrophages (Macro), and the pericentral and periportal hepatocytes.
The reconstructed single-cell ST atlas was perfectly accordant with the
original outcome obtained by Slide-seq (Fig. 3b), wherein the expres-
sion of known marker genes41 and the percent for each cell type were
highly correlated across spots (Supplementary Fig. 4b–d), such as the
pericentrally and periportally zonated genes Cyp2e1 and Pck1 (Fig. 3c).
Immune cells were hardly observed in each spot, with pericentral and
periportal hepatocytes accounting for the major proportion across
spots (Supplementary Fig. 4e); the same phenomenonwasobserved in
recently published ST data of the healthy liver42.

The cell–cell communications between pericentral and periportal
hepatocytes were further explored by SpaTalk (Fig. 3d). Both hepa-
tocyte types secrete and receive multiple ligands for their commu-
nication, forming spatially distributed metabolic cascades to
cooperatively optimize the metabolic environment. For instance, with
the gradient expression of enzymes in sequential lobule layers, peri-
central hepatocytes perform the primary steroid, alcohol, and lipid
metabolic processes, while periportal hepatocyte mainly carry out the
small-molecule and monosaccharide biosynthetic processes, amino
acid and triglyceride metabolic processes, and gluconeogenesis
(Fig. 3e, f), in line with the variable functions of zonated hepatocytes
residing in the central and portal veins43. Notably, the periportal
hepatocytes substantially expressed more ligands, including

epidermal growth factor (Egf), transforming growth factor alpha
(Tgfa), heparin-binding EGF-like growth factor (Hbegf), insulin-like
growth factor 1 (Igf1), and vascular endothelial growth factor A (Vegfa),
to promote the growth of pericentral hepatocytes. As the blood flows
from the portal vein toward the central vein, this could reflect the fact
that periportal hepatocytes respire most of the oxygen, leading to
decreased oxygen concentrations along the lobule axis; thus, peri-
portal hepatocytes secrete numerous growth factors via paracrine
signaling to modulate the pericentral hepatocytes for the prevention
of hypoxia and the maintenance and amelioration of pericentrally
metabolic functions43.

Taking the LRI of Apob-Cd36 as an example, the spatially resolved
cell–cell communications between periportal and pericentral hepato-
cytes mainly occurred across the mid-lobule layers (Fig. 3g). The gene
product of Apob is an apolipoprotein of chylomicrons and low-density
lipoproteins highly involved with the regulation of lipids and fatty
acids metabolism through CD36, indicating the modulation of peri-
portal hepatocytes on the metabolic microenvironment sensed by
pericentral hepatocytes. From the reconstructed intracellular signal
propagation network triggered by the Apob-Cd36 interaction (Fig. 3h),
sequential target TFs were activated, including Ahr that regulates
xenobiotic-metabolizing enzymes such as cytochrome P450, and
Nr1h4 that regulates the expression of genes involved in bile acid
synthesis and transport, in agreement with the correspondingmodule
score of pericentral hepatocytes in space (Fig. 3i). The LRT network
was also remarkably enriched in the AMPK and PPAR signaling path-
ways, which play crucial roles in the regulation of energy and meta-
bolic homeostasis, suggesting the spatially fine-tuned cell–cell
communications along the portal-central lobule axis for minimizing
risks to pericentral hepatocytes43.

Identification of signal transmission among glomerular cells in
kidney
SpaTalk was then applied to investigate and visualize the intraglo-
merular communications over the Slide-seq ST dataset (v2) of the
mouse kidney44 (Fig. 4a), including data of 20,591 sequenced genes for
27,044 spots in space covering the spatial axis of collecting duct
intercalated cells (CD-IC), collecting duct principal cells (CD-PC), distal
convoluted tubules (DCT), endothelial cells (Endo), fibroblasts (FB),
granular cells (GC), macrophages (Macro), mesangial cells (MC),
immune cells, proximal convoluted tubules (PCT), podocytes (Pod),
thick ascending limb (TAL), and vascular smooth muscle cells (vSMC)
from cortex of kidney to renal medulla. As shown in Fig. 4b, SpaTalk
identified the spatial signal transmission among Pod, MC, and Endo in
glomerulus. For example, the direct cell–cell communication medi-
ated by the pleiotrophin (Ptn) and protein tyrosine phosphatase
receptor type B (Ptprb) interaction was observed fromMC and Pod to
Endo, wherein Ptn is a secreted growth factor that can bind Ptprb,
which is known to be involved with adherens junction stimulating
endothelial cell migration and maintaining proper glomerular
function45. Besides, collagen and Notch signaling were also identified
forming the matrix that provides structural support for the glomer-
ulus, which are necessary for proper glomerular basement membrane
formation and glomerular development45,46. Concordantly, these
identified LRIs among glomerular cells are associated with multiple
biological processes andpathways thatplayvital roles in the regulation
of physiological kidney development and glomerular filtration func-
tion in the urinary system47,48, including tube morphogenesis, positive
regulation of cell adhesion, urogenital system development, and
morphogenesis of a branching epithelium (Fig. 4c).

