
RESEARCH ARTICLE

Computational geometry for modeling neural

populations: From visualization to simulation

Marc de KampsID
1*, Mikkel LepperødID

2, Yi Ming LaiID
1,3

1 Institute for Artificial and Biological Intelligence, University of Leeds, Leeds, West Yorkshire, United

Kingdom, 2 Institute of Basic Medical Sciences, and Center for Integrative Neuroplasticity, University of Oslo,

Oslo, Norway, 3 Currently at the School of Mathematical Sciences, University of Nottingham, Nottingham,

United Kingdom

* M.deKamps@leeds.ac.uk

Abstract

The importance of a mesoscopic description level of the brain has now been well estab-

lished. Rate based models are widely used, but have limitations. Recently, several

extremely efficient population-level methods have been proposed that go beyond the char-

acterization of a population in terms of a single variable. Here, we present a method for sim-

ulating neural populations based on two dimensional (2D) point spiking neuron models that

defines the state of the population in terms of a density function over the neural state space.

Our method differs in that we do not make the diffusion approximation, nor do we reduce the

state space to a single dimension (1D). We do not hard code the neural model, but read in a

grid describing its state space in the relevant simulation region. Novel models can be studied

without even recompiling the code. The method is highly modular: variations of the deter-

ministic neural dynamics and the stochastic process can be investigated independently.

Currently, there is a trend to reduce complex high dimensional neuron models to 2D ones as

they offer a rich dynamical repertoire that is not available in 1D, such as limit cycles. We will

demonstrate that our method is ideally suited to investigate noise in such systems, replicat-

ing results obtained in the diffusion limit and generalizing them to a regime of large jumps.

The joint probability density function is much more informative than 1D marginals, and we

will argue that the study of 2D systems subject to noise is important complementary to 1D

systems.

Author summary

A group of slow, noisy and unreliable cells collectively implement our mental faculties,

and how they do this is still one of the big scientific questions of our time. Mechanistic

explanations of our cognitive skills, be it locomotion, object handling, language compre-

hension or thinking in general—whatever that may be—is still far off. A few years ago the

following question was posed: Imagine that aliens would provide us with a brain-sized

clump of matter, with complete freedom to sculpt realistic neuronal networks with arbi-

trary precision. Would we be able to build a brain? The answer appears to be no, because

this technology is actually materializing, not in the form of an alien kick-start, but through

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 1 / 41

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: de Kamps M, Lepperød M, Lai YM (2019)

Computational geometry for modeling neural

populations: From visualization to simulation. PLoS

Comput Biol 15(3): e1006729. https://doi.org/

10.1371/journal.pcbi.1006729

Editor: Boris S. Gutkin, École Normale Supérieure,

College de France, CNRS, FRANCE

Received: April 24, 2018

Accepted: November 26, 2018

Published: March 4, 2019

Copyright: © 2019 de Kamps et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project received funding from the

European Union’s Horizon 2020 research and

innovation programme under Grant Agreement No.

720270 (HBP SGA1) and Specific Grant Agreement

No. 785907 (Human Brain Project SGA2) (MdK;

YML). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

http://orcid.org/0000-0001-7162-4425
http://orcid.org/0000-0002-4262-5549
http://orcid.org/0000-0002-5397-8753
https://doi.org/10.1371/journal.pcbi.1006729
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006729&domain=pdf&date_stamp=2019-03-14
https://doi.org/10.1371/journal.pcbi.1006729
https://doi.org/10.1371/journal.pcbi.1006729
http://creativecommons.org/licenses/by/4.0/

steady progress in computing power, simulation methods and the emergence of databases

on connectivity, neural cell types, complete with gene expression, etc. A number of groups

have created brain-scale simulations, others like the Blue Brain project may not have sim-

ulated a full brain, but they included almost every single detail known about the neurons

they modelled. And yet, we do not know how we reach for a glass of milk.

Mechanistic, large-scale models require simulations that bridge multiple scales. Here

we present a method that allows the study of two dimensional dynamical systems subject

to noise, with very little restrictions on the dynamical system or the nature of the noise

process. Given that high dimensional realistic models of neurons have been reduced suc-

cessfully to two dimensional dynamical systems, while retaining all essential dynamical

features, we expect that this method will contribute to our understanding of the dynamics

of larger brain networks without requiring the level of detail that make brute force large-

scale simulations so unwieldy.

This is a PLOS Computational Biology Methods paper.

Introduction

The population or mesoscopic level is now recognised as a very important description level for

brain dynamics. Traditionally rate based models [1] have been used: models that characterize the

state of a population by a single variable. There are inherent limitations to this approach, for

example a poor replication of transient dynamics that is observed in simulations of spiking neu-

rons, and various groups have proposed a population density approach. Density methods start

from individual point model neurons, consider their state space, and define a density function

over this space. The density function characterizes how individual neurons of a population are

distributed over state space. These methods have been used successfully for one dimensional

point model neurons, i.e. models characterized by a single state variable, usually membrane

potential. Such models, e.g. based on leaky- (LIF) or quadratic-integrate-and-fire (QIF), expo-

nential-integrate-and-fire neurons, have a long-standing tradition in neuroscience [2–6]. Related

approaches consider densities of quantities such as the time since last spike [7, 8], but here too a

single variable is considered to be too coarse grained to represent the state of a population.

Recently, increased computing power and more sophisticated algorithms, e.g. [5, 9–12],

have made the numerical solution of time dependent density equations become tractable for

one dimensional neural models. In parallel, dimensional reductions of the density have been

developed, usually by expressing the density in terms of a limited set of basis functions. By

studying the evolution as a time-dependent weighting of this basis the dimensionality is

reduced, often resulting in sets of first order non-linear differential equations, which some-

times are interpreted as ‘rate based’ models [13–15].

The one dimensional density is very tractable: membrane potential distributions and firing

rates have been shown to match spiking neuron simulations accurately, particularly in the

limit of infinitely large populations, at much lower computational cost than direct spiking sim-

ulations: Cain et al. [16] report a speedup of two orders of magnitude compared to a direct

(Monte Carlo) simulation. The problem of such one dimensional models is that they leave

out details that may affect the population, such as synaptic dynamics and adaptation.

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 2 / 41

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006729

Mathematically, the inclusion of variables other than just the membrane potential is no prob-

lem, but this increases the dimensionality of the state space, which negates most—but not all—

computational advantages that density functions have over Monte Carlo simulation. This

problem has led to considerable efforts to produce effective one dimensional methods that

allow the inclusion of more realistic features of neural dynamics. Cain et al. have included the

effects of conductances by making synaptic effects potential dependent in an otherwise stan-

dard one dimensional paradigm. Schwalger et al. [17] consider the distribution over the last

spike times of neurons. Under a quasi-renewal approximation that the probability of a neuron

firing is only dependent on the last spike time and recent population activity, they are able to

model the evolution of the last spike time distribution and the population activity resulting in

a system of one dimensional distributions. Both groups have modeled a large-scale spiking

neuron model of a cortical column, achieving impressive agreement between Monte Carlo and

density methods. Another attempt to reduce the dimensionality of the problem are moment-

closure methods [18], which we will not consider here. Recently, Augustin et al have presented

a method to include adaptation into a one-dimensional density approach [15].

There have been a number of studies of two dimensional densities [19–21]. They have

made clear that analyzing the evolution of the joint probability density provides valuable

insight in population dynamics, but they are not generic: it is not explicit that the method can

be extended to other neural models without recoding the algorithm.

Here, we present a generic method for simulating two dimensional densities. Unlike the

vast majority of studies so far, it does not start from a Fokker-Planck assumption but starts

from the master equation of a point process (usually, but not necessarily) Poisson, and models

the joint density distribution without dimensional reduction. We believe the method is impor-

tant given the trend in theoretical neuroscience to reduce complex realistic biophysical models

to effective two dimensional model neurons. Adaptive-exponential-integrate-and-fire

(AdExp), Fitzhugh-Nagumo and Izhikevich neurons are examples of two dimensional model

neurons that have been introduced as realistic reductions of more complex conductance based

models. It is important to study these systems when subjected to noise.