Notably, the Pod-Endo communication mediated by Vegfa sig-
naling was significantly enriched in space (Fig. 4b), in accordance with
the fact that Vegfa is vital for the formation and maintenance of select
microvascular beds within the kidney49. It is known that Vegfa, nor-
mally produced by healthy podocytes, has been shown to be a critical
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regulator of glomerular development and function and precise
expression of the amount of Vegfa is required for adequate barrier
function50. As the kinase insert domain receptor (Kdr) of Vegfa, Kdr
functions as the main mediator of VEGF-induced endothelial pro-
liferation, survival, migration, tubular morphogenesis and sprouting.
Concordantly, the Pod-Endo communication mediated by Vegfa-Kdr
was also identified in othermouse kidney ST data (Fig. 4e). In addition,
most shared LRIs mediating the intraglomerular communications in
space were also observed across slides of human and mouse kidney

(Supplementary Fig. 5a), suggesting the robustness and universality of
the spatially resolved cell–cell communications inferred by SpaTalk.

We then applied SpaTalk to another spot-based ST dataset of the
mousekidney (10xVisium), reaching up to 19,465 unique genes among
3,124 spots in space (Fig. 4f). Leveraging previously published adult
mouse kidney cell taxonomy by single-nucleus RNA-seq data51 (Sup-
plementary Fig. 5b), SpaTalk reconstructed the spatial transcriptomics
atlas at single-cell resolution for Slide-seq data, which showed con-
sistent spatial localization of glomerular and other cells (Fig. 4f and
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Fig. 3 | Modulation of periportal hepatocytes on the metabolic micro-
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dataset of the mouse liver involving 25,595 spots and 17,545 genes. b Cell-type
decomposition by SpaTalk. PC, pericentral; PP, periportal; Hep, hepatocytes.
c Scaled Pearson’s correlation coefficients between the expressionof knownmarker
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DEGs are labeled beside the heatmap. f Significantly activated pathways in peri-
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Fig. 4 | Identification of spatial signal transmission among glomerular cells in
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and 20591 genes. CD-IC, collecting duct intercalated cells; CD-PC, collecting
duct principal cells; DCT, distal convoluted tubules; Endo, endothelial cells; FB,
fibroblasts; GC, granular cells; Macro, macrophages; MC, mesangial cells; PCT,
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vSMC, vascular smooth muscle cells. b Significantly enriched LRIs that mediate
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Supplementary Fig. 5c, d). Compared to Slide-seq (v2) data, proximal
tubules (PT), connecting tubule (CNT), loop of Henle descending loop
(LHDL), and loop of Henle ascending loop (LHAL) were also observed
in the 10x Visium data. Consistently, most LRIs mediating intraglo-
merular communications in Slide-seq (v2) data were also found in 10x
Visium data (Fig. 4g and Supplementary Fig. 5e). Similar to the Vegfa
paracrine system, Angiopoietin-1 (Angpt1) is expressed by podocytes
and its cognate tyrosine kinase receptor (Tek) is expressed by the
glomerular endothelial cells, which plays an indispensable role in
glomerular health and maintenance of the filtration barrier in physio-
logical conditions47. Moreover, the direct communication between
Endo to MC mediated by platelet-derived growth factor B and its
receptor (Pdgfb-Pdgfrb) was significantly enriched (Fig. 4h), in accor-
dance with the classical studies that have delineated a key role for the
Pdgfb in communication between the glomerular endothelium and
nearby mesangial cells45,47.

Spatial characterization of cell types over 10x Visium data
Given the widely used 10x Visium tool in ST studies, we applied Spa-
Talk to another human skin squamous cell carcinoma (SCC) ST dataset
published by Ji et al.22, who profiled SCC and matched normal tissues
via 10x scRNA-seq and used Visium to identify a tumor-specific kera-
tinocyte (TSK) in the tumor (Fig. 5a). Using the matched SCC scRNA-
seq data of patient 2 as reference, the optimal cell-type composition
for each spot was deconvoluted by SpaTalk, which exhibited a similar
characterization with that histologically assessed from hematoxylin
and eosin-stained frozen sections (Fig. 5b). The percent of TSK inferred
by ourmethodwas compared to the TSK score based onmarkers (e.g.,
MMP10, PTHLH, LAMC2, and IL24) defined by Ji et al.22 across
646 spots (Fig. 5c). A high correlation between the TSK percent and
score was observed (Fig. 5d). Moreover, the percent of inferred cell
types was prominently associated with the expression of known mar-
ker genes, indicating the accuracy of SpaTalk for cell-type decom-
position (Supplementary Fig. 6a, b).

Next, we reconstructed the single-cell ST profile by assuming a
total of 30 cells in each spot according to a recent review11, which
covered themain epithelial cells, including differentiating, cycling, and
basal keratinocytes; melanocytes; fibroblasts (FB); Endo; natural killer
(NK) cells; and T cells (Fig. 5e). Despite the asymmetrical distribution
for most cell types, TSK, FB, and Endo showed specific patterns of
locations in space, which were highly adjacent in some tumor areas
(Fig. 5f), forming direct cell–cell communications in the tumor
microenvironment (TME). By filtering cells from the TSK leading spots
(score ≥0.8), we found that TSKs reside within a fibrovascular niche,
resulting in high co-localization of TSKs, FB, and Endo at the TSK
leading spots (Fig. 5g), in line with the previous findings22. Moreover,
we used SpaTalk to investigate the cell-type composition over the ST
data of another SCC patient. Despite a low percentage across 621 spa-
tial spots, most TSKs centered on a handful of corner spots in space,
exhibiting a highly consistent distribution with TSK scores (Fig. 5h and
Supplementary Fig. 6c). Unsurprisingly, the fibrovascular niche was
also observed in the TSK leading spots of patient 10 with clear spatial
co-localization (Supplementary Fig. 6d), indicating the close cell–cell
communication among TSKs, FB, and Endo in the TME underlying the
occurrence and development of SCC.

Reconstruction of TSK-stroma communications in space
To dissect the underlying LRImediating the spatially resolved cell–cell
communications between TSKs and stromal cells of the fibrovascular
niche in the TME, we applied SpaTalk to infer the communications
between TSK-FB and TSK-Endo pairs over the decomposed single-cell
ST data of SCC in patient 2, including the top-ranked 20 LRIs based on
the integrated inter-cellular and intracellular scores (Fig. 6a). Con-
sistent with a TSK-fibrovascular niche, prominent TSK signaling to FB
and Endo was mediated by several common ligand–receptor pairs,

including VEGFA-NPR1, VEGFB-NPR1, PGF-SDC1, and CDH1-ITGAE,
associated with tumor angiogenesis. Additionally, TSKs modulate FB
through secreting matrix metallopeptidase (MMP)1 and MMP9, which
are linked to tumormetastasis via cellularmovement and extracellular
matrix (ECM) disassembly. Conversely, FB and Endo prominently co-
expressed numerous ligands such as MDK, HGF, HMGB1, and THBS1,
matching TSK receptors that promote the proliferation and differ-
entiation of TSKs (Fig. 6b and Supplementary Table 3). Further sup-
porting TSKs as an epithelial mesenchymal transition (EMT)-like
population, SpaTalk predicted that the widely expressed TGFB1 reg-
ulates TSKs. TSK receptors corresponding to additional ligands from
FB and Endo included several integrins (e.g., ITGA5 and ITGB6) and
nectins (e.g., NECTIN1 and NECTIN2), highlighting other pathways
associated with EMT and epithelial tumor invasion52,53. Notably, similar
LRIs mediating the TSK-stroma communications in space were also
observed in another SCC patient (Supplementary Fig. 7a).

Next, we focused on a region of interest (ROI) covering 42 spatial
spots in space for in-depth exploration of TSK-stroma communica-
tions, which exhibited a high total score of TSK, FB, and Endo
according to their signaturegenes, occupying themajor part in theROI
(Fig. 6c). Bymapping cancer-associatedfibroblast (CAF)markers to the
cells in space, themajority of FB in the ROI highly expressed the known
CAF marker genes (e.g., VIM, FAP, POSTIN, and SPARC) (Fig. 6d),
hinting at the transformation of FB to CAFs induced by the adjacent
TSKs and conversely supporting the stemness of TSKs via direct
cell–cell communication in space (Supplementary Fig. 7b). Notably,
the TSKs appear to be heterogeneous with respect to the broad range
of EMT scores in the ROI; thus, TSKs were further classified into 268
EMT-like and 268 EMT-unlike populations (Supplementary Fig. 7c). By
comparing their differentially expressed genes, EMT-like TSKs were
dramatically enrichedwith ECMorganization, proteoglycans in cancer,
regulation of cell adhesion, and the VEGFA-VEGFR2 signaling pathway,
representing more invasive properties compared with EMT-unlike
TSKs (Fig. 6e).