The method is extremely flexible: upon the creation of a novel neural model (2D) we will be

able to simulate a population subjected to synaptic input without writing a single line of new

code. We require the user to present a visualization of the model in the form of the streamlines

of its vector field, presented in a certain file format. Since these files can be exchanged, model

exchange does not require recoding. As long as this vector field behaves reasonably—the quali-

fication of what constitutes reasonable is a main topic of this paper—the method will be able to

take it as input, and can be guaranteed to deliver sensible simulation results. The method is

highly visual: it starts off with a user or stock provided visualization of a neural model, and

uses computational geometry to calculate the transition matrices involved in modeling synap-

tic input, which is represented as a stochastic process. We will argue that with a visualization

in hand one can often predict how noise will drive the system, and run a simulation to confirm

these predictions. We will also show that the visualization gives a good overview of possible

shapes of dynamics.

The method cannot compete in speed with effective one dimensional density methods, but

holds up well compared to direct spiking neuron simulations. In particular memory use is at

least an order of magnitude lower than for direct simulation. As we will show, this allows the

simulation of large networks on a single machine equipped with a GPGPU. Since very few

assumptions are used, it can be used to examine the influence of approximations made in

other methods. For example, because no diffusion approximation is made, we are able to

examine the influence of strong synapses, which can lead to a marked deviation from diffusion

results [11, 12]. We can also model populations that are in partial synchrony.

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 3 / 41

https://doi.org/10.1371/journal.pcbi.1006729

This work captures most one dimensional population density techniques, as they are a spe-

cial case of two dimensional models, in particular the method by Cain et al., and we also repli-

cate results obtained in the diffusion limit as numerical solutions of Fokker-Planck equations

with high precision. Although we have not tried this, theory suggests that the method should

work just as well when escape noise is used [7]. With the ability to exchange neural model files,

without having to recode, it is easy to check how different neural models generate dynamics in

similar circuits. A software implementation of this method is available at http://miind.sf.net

with a mirror repository on github https://github.com/dekamps/miind.

Since this is a methods paper, the Material and Methods section contains the main

result, and we will present this first so that the reader may form an understanding of how

the simulation results are produced. In the results section, we will show that our method

works for a number of very different neural models. We will also show that strong tran-

sients, which occur in some models as a consequence of rapidly changing input, but not in

others, can be understood in geometrical terms when considering the state space of the neu-

ral model.

Materials and methods

We will consider point model neurons with a two dimensional state space. In general such

models are described by a vector field~F , which is defined on an open subset of R2
. The equa-

tions of motion of an individual neuron are given by:

t
d~v
dt
¼ ~Fð~vÞ ð1Þ

where τ is the membrane time constant of the neuron. We will adapt the convention that the

first coordinate of~v always represents a neuron’s membrane potential v and will refer to the

second coordinate of~v as w, as is conventional for the adaptation variable in the AdExp

model and the recovery variable in the Fitzhugh-Nagumo model (although not in the

conductance-based model). Usually boundary conditions are imposed. When a threshold

potential Vth is present, part of @M, the edge of M, overlaps with V = Vth. This part of @M
is called the threshold. When a neuron state approaches the threshold from below, the state

is reset, sometimes after a refractive time interval τref during which its state is effectively

undefined. The reset results in coordinate v being set to a reset potential Vreset, whilst the

second coordinate remains unaffected if no refractive interval or period is considered. If

there is a refractive period, there are variations: sometimes the second coordinate is kept

constant, sometimes further evolution according to Eq (1) for a period of τref is considered

and the reset value of the second coordinate is taken to be the resulting value of w(tspike +

τref), where tspike is the time when the neuron hits threshold. The neuron itself emits a spike

upon hitting the threshold. This description fits many neuron models: e.g. adaptive-inte-

grate-and-fire; conductance-based leaky-integrate-and-fire; Izhikevich [22], and many

others.

We are interested in populations of neurons. We consider a population to be homogeneous:

all neurons have the same parameters, and statistically see the same input: they are subject to

input spike trains generated from the same distribution. Under those considerations one can

define a density, rð~v; tÞ, over state space for a population that is sufficiently large. rð~vÞd~v is

defined as the fraction of neurons in the population whose state vector is in d~v. For spike trains

generated by a Markov process, the evolution equation of the density obeys the differential

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 4 / 41

http://miind.sf.net
https://github.com/dekamps/miind
https://doi.org/10.1371/journal.pcbi.1006729

Chapman-Kolmogorov equation:

@r

@t
þ
@

@~v
�
~Fr
t

 !

¼

Z

M
d~v 0
n
Wð~v j~v 0Þrð~v0 Þ � Wð~v 0 j~vÞrð~vÞ

o
; ð2Þ

where~F and τ are from the neuron model as stated in Eq (1).

Input spikes will cause instantaneous responses in the state space of neurons. For delta syn-

apses, for example, an input spike will cause a transition from membrane potential V to mem-

brane potential V + h, where h is the synaptic efficacy, which may be drawn from a probability

distribution p(h). In current based models the jump may be in the input current, and in con-

ductance based models, studied below, the jump is in conductance, rather than membrane

potential. Nonetheless, in all of these cases the input spikes cause instantaneous transitions

from one point in state space to another. The right-hand side of Eq 2 expresses that the loss of

neurons in one part of state space is balanced by their reappearance in another after the jump.

As a concrete example, consider input spikes generated by a Poisson point process with delta

synapses:

Wðv0 j vÞ ¼ ndðv0 � v � hÞ � ndðv � v0Þ;

where ν is the rate of the Poisson process and h is the synaptic efficacy, which for simplicity we

will consider here as a single fixed value. Eq 2 reduces to:

@r

@t
þ
@

@~v
� ð
~Fr
t
Þ ¼ nðrðv � h; v1; � � � ; vN� 1Þ � rðv; v1; � � � vN� 1ÞÞ;

ð3Þ

where the vi are the components of~v.

At this stage, often a Taylor expansion is made for the right-hand side of the equation up to

second order, which leads to a Fokker-Planck equation. We will not pursue this approach,

instead we will point out, as observed by de Kamps [10, 12] and Iyer et al. [11] that the method

of characteristics can be used to bring Eq 3 into a different form. Consider a line segment l in

state space, and pick a point x 2 l; x � ~v0 at t = 0. The system of ordinary differential equations

Eq 1 defines a curve that describes the evolution of point ~v0 through state space. This curve is

an integral curve of the vector field~Fð~vÞ and can be found by integration. Writing this curve

as vð~t; ~v0Þ, we can introduce a new coordinate system:

v! v0 ¼ vð~t; ~v0Þ

t ! t0 ¼ t
ð4Þ

In this new coordinate system Eq 2 becomes:

drð~v0 ; tÞ
dt

¼ nðrðv0 � h0; v0
1
; � � � ; v0N� 1

Þ � rðv0; v0
1
; � � � v0N� 1

ÞÞ; ð5Þ

which has the form of a Poisson master equation. This implies that rather than solving the par-

tial integro-differential equation Eq 2, we have to solve the system of ordinary differential

equations Eq 5. This system describes mass transport from bin to bin and no longer has a

dependency on the gradient of the density profile: the drift term in Eq 2 has been transformed

away. Eq 5 describes mass transport from one position to another. The distance between these

positions is now immaterial and this means that arbitrarily large synaptic efficacies can be

handled.

The observation that for a system that co-moves with the neural dynamics all mass trans-

port is determined by the stochastic process is important. It suggests that the right-hand side

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 5 / 41

https://doi.org/10.1371/journal.pcbi.1006729

of Eq 5—representing the master equation of a Poisson process—can be replaced by more gen-

eral forms without affecting the left-hand side of the equation that allows use of the method of

characteristics. Indeed, recently we have considered a generalization to spike trains generated

by non-Markov processes [23]. This generalizes the right-hand side of Eq 2, but leaves the left-

hand side unchanged, and in [23] we show explicitly that for one dimensional densities the

method discussed here extends to non-Markov renewal processes. The generalization of Eq 2

requires a convolution over the recent history of the density, using a kernel whose shape is

dependent on the renewal process.

Consider a two dimensional state space with coordinates v and w. The coordinate transfor-

mation just described defines a mapping from point x on a line segment of initial points to a

point in state space:

M : ðx; tÞ ! ðv;wÞ ð6Þ

This has two implications: first, the evolution of the initial line segment l over a given fixed

period of time defines a region of state space. The state space relevant to a simulation may

have to be built from several such regions. Second, the mapping is time-dependent: Eq 4 must

be solved in a coordinate system that itself is subject to dynamics: that of the deterministic neu-

ron. This suggests a solution consisting of two interleaved steps: one accounting for determin-

istic movement of neurons, and one where Eq 5 is solved numerically. We will now describe

this process in detail.

State space models of neuronal populations

As an example, we consider a conductance based model with first order synaptic kinetics fol-

lowing [20]. It is given by:

t
dV
dt
¼ � glðV � ElÞ � geðtÞðV � EeÞ ð7Þ

te
dge
dt
¼ � ge þ IsynðtÞ ð8Þ

Numerical values are taken from [20], and given in Table 1. Isyn(t) represents the influence of

incoming spikes on the neurons. A conventional representation of such a model is given by a

vector field, see Fig 1.

• A number of initial points are taken:

I ¼ fV ¼ Vmin; i ¼ 0; � � � ng ; g ¼ iDg j ðV; gÞg ;

for given fixed Vmin, ng, Δg

Table 1. Constants taken from Apfaltrer et al. (2006), Appendix B.

membrane time constant τm 20 ms

reset potential Er -65 mV

reversal potential Erev -65 mV

equilibrium potential e Ee 0 V

synaptic time constant e τs 5 mV

threshold potential Vth -55 mV

https://doi.org/10.1371/journal.pcbi.1006729.t001

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 6 / 41

https://doi.org/10.1371/journal.pcbi.1006729.t001
https://doi.org/10.1371/journal.pcbi.1006729

Fig 1. A: Vector field for a conductance based model, along with a few integral curves. At very low conductance, there is a

drive towards equilibrium regardless of the initial point. At higher conductance values the drive is dominated by a trend

towards the equilibrium potential of the excitatory synapse (0 mV). The blue integral curves demonstrate this. The red

integral curve represents a neuron that hits the threshold potential (-55 mV), and subsequently undergoes a reset to the reset

potential (-65 mV). This neuron will emit a spike. After reset, it will not hit threshold again and eventually asymptotes to

equilibrium potential (-60 mV). B An example grid for the conductance based model. The grid is built from strips. Strip

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 7 / 41

https://doi.org/10.1371/journal.pcbi.1006729

Consider a two dimensional dynamical system defined by a vector field. A point in state

space will be represented by a two dimensional vector~v. A grid is constructed from strips. As

mentioned previously, usually one dimension is a membrane potential, and we will denote

coordinates in this dimension by a small letter v. The second dimension can be used to repre-

sent parameters such as adaptation, conductance, and will be represented by w. A strip is con-

structed by choosing two neighbouring points in state space, e.g. ~v0ðt ¼ 0Þ; ~v1ðt ¼ 0Þ, and

integrating the vector field for a time T that is assumed to be an integer multiple of a period of

time Δt, which we assume to be a defining characteristic of the grid. Let T = nΔt, then two dis-

cretized neighbouring characteristics

S ¼ f~v0ðt ¼ 0Þ; � � � ; ~v0ðt ¼ nDtÞ; ~v1ðt ¼ 0Þ; � � � ; ~v1ðt ¼ nDtÞg

define a strip. Within a strip, the set of points

Ci ¼ f~v0ðt ¼ iDtÞ; ~v0ðt ¼ ðiþ 1ÞDtÞ; ~v1ðt ¼ ðiþ 1ÞDtÞ; ~v1ðt ¼ iDtÞg

defines a cell, which is quadrilateral in shape. The quadrilateral should be simple, but not nec-

essarily convex (Fig 2A). We reject cells with less than a certain area. As we will see in concrete

examples, boundaries in state space are approached through areas of vanishing measure. The

area cut tends to remove complex cells, and we will reject them in general. An example of a

grid generated by this procedure is given in Fig 3.

Strip numbers are arbitrary, as long as they are unique, but it is convenient to number them

in order of creation. In the remainder of the paper, we will assume that strip numbers created

by the integration procedure start at 1, and are consecutive, so that the numbers i2 {1, � � �,

Nstrip} with Nstrip the number of strips, each identify a unique strip. Strip no. 0 is reserved for

stationary points. There may be 0 or more cells in strip 0. The number of cells in strip i is

denoted by ncell(i). We refer to the tuple (i, j), with i the strip number and j the cell number, as

the coordinates of the bin in the grid. Ncells is the total number of cells in the grid.

For all strips i (i> 0 by construction), cell numbers within a strip are ordered by the

dynamics: neurons that are in cell number j of strip i at time t are in cell number j + 1 mod nj

of strip j at time t + Δt, where nj is the number of cells in that strip.

Neurons that are in a cell in strip no. 0 are assumed to be stationary and do not move

through the strip. Examples of cells in this strip are reversal bins. The handling of stationary

bins will be discussed below.

Representing a density profile

A simulation progresses in multiple steps of Δt, so the current simulation time tsim is specified

by an integer k, defined by:

tsim ¼ kDt; k ¼ 0; 1; 2; � � �

The density profile can be represented in an array M of length Ncells. Each element of this

array is associated with the grid as follows. Let ccell(0)� 0 and for 0< i� Nstrip let ccell(i)�
ccell(i − 1) + ncell(i − 1), so ccell(i) represents the total number of cells in all strips up to strip i.

numbers are arbitrary, as long as they are unique, but it is convenient to number them in order of creation. By construction,

cell numbers within a strip are ordered by the dynamics: neurons that are in cell number j of strip i at time t are in cell

number j + 1 mod nj of strip j at time t + Δt, where nj is the number of cells in that strip.

https://doi.org/10.1371/journal.pcbi.1006729.g001

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 8 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g001
https://doi.org/10.1371/journal.pcbi.1006729

Now define the index function I :

i ¼ 0 Iði; j; kÞ ¼ j

i > 0 Iði; j; kÞ ¼ ccellði � 1Þ þ ðj � kÞmod ncellðjÞ

(

ð9Þ

This is a time dependent mapping: its effect is a forward motion of probability mass with each

forward time step. We will refer to the updating of the mapping by incrementing k as a mass
rotation as probability mass that reaches the end of a strip, will reappear at the beginning of

Fig 2. A: As a result of the integration procedure simple quadrilaterals (left, middle) should emerge, which are usually convex (left), except near stationary points or

limit cycles where concave quadrilaterals (middle) can be formed. Complex, i.e. self-intersecting, quadrilaterals can occur around strong non linearities, for example

the crossing of nullclines. These definitions hold for any polygon. B: The problem of defining the Master equation: we can easily calculate how much mass per unit

time leaves a given bin (i, j). This mass will reappear at a position h away from the original bin, where h is the synaptic efficacy. In the figure bin (13,7) is translated

along vector (0, 0.1). This corresponds to neurons that have received an input spike, and therefore are experiencing a jump in conductance. Most neurons that are in

bin (13,7), will end up in bin (13, 5) and (14,4), with some in bin (13,6) and (14,6). So C(0.,0.1)(13, 7) = {(13, 5), (14, 5), (13, 6), (14, 6)}. C: Some events will end up

outside of the grid after translation. D: Fiducial quadrilaterals can be used to test where they have gone missing, and where is the best place to reassign them to the grid.

https://doi.org/10.1371/journal.pcbi.1006729.g002

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 9 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g002
https://doi.org/10.1371/journal.pcbi.1006729

the strip at the next time step. This effect is almost always undesirable as it would effect a jump

wise displacement of probability mass. In most models this can be prevented by removing the

probability mass from the beginning of each strip and setting the content of this bin to 0, and

adding the removed mass to a another bin. A typical example arises in the case of integrate-

and-fire models. Here, there is usually a reversal point. Such a point can be emulated by creat-

ing a small quadrilateral, and making this cell number 0 in strip number 0.