Additionally, EMT-like TSKs appear to be more communicative
with surrounding CAFs in the TME in light of the greater number of
cell–cell pairs over the LRIs that prominently mediate TSK-stroma
communications in space, such as LAMB3-ITGB1, LAMA3-ITGB1,
LAMC2-ITGB1, and MMP1-CD44 (Fig. 6f and Supplementary Fig. 7d–f).
Metastasis-related laminins are essential for formation and function of
the basement membrane54, whereas MMPs are involved in ECM
breakdown, both contributing to the aggravated malignancy of
tumors.Moreover, CD44 expression onCAFs plays a supporting role in
the induction of cellular stemness55, wherein CAFshave a preferenceof
cell–cell communications with EMT-like TSKs in space (Fig. 6g).
Interestingly, EMT-unlikeTSKsnotably exhibitedmorecommunicative
cell–cell pairswith Endo,whereas EMT-likeTSKs exhibited significantly
more communicative cell–cell pairs with CAFs over the matched LRIs
(Fig. 6h), consistent with the observed contribution of CAFs to EMT in
a broad range of tumors56,57.

Discussion
We have demonstrated the capabilities of SpaTalk to infer and visua-
lize spatially resolved cell–cell communications mediated by sig-
nificantly enriched LRIs under normal and disease states over existing
representative datasets, including the single-cell ST data generated
from STARmap, MERFISH, and seqFISH + , and the spot-based ST data
obtained via Slide-seq and 10x Visium.

There are two principles to decode the mechanisms of cell–cell
communications: ligand–receptor proximity and LRT co-expression11.
In a given tissue niche, cells are more likely to communicate with each
other when they are spatially adjacent and activate downstream target
genes in the receiving cell triggered by the LRI in proximal cells; thus,
ST data are well suited to apply the two principles for inferring inter-
cellular communications. Accordingly, our proposed SpaTalk realizes
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the integration of these two principles by incorporating the KNN and
cell–cell graph network to filter spatially proximal cell pairs and cor-
responding LRIs, followed by utilizing the knowledge graph algorithm
to model the LRT signal propagation process. Consequently, the per-
formance of SpaTalk was superior to that of other methods over the
benchmarked ST datasets with respect to several evaluation indices,
demonstrating the reliability of the two principles in decoding cellular
cross-talk, especially for juxtracrine and paracrine communication.

Importantly, SpaTalk is applicable to either single-cell or spot-
based ST datasets generated from mainstream ST technologies. For
the former, SpaTalk assigns a label to each cell by selecting similar cell
types with the top-ranked weight via NNLM for single-cell ST data,
generating the ST atlas at single-cell resolution with known cell types
for the subsequent inference of cell–cell communications. For spot-
based ST data, SpaTalk selects and maps the optimal combination of
cells in accordance with the decomposed optimal weight/percent of
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cell types via NNLM and the transcriptome profiles of spatial spots to
reconstruct the ST atlas at single-cell resolution with known cell types.
Notably, applications of SpaTalk to themousecortex and liver datasets
sequenced by STARmap and Slide-seq, respectively, revealed the evi-
dential LRIs in space that mediate the spatially resolved cell–cell
communications contributing to normal physiological processes.
Moreover, exploration of SpaTalk on the human skin SCC dataset

obtained from 10x Visium identified the variable preference of com-
munication among tumor subpopulations, CAF, and Endo. These cases
convincingly demonstrate the universality of SpaTalk in decoding the
mechanism of cell–cell communications in space underlying normal
and disease tissues for single-cell and spot-based ST data.

As unmatched scRNA-seq andSTdatawould directly influence the
cell-type decomposition, an important feature of SpaTalk is the ability
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Fig. 6 | Reconstruction of cell–cell communications between TSK subpopula-
tions and stromalcells in spacewith SpaTalk. aTop20 inferred LRIs thatmediate
cell–cell communication from the TSK senders to the FB and Endo receivers.
Colored blocks represent the known ligand–receptor pairs in CellTalkDB. The
asterisk represents the significantly enriched LRIs determined by SpaTalk.bTop 20
inferred LRIs that mediate cell–cell communication from the FB and Endo senders
to TSK receivers. cRegion of interest (ROI) covering 42 spatial spots in spacewith a
high total score of TSK, FB, and Endo according to their signature genes. The point
plot shows the decomposed single-cell ST atlas determined by SpaTalk. The
number sign represents the receptor contributing to the proliferation and