The procedure of mapping probability mass from the beginning of a strip to special bins in

state space is called a reversal mapping. It consists of a list of coordinate pairs. The first coordi-

nate labels the bin where probability will be removed, the second coordinate labels the bin

where the probability will reappear. The concept of reversal mapping extends to other neural

models—we will consider adaptive-exponential-integrate-and-fire (AdExp), Fitzhugh-

Nagumo, and quadratic-integrate-and-fire neurons. All of these models need a prescription

for what happens with the probability mass after reaching the end of a strip, and we will refer

to this as the reversal mapping, even if the model does not really have a reversal bin, to contrast

Fig 3. Probability mass is maintained in a mass array. In general, mass does not move, except when the mass has

moved beyond the end of a strip. The relationship between the mass array and the mesh is updated with each time step,

resulting in the apparent motion of probability mass through the mesh (top left and top right). At the end of each

simulation step, probability mass is removed from each first bin of the strip, and added to a special quadrilateral

(bottom): the reversal bin. Mass does not move from here, and only synaptic input can cause mass to leave this bin.

https://doi.org/10.1371/journal.pcbi.1006729.g003

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 10 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g003
https://doi.org/10.1371/journal.pcbi.1006729

it from the threshold mapping. Although handling a threshold is similar, interaction with syn-

aptic input means that the mapping requires extra precautions. We will discuss this in the sec-

tion below.

The whole process of advancing probability through a grid by means of updating a relation-

ship with a grid is illustrated in Fig 3. Up to this point we have only referred to probability

mass. If a density representation is desired, one can calculate the density by:

rði; jÞ ¼
Mði; j; kÞ
Aði; jÞ

; ð10Þ

where Aði; jÞ is the area of quadrilateral (i, j), and Mði; j; kÞ is the probability mass present in

the quadrilateral (i, j) at simulation time kΔt. We note that this procedure implements a com-

plete numerical solution for the advective part of Eq 2.

Handling synaptic input

We will assume that individual neurons will receive Poisson spike trains with a known rate for

a known synaptic distribution of the post synaptic population. Without loss of generality we

will limit the exposition to a single fixed synaptic efficacy; continuous distributions can be

sampled by generating several matrices, one for each synaptic efficacy, and adding them

together. Adding the individual matrices, which are band matrices, and very sparse, results in

another band matrix, still sparse, albeit with a slightly broader band. Overall run times are

hardly affected unless really broad synaptic distributions are sampled.

A connection between two populations will be defined by the tuple (Ncon, h, τdelay). Here

Ncon is the number of connections from presynaptic neurons onto a representative neuron in

the receiving population, τdelay the delay in the transmission of presynaptic spikes and h the

synaptic efficacy. The firing rate ν is either given, or inferred from the state of the presynaptic

population, but in both cases assumed to be known. For the population these assumptions lead

to a Master equation:

Z

V
d~v

drð~v; tÞ
dt

¼ n

Z

Vh

d~v0rð~v0 ; tÞ �
Z

V
d~vrð~v; tÞ

� �

; ð11Þ

where V is an area of state space and Vh the same area, translated by an amount h in dimension

i. It is dependent on the neuronal model in which variable the jump takes place. In AdExp the

jump is in membrane potential, in conductance based models it is in the conductance variable.

Here, we will discuss the problem using conductance based neurons as an example, but the

methodology applies to any model.

Eq (11) determines the right hand side of Eq (2), and the stage is set for numerical solution.

The left hand side of Eq (2) describes the advective part, and is purely determined by the neu-

ron model, which ultimately determines the grid. We already have described the movement of

probability mass due to advection during a time step Δt, and need to complete this by imple-

menting a numerical solution for Eq (11).

Eq (11) describes the transfer of probability mass from one region of state space to another.

We will assume that the grid we use for the model of advection is sufficiently fine, so that the

density within a single bin can be considered to be constant, and choose area V in Eq (11) to

coincide with our grid bins. We approximate (11) by:

dMði; j; kÞ
dt

¼ n
X

ðp;qÞ2Chði;jÞ

ap;qMðp; q; kÞ � Mði; j; kÞ

()

ð12Þ

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 11 / 41

https://doi.org/10.1371/journal.pcbi.1006729

The bin (i, j) translated by a distance h will cover a number of other bins of the grid. Let (p, q)

be a bin partly covered by the translated bin (i, j) and let αp,q be the fraction of the surface area

of the translated bin that covers bin (p, q). (By construction 0< αp,q� 1.) The set Ch(i, j) is

defined as the set of tuples (p, q), for all such bins, i.e. those bins that are covered by translated

bin (i, j) (and no others). We will refer to Ch(i, j) as the displacement set. Usually, the displace-

ment is in one dimension only, where this is not the case we will write C~hði; jÞ. The problem of

determining Ch(i, j) is one of computational geometry that can be solved before simulation

starts. It is illustrated in Fig 2B, where the grid of the conductance based model is shown.

This problem is easily stated but hard to solve efficiently. Conceptually, a Monte Carlo

approach is simplest, and since the computation can be done offline—before simulation

starts—this approach is preferable. It is straightforward for a given bin of the grid (i, j) to gen-

erate random points that are contained within its quadrilateral. Assume these points are trans-

lated by a vector~h. It is now a matter of determining in which bin a translated point falls. In

order to achieve this the grid is stored as a list of cells. Each cell, being a quadrilateral, is repre-

sented by a list of four coordinates. During construction of the grid, vertices of a cell are stored

in counter clockwise order.

When a quadrilateral is convex, and the vertices are stored in counter clockwise order,

the × operator defined by:

�
v1

v2

 !

�
� v2

v1

 !

results in an “inward” pointing normal~n. If the position vector of a point has a positive scalar

product with the ‘inward’ normal of all four line segments that define the quadrilateral the

point is inside, otherwise it is outside. These half line tests are cheap and easy to implement. If

the quadrilateral is not convex, but simple, it can be split into two triangles which are convex.

We perform linear search to find a grid cell that contains the translated point, or to con-

clude there is no such cell. Better efficiency can be obtained with k-d trees, but we have found

the generation of translation matrices not to be a bottleneck in our workflow, and linear search

allows straightforward brute force parallelization. At most one cell will contain the translated

point. For now, we will assume that the translated point will be inside a given bin (p, q). Later,

for concrete neuron models we will discuss specific ways of handling transitions falling outside

the grid. If bin (p, q) is not represented in C~hði; jÞ, an entry for it will be added to it. The process

is then repeated, in total Npoint times. For each cell (p, q) represented in C~hði; jÞ a count n(p,q) is

maintained and αp,q is estimated by:

ap;q ¼
nðp;qÞ
Npoint

ð13Þ

Eq 12 is of the form

dM
dt
¼ T �M;

where T is called the transition matrix. The displacement set determines the transition matrix.

Here, we have described a Monte Carlo strategy that uses serial search to determine the set

C~hði; jÞ and consequently the constants αp,q for bins (p, q) in that set. With these constants

determined, it is a straightforward matter to solve Eq 12 numerically.

The main algorithm now consists of three steps: updating the index relationship Eq 9,

which constitutes the movement of probability mass through the grid during a time interval

Δt; implementing the reversal mapping; solving Eq 12 during Δt. The order of these steps

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 12 / 41

https://doi.org/10.1371/journal.pcbi.1006729

matters. Implementing the reversal bin after the master equation may lead to removing proba-

bility mass from the beginning of the strip that should have been mapped to a reversal bin.

Handling a threshold

Many neuron models incorporate a threshold of some sort. For example, in the original con-

ductance based model by [20], a threshold of -55 mV is applied. This corresponds to a vertical

boundary in the (V, g) plane (see Fig 1). Neurons that hit this threshold from lower potentials

generate a spike and are taken out of the system. After a period τref, they are reintroduced at

(Vreset, g(tspike + τref)), where tspike is the time when the neuron hits the threshold, and g(tspike)

is the conductance value the neuron had at the time of hitting the threshold. In this model, fol-

lowing [20], it is assumed that the conductance variable continues to evolve according to Eq 8,

without being affected by the spike.

We handle this as follows. For each strip it is determined which cells contain the threshold

boundary, i.e. at least one vertex lies below the threshold potential and at least one lies on or

above the threshold potential. The set of all such cells is called the threshold set. In a similar

way a reset set is constructed, the set of cells that contain the reset potential. In the simplest

case, for each cell in the threshold set the cell in the reset set is identified that is closest in w to

that of a threshold cell. The threshold cell is then mapped to the corresponding reset cell and

the set of all such mappings is called the reset mapping.

Sometimes, the value of w is adapted after a neuron spikes. In the AdExp model, for exam-

ple, w! w + b after a spike. In this case, we translate each cell in the reset set in direction (0,

w), and calculate its displacement set, just as we did for the transition matrix. The reset map-

ping is then not implemented between the threshold cell and the original reset cell, but to the

displacement set of that reset cell. We do this for all threshold cells and thus arrive at a slightly

more complex reset mapping.

Due to the irregularity of the grid, it may happen that some transitions of the Master equa-

tion are into cells that are above the threshold potential. This will lead to stray probability

above threshold, if not corrected. We correct for this during the generation of the transition

matrix. If during event generation a point ends up above threshold after translation, we look

for the closest threshold cell for this point. The event is then attributed to that threshold cell,

and not the stray cell above threshold. In this way transitions from below or on threshold to

cells above threshold are explicitly ruled out.

The reset mapping must be carried out immediately after the solution of the master equa-

tion, before the next update of the index function.

Gaps in state space

All grids are finite. For that reason alone the Monte Carlo procedure described above will

result in translated points that cannot be attributed to any cell. Those events are lost and will

lead to unbalanced transitions: mass will flow out of bins near the edge, but will not reappear

anywhere else in the system and there is a possibility that mass evaporates from the system.

This problem does not occur just at the edges, but also in the vicinity of stationary points. We

will see that some dynamical systems display strong non linearities that will make it impossible

to cover state space densely. The ability to deal with such gaps in state space is the most impor-

tant technical challenge for this method.

In Fig 2 we show how to handle these gaps. Fig 2B shows that a cell which is translated by 5

mV can fall across a small cleft not part of the grid. We cover this gap by a quadrilateral (in

green): a fiducial cell. An event that is not within the grid, but inside this quadrilateral needs to

assigned to a mesh cell, otherwise the transition matrix will not conserve probability mass. It is

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 13 / 41

https://doi.org/10.1371/journal.pcbi.1006729

straightforward to maintain a list of grid cells that have at least one vertex in the fiducial bin.

We assign the event to the grid cell that is closest along the projection in the jump direction.

Fig 2D shows the total number of events lost in the generation of transition matrix corre-

sponding to a jump of 5 mV, thereby revealing gaps in state space. The orange quadrilaterals

are the fiducial bins. After reassignments all events fall inside the grid and probability will be

balanced.

Marginal distributions

It is straightforward to calculate marginal distributions. Again, we use Monte Carlo simulation

to generate points inside a given quadrilateral (p, q). We then histogram these points in v and

w. For each bin i in the v histogram, we can now estimate a matrix element α(p,q),i by dividing

the number of points in bin i by the total number of points that were generated. For a given

distribution, one can now multiply the total mass in bin (p, q) by α(p,q),i to find how much of

this mass should be allocated to bin i. If one does this for every cell (p, q) in the grid, one will

find the distribution of mass over the marginal histogram, and can calculate the marginal den-

sity from this.

Results/Discussion

We present a succession of population simulations of four neuronal models. A neuron with a

single excitatory conductance has a simple state space, and its simulation provides few prob-

lems. It is a familiar model and therefore a good one to introduce and demonstrate the formal-

ism. We then move to one dimensional results and replicate some familiar results for LIF and

QIF neurons: density profiles, transient firing rates and gain curves. This allows us to quantita-

tively examine some of the strengths and weaknesses of the method. We then discuss two mod-

els that show a progression of difficulty in covering state space: AdExp and Fitzhugh-Nagumo.

Although a methods paper, we feel that nonetheless we can infer a number of general princi-

ples that run as a common thread through our use cases, and we present them here.

• We obtain a general method for simulating populations of spiking point model neurons

with a one or two dimensional state space, subject to Poisson spike trains. When restricted

to one dimension, the method is equivalent to that published by de Kamps (2013) and Iyer

et al. (2013) and is very efficient, as the work of Cain et al. demonstrates. The method is able

to replicate earlier work on 2D models, but is more general, as first, it is able to accept novel

models in the form of a grid file and therefore does not require source code changes when a

new model is considered, and second, does not rely on the diffusion approximation, but

allows a variety of stochastic processes to be considered. The method is most efficient for

synaptic efficacies and firing rates commensurate with what is found in the brain, but can be

pushed to reproduce diffusion results, although dedicated numerical strategies for solving

the ensuing 2D Fokker-Planck equations will be more efficient. Nonetheless, the possibility

to study the diffusion limit as a special case is a useful property of the method.

• The method is insensitive to the gradient density, and will accurately model delta synapses

and handle discontinuities of the density profile, and is able to model populations that are in

partial synchrony, allowing the modelling of the decorrelation process itself.

• The neural model will be presented in a file representation of a state space diagram. For

some models it is hard to cover state space completely due to singularities, for example when

approaching nullclines. Such parts of state space are effectively forbidden for endogenous

deterministic neural dynamics, but noise may place events there, moving neurons outside

state space. We find there are two cases where this happens: first, on the approach of one of

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 14 / 41

https://doi.org/10.1371/journal.pcbi.1006729

the nullclines the system approaches a stable equilibrium or a limit cycle. The system does

not contain enough information in one of the two dimensions and the grid cannot be mean-

ingfully continued. We find that the motion of probability mass inside such a region can be

inferred from the dynamics around it. A limit cycle, for example can be inferred from the

grid closing onto it, even when we cannot extrapolate the grid directly to the limit cycle. In a

similar way we can capture the motion of mass towards a stable equilibrium: when motion

has stopped in one direction, but still continues in the other, we find that placing neurons

that are deposited into accessible regions by synaptic input in nearby parts of state space

accurately captures the overall motion of mass around these regions. Similar considerations

apply around unstable regions of state space, and because we can time invert the dynamical

system when constructing the grid, we find that these problems can be handled in much the

same way.

• Transient responses can be understood in geometrical terms. If a boundary, either a reflect-

ing or an absorbing one, is present in state space, the population will exhibit a strong oscil-

latory response (“ringing”) when the input is strong enough to push neurons towards the

boundary and noise is too weak to disperse neurons before reaching it. The converse is also

true: if despite the presence of a boundary, state space allows neurons a way around it, strong

transients will be absent. Rate based models based on first order differential equations on

using a gain function will model these transients incorrectly, or not at all.

• The method can describe the version of Tsodyks-Makram synapses used by Vasilaki and

Giugliano [24] in a model of network formation.

• By far the most challenging grid to make was that of a Fitzhugh-Nagumo neuron, because

the approach to the limit cycle in part also implies an approach to the nullcines of the system,

leading to a loss of information in one dimension. Where the nullclines cross this problem is

exacerbated. We find that we have to imply the limit cycle: we define the grid in the approach

to the limit cycle and infer the deterministic dynamics in an area around the limit cycle from

the surrounding grid cells.

Conductance based neurons

We consider neurons with a single excitatory synapse as given by Eq (8). In Fig 4 we present

first the simulation of a jump response: a group of neurons is at rest at time t = 0 and all neu-

rons are at (V = −65 mV, g = 0). From t = 0 onward the neurons will receive Poisson distrib-

uted input spike trains with a rate of 1000 Hz. A neuron that receives an input spike will

undergo an instantaneous state transition and move up in conductance space. Until it receives

a further input spike it will start to move through state space under its endogenous neural

dynamics: the neuron will depolarize and simultaneously reduce its conductance. The process

was described in Sec. Materials and Methods: State Space Models of Neuronal Populations.