differentiation of TSK. d Expression of known cancer-associated fibroblast (CAF)
markers across TSKs, FB, Endo, and other cells. e Differentially expressed genes
(DEGs) between EMT-like and EMT-unlike TSKs and the corresponding enriched
biological processes and pathways. Representative DEGs are labeled beside the
point. f Number of cell–cell pairs over the LRIs from the EMT-like and EMT-unlike
TSKs to CAFs. g Communications from EMT-like and EMT-unlike TSKs to CAFs
mediated by the MMP1-CD44 interaction in space. h Comparison of communica-
tions among CAFs, Endo, EMT-like TSKs, and EMT-unlike TSKs with respect to the
number of cell–cell pairs in space over the matched LRIs evaluated with a paired
two-sided Wilcoxon test.
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to assign a spot/cell into an unsure category considering the unseen
cell types in the scRNA-seq reference. For example, the scRNA-seq
reference for the Slide-seq mouse cortex ST data was obtained from
another repository for the same tissue, resulting in numerous unsure
cells by assuming one cell in each spot in terms of the high resolution
(10μm) of Slide-seq technology that almost approaches single-cell
resolution. Additionally, the low gene coverage of several spatial spots
severely affects the regression model, which were regarded as the
unsure type by SpaTalk. However, with respect to the human skin SCC
datasets, SpaTalk removed the unsure type for thematched scRNA-seq
and ST data. As the matched multi-modal datasets will undoubtedly
become greater in number, application of SpaTalk and similar meth-
ods will be required for accurate inference of spatially resolved
cell–cell communications.

Additionally, SpaTalk characterizes the spatial distribution for
each cell type within the reconstructed ST at single-cell resolution
through the contour plot of cellular density in space, which enables
analyzing the proximal relationship between paired cell types. More-
over, SpaTalk enables the statistical analyses and visualization of spa-
tially proximal LRIs in space, forming a dynamic cell–cell
communication network. Currently, it is hard to analyze and visualize
the LRI at single-cell resolution for scRNA-seq data, wherein the com-
mon practice is to interpret the LRI for paired cell types. By incor-
porating spatial information, SpaTalk displays the enriched LRI at
single-cell resolution via the spatially proximal co-expressed cell pairs,
offering an informative approach for the analysis and visualization of
the LRI and its mediated cell–cell communication underlying the dis-
ease pathology from a different perspective, as shown in the applica-
tion of SpaTalk to the human skin SCC datasets.

Adding spatial constraints in cell–cell communication inference is
critical to the spatial analysis of juxtracrine and paracrine commu-
nications. However, this constraint inevitably causes the failure of
inferring long-range communications such as endocrine and telecrine
signaling. Classification of LRIs into short-range and long-range com-
munications with prior knowledge might be helpful to infer the com-
prehensive communication categories computationally. Moreover, it
is potentially beneficial to include other omics data with the increasing
multi-modal datasets generated from state-of-the-art technologies
such as 10x Multiome and Digital Spatial Profiling58 in studying spa-
tially regulated cell–cell communications. Thus, more reliable com-
putational models might be needed for more accurate integration of
multi-modal data and inference.

Methods
Datasets
For STARmap19, the single-cell ST data of the mouse cortex
(20180410-BY3_1kgenes) was obtained from a “public data portal
[https://www.dropbox.com/sh/f7ebheru1lbz91s/AABYSSjSTppBmV
mWl2H4s_K-a?dl=0]”. For MERFISH29, the single-cell ST data of the
naïve female mouse (Animal_ID: 1, Bregma: 0.26) hypothalamic pre-
optic region was downloaded from “Dryad [https://datadryad.
org/stash/dataset/doi:10.5061/dryad.8t8s248]”. For seqFISH+30, the
single-cell ST data of the mouse cortex and olfactory bulb were
retrieved from the “Github repository [https://github.com/
CaiGroup/seqFISH-PLUS]”. For Slide-seq20,21, the spot-based ST data
of the mouse liver (Puck_180803_8) and somatosensory cortex
(Puck_200306_03) were obtained from the Broad Institute Single
Cell Portal “SCP354 [https://singlecell.broadinstitute.org/single_
cell/study/SCP354/slide-seq-study]” and “SCP815 [https://singlecell.
broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-
transcriptomics-at-near-cellular-resolution-with-slide-seqv2]”, respec-
tively, and the human andmouse kidney ST datasets44 were collected
“here [https://cellxgene.cziscience.com/collections/8e880741-bf9a-
4c8e-9227-934204631d2a]”. For 10x Visium, the ST data and scRNA-
seq data of human SCC were downloaded from the Gene Expression

Omnibus (GEO) repository: “GSE144240”22, and the mouse kidney
ST and single-nucleus RNA-sequencing data were obtained from
10x Visium Spatial Gene Expression of “‘Adult Mouse Kidney
(FFPE)’ [https://www.10xgenomics.com/resources/datasets]” and
“GSE119531”51, respectively. The mouse liver scRNA-seq data of non-
parenchymal and parenchymal hepatic cells were refined from the
“MCA [https://figshare.com/articles/MCA_DGE_Data/5435866]”39 and
“GSE125688”40, respectively. The mouse cortex scRNA-seq data were
obtained from “GSE71585”59.