The density is represented as a heat plot: the maximum density is white, lower density areas

are shown as cooler colours from white through yellow to red. The color scale is logarithmic,

so red areas represent very low probability. Fig 4A) shows the evolution of the density of a pop-

ulation that was at equilibrium at t = 0 at four points in time t = 1, 5, 15 and 28 ms by which

time steady state has been reached. We see probability mass moving mainly upwards under

the influence of incoming spike trains. We will see that the mass ‘rotates’ in the direction of

the threshold; and finally a steady state is realized: a state where the density profile has become

stationary. We also have simulated a group of 10000 neurons and modeled incoming Poisson

spike trains for each one. We keep track of their position in (V, g) space and represent their

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 15 / 41

https://doi.org/10.1371/journal.pcbi.1006729

Fig 4. A: The evolution of the joint probability density function at four different points in time (1, 5, 15, 28 ms) in (V, g) space (V membrane

potential, g conductance) for synaptic efficacy J = 0.05, Poisson generated input spike train with rate ν = 1000 spikes per second. B: The resulting

population firing rate, calculated from the fraction of mass crossing threshold per unit time as a solid black line. Spiking neuron simulation results

shown by red markers. Onset and resulting firing rates are in agreement throughout. Unlike one dimensional neural models, conductance based

models produce almost no overshoot.

https://doi.org/10.1371/journal.pcbi.1006729.g004

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 16 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g004
https://doi.org/10.1371/journal.pcbi.1006729

state at a given time as points in state space. The cloud of points clearly tracks the white areas

of the density. The shot noise structure is clearly visible in the band structure early in the simu-

lation where neurons are present at multiples of the synaptic efficacy, reflecting that some neu-

rons have sustained multiple hits by incoming spike trains.

As neurons are moving through threshold, they themselves emit a spike and contribute to

the response firing rate of the population, defined as the fraction of the population that spikes

per time interval, divided by that time interval. We can therefore calculate the response firing

rate from the amount of mass moving through threshold per unit time. We show the jump

response of the population as a plot of populating firing rate as a function of time in Fig 4B.

The firing rate calculated from the density matches that calculated from the Monte Carlo sim-

ulation very well. Interestingly, there is almost no overshoot in the firing rate, as also noted by

Richardson (2004), who studied this system using Fokker-Planck equations. Although we

study shot noise, in the absence of a fundamental scale in the g direction, the central limit theo-

rem ensures that the marginal distribution in g is Gaussian within a few milliseconds. It is

clear that the population disperse in the g direction and drifts towards the threshold relatively

slowly. The absence of a barrier allows the dispersal of the population before it hits threshold,

greatly reducing any overshoot in the firing rate, which is quite unlike one dimensional neural

models, as we shall see in Sec. Results: One Dimension.

Let us contrast this with a simulation where we introduce a maximum conductance gmax =

0.8, which for simplicity we assume to be voltage independent. This then introduces a reflect-

ing boundary at g = gmax, and therefore introduces a scale by which an efficacy can judged to

be small or large. As expected, probability mass is squashed against this boundary (Fig 5A) and

has nowhere to go but laterally, in the direction of the threshold. Interestingly, the mass has

not dispersed and clear groupings of mass huddled against the boundary can be observed. The

traversal of the threshold by these groupings produces clear oscillations in the firing rate: a

“ringing” effect. The firing rate jump response reflects the effect of the presence of a maximum

conductance in state space.

We run two simulations: one with and one without maximum conductance, but otherwise

identical, and repeat this experiment for two different synaptic efficacies: J = 1 and 3 mV.

Both simulations use an input rate of 3 kHz. In the case of no maximum conductance, proba-

bility mass can disperse in the g direction and mostly does so before arriving at the threshold.

In Fig 5 one sees that the introduction of a maximum conductance leads to a reduced

response firing rate for high inputs. This can be interpreted as the population unable to

respond to an increase of input once the majority of its ion channels are already open. Fig 5

shows that the firing rates of Monte Carlo simulations and our method agree over the entire

range of input.

Even when the effects on the response firing rate are moderate, the transient dynamics

can be radically different. For an efficacy J = 1 mV and and input rate νin = 3 kHz, the firing

rates for maximum conductance, compared to no maximum come out as 175 Hz vs 195 Hz.

In Fig 5C we show the response firing rate as a function of time. The result for the unre-

strained conductance is given by the red line, which despite the high output firing rate still

almost produces no overshoot. When we restrict the maximum conductance we see a some-

what reduced firing rate but a pronounced transient response (“ringing”) which persists

much longer than for an unrestrained conductance. It is striking to see that the reintroduc-

tion of a barrier in state space results in pronounced transients. In both cases, the calculated

firing rates agree well with Monte Carlo simulation. We attribute this ringing to a geometri-

cal effect: the introduction of a barrier in the direction of where the stochastic process is

pushing neurons.

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 17 / 41

https://doi.org/10.1371/journal.pcbi.1006729

One dimension: Leaky- and quadratic-integrate-and-fire neurons and size

effects on the transition matrix

Although these model neurons are characterized by a single dimension—the membrane

potential—they can be viewed as a two dimensional model that is realized in a single strip, and

where transitions take place between one bin in potential space to another. This is completely

equivalent—in implementation and concept—to the geometric binning method introduced

independently by de Kamps [12] and Iyer et al. [11], with one exception: the generation of

transition matrices by Monte Carlo. In one dimension it is not necessary to use Monte Carlo

Fig 5. A: The density at t = 15 ms. Events are reflected against a reflecting conductance boundary. B: Gain curves for different input rates and synaptic efficacies.

The maximum conductance clearly affects the shape of the gain curves, although at input rate 3 kHz for J = 1 mV the effect is moderate. C: The transient looks very

different in the case where a maximum conductance is present (red): the “ringing effect” is much stronger, compared to the case without maximum (black), while

the overall firing rates do not differ greatly. The cause can be seen in A: neurons have not had time to disperse before they are forced across threshold; clear

groupings can be seen at the maximum conductance.

https://doi.org/10.1371/journal.pcbi.1006729.g005

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 18 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g005
https://doi.org/10.1371/journal.pcbi.1006729

generation: the transition matrix elements can be calculated to an arbitrary precision because

in one dimension the geometrical problem outlined in Sec. Materials and Methods: Handling

Synaptic Input is much simpler and can be solved by linear search. It is clear that unlike the

2D case, it is straightforward to find the exact areas covered by translated bins, and hence no

Monte Carlo generation process is required.

Nevertheless, it is interesting to use this method. The transition matrix generation for the

2D case is relatively expensive, and as precision scales with the square root of the number of

events it is interesting to see how few we can use in practice without distorting our results. The

answer is: surprisingly few. As benchmark we set up a population of LIF neurons with mem-

brane constant τ = 50 ms, following [5], and assume that each neuron receives Poisson distrib-

uted spike trains with a rate ν = 800 Hz. We assume delta synapses, i.e. an instantaneous jump

in the postsynaptic potential by a magnitude h = 0.03, with the membrane potential V2 [−1,

1), i.e. we use a rescaled threshold potential V = 1. The grid is generated with a time step

Δt = 0.1 ms, and is shown in Fig 6B.

The simulation results are shown in Fig 7 and replicates earlier work [5, 12]. The use of a

finite number of points in the Monte Carlo process used for the generation of transition

matrices generates random fluctuations with respect to the true values. The effect of these

fluctuations is clearly visible in the shape of the density profile, and only for Npoint = 10000

the profile is as smooth as in earlier results where we calculated the transition matrix analyti-

cally. How bad is this? To put these fluctuations into perspective, we used a direct simulation

of 10000 spiking neurons and histogrammed their membrane potential at a simulation time

well after t = 0.3 s, so that they can be assumed to sample the steady state distribution. In the

figure, they have been indicated by red markers. Comparing the results we see that the fluctu-

ations for Npoint = 10 are comparable to those of a Monte Carlo simulation using a sizeable

population of 10000 neurons. Moreover, in the population firing rates the finite size effects

are almost invisible. This is somewhat surprising, but a consideration of the underlying pro-

cess that generates the firing rate explains this. Neurons are introduced at equilibrium and

will undergo several jumps before they reach threshold. The finite size effects of the Monte

Carlo process induce variations in those jumps in different regions of state space, but these

fluctuations are unbiased and will average out over a number of jumps. So neurons will expe-

rience variability in the time they reach threshold, but this variability does not come in the

main from fluctuations in the transition matrix elements. It should be emphasized that the

transition matrices are a quenched source of randomness, because transition matrices are

fixed before the simulation starts. So although ultimately caused by finite size effects, their

contribution is different compared to the unquenched finite size effects that can be seen in

the population of 10000 neurons.