Data processing
For the liver scRNA-seq datasets, the non-parenchymal cells and par-
enchymal hepatic cells were collected from the MCA39 and
“GSE125688”40, respectively, wherein hepatocytes were classified into
pericentral and periportal hepatocytes with principal component
analyses and clustering analysis. For the MERFISH dataset, ependymal
cells were excluded due to the limited cell number in the section (<2).
For human and mouse kidney ST data sequenced by Slide-seq (v2),
datasets with at least 15 mesangial cells were included. For other
datasets, all cells were included in the filtered matrices. Human and
mouse gene symbols were revised in accordancewith “NCBI gene data
[https://www.ncbi.nlm.nih.gov/gene/]” updated on June 30, 2021,
wherein unmatched genes and duplicated genes were removed. For all
ST and scRNA-seq datasets, the raw counts were normalized via the
global-scaling normalization method LogNormalize in preparation for
running the subsequent scDeepSort pipeline.

SpaTalk algorithm
The SpaTalk model consists of two components: cell-type decom-
position and spatial LRI enrichment. The first component is to infer
cell-type composition for single-cell or spot-based ST data, and the
second component is to infer spatially proximal ligand–receptor
interactions that mediate cell–cell communications in space.

Cell-typedecomposition. To dissect the cell-type composition for the
ST data matrix T [n × s] (n genes and s spots/cells), NNLM was first
applied to obtain the optimal proportionof cell types using the scRNA-
seq datamatrix S[n × c] (n genes and c cells) as the referencewith k cell
types. Let Y = fy1, y2, . . . , yng be the expression profile for each spot/cell
to establish the following linear model:

Y =Xβ + ε ð1Þ

whereX = [n × k] is the average expressionprofile generated fromS and
ε represents randomerror.Mean relative entropy losswas thenused to
measure the difference between the predicted and observed values.
Therefore, the objective function can be written as:

argmin β≥0
� �

L Y � Xβð Þ+ λ1R1ðβÞ+ λαRαðβÞ+ λ2R2ðβÞ ð2Þ

where R1, Rα, and R2 represent the L1, angle, and L2 regularization
with non-negative λ1, λα, and λ2 initialized by zero23,24. The model
was trained with the above objective function using Lee’s multi-
plicative iteration algorithm25 with default hyperparameters until
convergence or after 10,000 iterations to generate the coefficient
matrix C[k × s].

For single-cell ST data, the cell type with themaximum coefficient
was assigned to each cell. For spot-based ST data, let M be the max-
imum cell number for each spot, which was set to 30 for 10x Visium
data andwas set to 1 for Slide-seqdata according to a recent review12. In
practice, the optimal cellular combination ω for each spot was
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determined by the following function:
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� �
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� �
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� �
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� �
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� �
<0:5

� �
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wherein ½Mβi� and fMβig represent the integer and fractional parts of
Mβi, respectively. For each spot, we randomly selectedm (m=∑k

i= 1ωi)
cells from S to compare their merged expression profile ϵ with the
ground truth according to the following function:

argminfm≤Mg∑n
i = 1ðY i �∑m

j = 1ϵ
j
iÞ
2 ð4Þ

To assign a coordinate ðx̂,ŷÞ for each sampled cell, we proposed a
probabilistic distribution for a given cell in each spot (x0, y0) by con-
sidering the ratio (R) of the same cell type in Q neighbor spots as the
probability to locate the cell into the spacewith the following function:

x̂ = x0 +αdmincosðθπ=180Þ=2
ŷ= y0 +αdminsinðθπ=180Þ=2

ð5Þ

wheredmin represents the spatial distanceof the closest neighbor spot,
and α2(0, 1] and θ∈(0, 360] mean the weight for dmin and the angle
towards the spot center (x0, y0), respectively. In detail, the θwere first
determined by the following probability equation:

P̂ θð Þ= Rq + 1

∑Q
i= 1 Ri + 1

� � ,θ 2 ð90q� 90, 90q� ð6Þ

where q represents the qth neighbor spot in Q, which was set to 4 in
practice denoting that the space centered the spot were split into four
areas and the nearest neighbor in each area was filtered. After deter-
mining the θ, the corresponding neighbor spot (xθ, yθ) was selected to
determine the probabilistic distribution ofαby the following equation:

P̂ αð Þ=
ðRx0,y0

+ 1Þ=ðRx0,y0
+Rxθ ,yθ

+ 2Þ,α 2 ð0, 0:5�
ðRxθ ,yθ

+ 1Þ=ðRx0,y0
+Rxθ ,yθ

+2Þ,α 2 ð0:5, 1�

(
ð7Þ

where Rx0,y0
and Rxθ ,yθ

represent the ratio of the given cell type in each
spot and its neighbor spot. By integrating the optimal cellular com-
binations for all spots, ST data at single-cell resolution were
reconstructed for the spot-based ST data.

Spatial LRI enrichment. To generate the cell–cell distance matrix D,
the Euclideandistance between cells was calculated using the single-cell
spatial coordinates of ST data. Inspired by Giotto, the KNN algorithm
was then applied to each cell to select the K nearest cells from D to
construct the cell graphnetwork, whereinKwas set to 10 by default. For
a given ligand i of the sender (cell type A) and a given receptor j of the
receiver (cell type B), the number of ligand–receptor co-expressed
cell–cell pairs (C0

Ai,Bj) was obtained from the graph network by counting
the 1-hop neighbor nodes of receivers for each sender, resulting in the
different number of cell–cell pairs for a given LRI pair between the
sender cell typeA and the receiver cell type B. The permutation test was
then performed by randomly shuffling cell labels to recalculate the
number of LRI pairs. By repeating this step Z times, a background dis-
tribution C = fC1

Ai,Bj ,C
2
Ai,Bj , . . . ,C

Z
Ai,Bjg was obtained for comparison with

the real interacting score, and the P-value was calculated as follows:

PAi,Bj = cradfx 2 C∣x ≥C0
Ai,Bjg=Z ð8Þ

where PAi,Bj values less than 0.05 were filtered to calculate the inter-
cellular score of LRI from senders to receivers (SinterAi,Bj = 1� PAi,Bj). To
further enrich the LRIs that activate downstreamTFs, target genes, and
the related pathways of receivers, the knowledge graph was
introduced to model the intracellular signal propagation process. In

practice, LRIs from CellTalkDB, pathways from KEGG and Reactome,
and TFs from AnimalTFDB were integrated to construct the
ligand–receptor–TF knowledge graph (LRT-KG), wherein the weight
between entities represents the co-expressed coefficient. Taking the
receptor as the query node, we incorporated the random-walk
algorithm into the LRT-KG tofilter and score the downstreamactivated
t TFs with nomore than 10 steps and Z iterations; thus, the probability
p for each TF can be calculated with the ratio of successful hits from
the query node to the target TF during the Z random walks. By
integrating the co-expressed TFs and the corresponding target genes
from the LRT-KG, the intracellular score of LRI from senders to
receivers can be written as:

SintraAi,Bj =∑
t
k = 1θk ×pk=ηk ð9Þ

where θ represents the number of targeted genes, η represents the
step from the receptor to the TF in the LRT-KG. By the sigmoid
transformation for SintraAi,Bj , the final score of the LRI from cell type A to
cell type B can be written as:

SAi,Bj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SinterAi,Bj × S

intra
Ai,Bj

q
ð10Þ

Comparison with other methods
STARmap, MERFISH, and seqFISH+ ST data were used to compare
the performance of SpaTalk with other existing cell-type decom-
position methods. For these single-cell ST data, all cells were split
according to the fixed spatial distance and then merged into
simulated spots as the benchmark datasets. RCTD31, Seurat32,
SPOTlight33, deconvSeq34, Stereoscope35, and Cell2location36 were
benchmarked with the default parameters and evaluated with
Pearson’s correlation coefficient and RMSE over the predicted and
real cell-type composition for each spot.

Considering the limited genes of MERFISH ST data, STARmap and
seqFISH+ single-cell ST data (including 1020 and 10,000 genes,
respectively) were used as the benchmark datasets to compare the
performance of SpaTalk with other cell–cell communication inference
methods (Giotto15, SpaOTsc16, NicheNet6, CytoTalk7, CellChat38,
CellPhoneDB37, and CellCall8). The one-sided Wilcoxon test was per-
formed to evaluate the spatial proximity significance of the inferred
LRIs by comparing the number of expressed LRIs between sender-
receiver pairs and all cell–cell pairs, and the co-expressed percent of the
LRI was calculated to evaluate the co-expression level by counting the
number of expressed LRIs from senders to receivers from the cell–cell
graph network. All methods were benchmarked with the default para-
meters and default LRI database. All inferred LRIs were unbiasedly
evaluated with the above criteria except for the LRIs from SpaOTsc
since thenumber of inferred LRIswasmuch larger than that of theother
methods; thus, the top 1000 LRIs for each cell–cell communication
were selected fromSpaOTsc according to thefinal score. In addition,we
benchmarked the performance of SpaTalk and other methods by uni-
fying the LRI database, wherein the LRI pairs in CellTalkDB, CellPho-
neDB, CytoTalkDB, CellChatDB, andCellCallDBwere used by turns with
the default parameters.