It is instructive to look at some examples because it highlights strengths and weaknesses of

the method in terms of familiar results. In Fig 6A, the characteristics of both neural models are

given. In Fig 6B the state space of LIF (left) and QIF neurons (right) are shown, at lower resolu-

tion than used in simulation to elucidate the dynamics. Rather than with numbers which

would be unreadable at this scale, we indicate the direction in which cell numbers increase,

and therefore the direction in which neural mass will move, by arrows. One can see that the

LIF neuron is comprised of two strips, and the QIF neuron of three, where the arrows indicate

in which direction the cell numbers are increasing. In the LIF grid, there is one stationary bin,

in the QIF there are two. They are represented as separate stationary cells, covering the space

between the strips, indicated by the blue downward pointing arrows.

In Fig 6C we consider the steady state of LIF (left) and QIF neurons (right) after being sub-

jected to a jump response of Poisson distributed spike trains starting at t = 0 (LIF: νin = 800

spikes/s J = 0.03 (normalized w.r.t. threshold; QIF: J = 0.05)). The shape of the characteristics

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 19 / 41

https://doi.org/10.1371/journal.pcbi.1006729

and therefore of the grid clearly reflect their influence on the steady state density distribution.

The output firing rate (Fig 6D) shows the clear “ringing” in the transient firing rate that is

mostly absent in conductance based neurons. Again, this can be interpreted geometrically: the

stochastic process pushes neurons in the direction of a threshold, but they reach it without

having had the opportunity to disperse. Decorrelation only happens after most neurons have

Fig 6. A: Characteristics for leaky- (left) and quadratic-integrate-and-fire (right) neurons. B: The resulting grids for both

neuron types. C: Typical steady state densities, strongly influenced by the shape of the grid, and ultimately the neural

dynamics. D: a typical jump response of the firing rate. For comparable output frequencies, QIF neurons “ring” for

longer, which we attribute to a closer grouping of probability mass.

https://doi.org/10.1371/journal.pcbi.1006729.g006

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 20 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g006
https://doi.org/10.1371/journal.pcbi.1006729

Fig 7. A: The steady state density as a function of membrane potential. B: The firing rate as a function of time, for transition

matrices that were generated for different values of Npoint, the number of events used in the Monte Carlo generation of

transition matrices.

https://doi.org/10.1371/journal.pcbi.1006729.g007

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 21 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g007
https://doi.org/10.1371/journal.pcbi.1006729

gone through threshold at least once. It is also interesting to see that for comparable firing

rates the ringing is much stronger for QIF than for LIF neurons. We also interpret this as a

geometrical effect: the effective threshold for QIF neurons is V = 3 (normalized units), not 10,

as neurons with a membrane potential above 3 will spike. It is clear from Fig 6D that compared

to LIF neurons, QIF neuron bulk up close to the threshold and are constrained more than

their LIF counterparts, thereby making it harder to decorrelate before passing threshold.

For reference, in Fig 8 we show that the method accurately reproduces results from the dif-

fusion limit, as well as generalizes correctly beyond it. If one uses a single Poisson spike train

to emulate a Gaussian white noise input, employing the relationship:

m ¼ ninJt

s2 ¼ ninJ2t;
ð14Þ

one can use our method to predict the steady state firing rates as a function of J, the synaptic

efficacy and νin the rate of the Poisson process for given membrane constant τ. Organizing the

results in terms of μ and σ, as given by Eq 14, one expects a close correspondence for low σ,

since Eq 14 leads to small values of J compared to threshold. One expects deviations at high σ,

where J does not come out small. Fig 8 shows that this is indeed the case when firing rates are

compared to analytic results obtained in the diffusion approximation. Our method produces

the correct deviations from the diffusion approximation results, and agrees with Monte Carlo

simulation. Elsewhere [12], we have shown that diffusion results can be accurately modeled

using two Poisson rates for high σ.

In Fig 8B we replicate the gain spectrum for QIF neurons and show that the high frequency

dependence falls off as 1

o2 as predicted by Fourcaud-Trocmé et al. [25]. These results reaffirm

that our method accurately predicts results within and beyond the diffusion limit, and that a

substantial body of existing literature can be seen to be a special case of our method.

Fig 8C shows a population of QIF neurons that fire in synchrony at t = 0, undergoing a

slow decorrelation by low rate Poisson input spike trains. The neurons have all been prepared

in the same state, and therefore are at the same position in state space. We use F(V) = V2 + 1,

so these neurons are bursting, as the current parameter is larger than 0, and there are no fixed

points. Neurons that receive an input spike leave the peak and travel on their own through

state space. This results in a very complex density profile, where the initial density peak is still

visible after 1s. Such a peak would have diffused away rapidly in a diffusion limit approxima-

tion. Monte Carlo events in red markers show that the density profile is not a numerical arte-

fact, but reflects the complexity of the density profile.

Adaptive-exponential-integrate-and-fire neurons

We consider the AdExp model as presented by Brette and Gerstner [26], which describes indi-

vidual neurons by the following equations:

Cm
dV
dt

¼ � glðV � ElÞ þ glDTe
ðV � VTÞ

DT � wþ I

tw
dw
dt

¼ aðV � ElÞ � w
ð15Þ

Upon spiking, the neuron is reset to potential Vreset and increases its adaptivity value: w! w +

b. Here Cm is the membrane capacity and gl the passive conductance. VT is the value at which a

neuron starts to spike; the spike dynamics is controlled by ΔT. The numerical values of the

parameters are summarized in Table 2 and are taken from [26].

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 22 / 41

https://doi.org/10.1371/journal.pcbi.1006729

Fig 8. A: Gain curve for quadratic-integrate-and-fire neurons. Population density techniques handle deviations from

the diffusion approximation correctly: when one tries to emulate Gaussian white noise with a single Poisson spike train

input, deviations are expected at high values of σ as synaptic efficacies are forced to be large. The dashed lines give the

diffusion approximation, black markers the prediction by our method and red bars Monte Carlo results, which agree

with each other, but deviate from the diffusion prediction. B: The frequency spectrum shows the expected 1

o2

dependency for high frequencies. C: the delta peak of a coherently firing group of neurons in correctly represented; the

decrease in partial synchrony of the population is modeled correctly over long times.

https://doi.org/10.1371/journal.pcbi.1006729.g008

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 23 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g008
https://doi.org/10.1371/journal.pcbi.1006729

An overview of the state space is given in Fig 9A. At w = 0 the dynamics is as expected, a

drive towards the equilibrium potential that suddenly reverses into a spike onset at higher val-

ues of V, essentially producing an exponential-integrate-and-fire neuron. At high w two effects

conspire to make the neuron less excitable: the equilibrium potential is lower and the drive

towards this equilibrium is stronger for a given value of V. At low w values, the opposite hap-

pens: the equilibrium value is higher, closer to threshold, and below equilibrium there is a

stronger depolarizing trend making the neuron more excitable. Interestingly, at hyperpolariza-

tion the system does not only respond by driving the membrane potential back towards equi-

librium potential, but also downwards.

There are two critical points, the equilibrium point (El, 0) and a saddle point in the top

right. They are at the crossing of two nullclines: the w-nullcline is a straight line, whereas the

V-nullcline follows a strongly curved trajectory, which is close to the stable manifold of the

saddle point in a substantial part of state space. Below (to the right) the stable manifold neu-

rons spike, regardless of where they are initially, while above (to the left) of the stable manifold

neurons converge to the equilibrium, but how, and how long this takes is strongly dependent

on the initial conditions. This model is the first to require a judicial treatment of the grid

boundaries.