Given the significantly enriched biological processes or pathways
in the receiver cell type, the Fisher’s exact test was adopted for path-
way enrichment analysis with the KEGG and Reactome databases on
the activated genes in receivers using the following function:

P =
a+b
a

	 

c+d
c

	 
�
n

a+ c

� 

ð11Þ

Interested genes Uninterested genes

Genes matching the pathway a b

Genes unmatching the pathway c d
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where n = a + b + c + d; a is the number of inferred target genes
(interested genes) that match the given pathway; b is the number of a
given pathway’s genes that exclude a, namely the uninterested genes
that match the given pathway; c is the number of inferred target genes
(interested genes) that unmatch the given pathway; d is the number of
all genes excluding a, b, and c, namely the uninterested genes that
unmatch the given pathway. NicheNet, CytoTalk, and CellCall were
benchmarked with the default parameters and the inferred target
genes for each LRI were evaluated according to the significance of
pathway enrichment.

Pathway and biological process enrichment
The “Metascape web tool [https://metascape.org/]”60 was used to
perform the enrichment analysis of pathways and biological pro-
cesses, wherein the top 100 highly expressed genes were selected
according to the fold change of the average gene expression. Gene
Set Enrichment Analysis (GSEA)61 was performed using the ranked
gene list with the clusterprofiler tool to enrich the significantly
activated pathways and biological processes, whose signatures
were obtained from the Molecular Signatures Database v7.4
(“MSigDB [http://www.gsea-msigdb.org/gsea/msigdb]” 62, including
the gene sets from Gene Ontology (GO) and the canonical pathway
gene sets derived from the KEGG, Reactome, and WikiPathways
pathway databases.

Module scoring of hallmarks and signatures
Hallmark scoring of metabolism of xenobiotics by cytochrome P450,
synthesis of bile acids and bile salts, TSK, and EMT was performed
using the “AddModuleScore” function in Seurat with default para-
meters. Hallmark pathways and EMT were obtained from MSigDB62,
and the signature genes of the TSK were download from the original
publication by Jin et al.22.

Statistics
R (version 4.1.1), GraphPad Prism 8, and Python 3.9 were used for all
statistical analyses.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The original data used in this paper can be accessed through the fol-
lowing links: (1) STARmap spatial data of the “mouse cortex [https://
www.dropbox.com/sh/f7ebheru1lbz91s/AABYSSjSTppBmVmWl2H4s_
K-a?dl=0]”;19 (2) MERFISH data of the “naïve female mouse hypotha-
lamic preoptic region [https://datadryad.org/stash/dataset/doi:10.
5061/dryad.8t8s248]”;29 (3) seqFISH+ data of the “mouse cortex and
olfactory bulb [https://github.com/CaiGroup/seqFISH-PLUS]”30

downloaded from Github repository; (4) Slide-seq data of the “mouse
liver [https://singlecell.broadinstitute.org/single_cell/study/SCP354/
slide-seq-study]”20, “somatosensory cortex [https://singlecell.
broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-
transcriptomics-at-near-cellular-resolution-with-slide-seqv2]”21, and
the “human and mouse kidney [https://cellxgene.cziscience.com/
collections/8e880741-bf9a-4c8e-9227-934204631d2a]”;44 (5) spatial
data and scRNA-seq data of human SCC: GEO accession:
“GSE144240”;22 (6) spatial data of the “mouse kidney [https://www.
10xgenomics.com/resources/datasets]” downloaded from 10x Visium
Spatial Gene Expression; (7) Single-nucleus RNA-sequencing data of
the mouse kidney: GEO accession: “GSE119531”;51 (8) mouse liver
scRNA-seq data of “non-parenchymal cells [https://figshare.com/
articles/MCA_DGE_Data/5435866]”39 and parenchymal hepatic cells:
GEO accession: “GSE125688”;40 (9) mouse cortex scRNA-seq data: GEO
accession: “GSE71585”59. Molecular Signatures Database was

downloaded from “MSigDB v7.4 [http://www.gsea-msigdb.org/gsea/
msigdb]”. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Source codes for the SpaTalk R package and the related scripts are
available at “SpaTalk Github [https://github.com/ZJUFanLab/
SpaTalk]”63.
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