Let us examine the the equilibrium point first. The exponential build-up of cells observed in

one dimensional models occurs here as well, but here it is not a good idea to introduce a fidu-

cial cut and cover the remaining part of state space with a cell. The inset of Fig 9B shows that

equilibrium is reached much faster in the V direction, than in the w direction. This is a direct

consequence of the adaptation time constant τw being an order of magnitude larger than the

membrane time constant τ� Cm/gl. For high w, mass will move downwards along the diago-

nal, until low values of w are reached, as is demonstrated by the left inset of Fig 9. A long, but

very narrow region separates different parts of the grid. What to do? First, we observe that the

offending region is essentially forbidden for neurons: for most neurons starting from a ran-

dom position in state space it would take a long time (of the order of 100 ms) to approach this

no man’s land. At the input firing rates we will be considering, neurons will experience an

input spike well before running off the strip, so essentially only noise can place neurons there.

If we forbid this, by allocating events that are translated into the cleft between the two grid

parts to the cells in the grid that are closest to it along the projection of the jump, we guarantee

that no probability mass will leak out of the grid. Mass that reaches the end of the strips will be

placed in a reversal bin, like the one dimensional case. Mass on the left of the side of the cleft

will move in the same direction as that on the right side of the cleft. By using Euclidean dis-

tance projected along the jump direction, we minimize the bias due to this procedure, although

we may artificially introduce a small extra source of variability.

Table 2. Parameters for the AdExp model as given in [26].

Quantity Value

Cm 281 pF

gl 30 nS

El -70.6 mV

VT -50.4 mV

ΔT 2 mV

τw 144 ms

a 4 nS

b 0.0805 nA

https://doi.org/10.1371/journal.pcbi.1006729.t002

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 24 / 41

https://doi.org/10.1371/journal.pcbi.1006729.t002
https://doi.org/10.1371/journal.pcbi.1006729

Fig 9. A: Overview of state space for the adaptive-exponential-integrate-and-fire neuron. B: a detail of a realistic mesh near the

equilibrium potential. C-E: evolution of the probability density at t = 0.01, 0.1, 0.4s. The input (switched on at t = 0) is a Poisson

distributed spike train of 3000 spikes/s, delta synapses with efficacy J = 1 mV.

https://doi.org/10.1371/journal.pcbi.1006729.g009

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 25 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g009
https://doi.org/10.1371/journal.pcbi.1006729

On the right hand side, the stable manifold almost coincides with the V nullcline, resulting

in a very narrow region of dynamics in the vertical direction. Immediately outside neurons

rapidly move away laterally. This part of the grid is created by reversing the time direction,

integrating towards the stable manifold. The grid strongly deforms here: cell area decreases

rapidly and even small numerical inaccuracies will lead to cells that are degenerate. We use cell

area as a stopping criterion. The last cells before breaking off are extremely elongated. The

spike region is also created by reversing the time direction. Again, we conclude that the cleft is

a forbidden area: a small fluctuation in the state variable will cause a neuron to move away rap-

idly. Our main concern, again, is neurons that are placed into this cleft by the noise process.

Again, we move neurons to the closest cell next to the cleft in the jump direction. This is rea-

sonable, since natural fluctuations would put them there soon anyway. Effectively we have

broadened the separatrix a little bit, but we still capture the upwards (for high w—past the sad-

dle point: downwards) movement close to the stable manifold.

In Fig 9C–9E the evolution of a population in (V, w) space is shown at three different points

in time: t = 0.05, 0.1 and 0.4 s. Fig 9C shows the input spikes pushing the state towards thresh-

old, and a small number of neurons have spiked. They re-emerge at the reset potential, but

with much higher w, due to spike adaptation. This is determined by the b parameter of the

AdExp model. Close to the reset potential the banded shot noise structure, due to the use of a

delta-peaked synaptic efficacy, is visible. The steady state is reached after approximately 400

ms. The population stabilizes at high w values, and the bulk of the population is clearly well

below threshold, due to stronger leak behavior at these values of w. In sub figure E there is a

minute deformation of the density, due to the limits of the grid, and density heaps up here, but

the fraction of probability mass affected is negligible. Monte Carlo events, indicated by the

dots, are not restricted to the grid and some fall outside the grid.

The firing rate response corresponding to the population experiencing an excitatory input

(Fig 9C–9E) is given in Fig 10A. Again, agreement with Monte Carlo simulation is excellent, we

are able to study the relative contributions of current- and spike-based adaptation to the firing

rate. We can easily simulate neurons with current- but not spike-based adaptation by not incor-

porating the jump in w after reset; while ignoring all forms of adaptation can be done by simply

using a 1D grid and ignoring values of w 6¼ 0. The vast difference between adaptive neurons and

non-adaptive neurons is also reflected in the gain spectrum. Fig 10B shows the gain spectrum of

a (non-adaptive) exponential-integrate-and-fire neuron and a neuron that has a constant rate of

adaptation due to the background rate upon which the small sinusoidal modulation has been

imposed. The difference between the adaptive and non-adaptive neuron is considerable. Both

neurons show a 1

o
dependence in the high frequency limit, as is expected for exponential neurons

[25]. (Fig 10A shows that the shape of the spike, which is reflected in the large cells on the right

of the grid is independent of w.) It is clear that a meaningful time-independent gain function

cannot be chosen, so that it is not possible to develop linear response theory.

It is interesting to observe the marginal distributions—in Fig 11 we show the marginal dis-

tributions, together with the joint distribution. The distribution in V looks remarkably like

that of an LIF neuron, except near the threshold, where the spike region, which is not present

for LIF, flattens the density. The w distribution suggests a much stronger overlap than the joint

distribution, which shows a clear separation. It is clear that, had the three density blobs been

oriented more diagonally, the marginal w distribution would have shown a single cluster.

Frequency-dependent short-term synaptic dynamics

Vasilaki and Giugliano have studied the formation of network motifs [24], using both micro-

scopic spiking neural simulations and mean-field approximation. In their mean-field

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 26 / 41

https://doi.org/10.1371/journal.pcbi.1006729

Fig 10. A: compares the response for three cases: no adaptation; only current adaptation; and both current- as well as spike-

based adaptation is included. B: The gain for a small sinusoidal input modulated on a background input as function of frequency,

for no adaptation and AdExp with current- and spike-based adaptation. Both spectra show the 1

o
dependency expected of an

exponential-integrate-and-fire neuron, as the spike shape, represented by the grid at high V values is independent of w. However,

the numerical difference between the cases is vast.

https://doi.org/10.1371/journal.pcbi.1006729.g010

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 27 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g010
https://doi.org/10.1371/journal.pcbi.1006729

simulations they considered both spike-timing dependent long-term plasticity, and frequency-

dependent short-term dynamics, where they use a version of the Tsodyks-Markram synapse

[27]. The short-term dynamics is of interest because it introduces something we have not con-

sidered before: the magnitude of the jump being dependent on the position of where the jump

originates. Following [24], if Gij defines the amplitude of the postsynaptic contribution from

Fig 11. Comparison of the joint distribution function of the AdExp neuron with the marginals in V and w. The marginal w distribution still reveals four clusters,

but the joint distribution reveals them as being far better resolved than one would judge from the marginals.

https://doi.org/10.1371/journal.pcbi.1006729.g011

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 28 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g011
https://doi.org/10.1371/journal.pcbi.1006729

presynaptic neuron j to postsynaptic neuron i, then this is considered to be proportional to the

amount of resources used for neurontransmission uijrij and to their maximal availability Aij, so

Gij ¼ Aijuijrij; ð16Þ

where r relates to the recovery and u to the facilitation of synapses, and the time constants τrec

and τfacil are different for facilitating and depressing synapses. They describe frequency-depen-

dent short-term synaptic dynamics by:

drij

dt
¼ ð1 � rijÞ=trec � uijrij

X1

kj

dðt � tkj
Þ ð17Þ

duij

dt
¼ � uij=tfacil þ Uð1 � uijÞ

X1

kj

dðt � tkj
Þ

ð18Þ

From now on, we will drop the indices ij and just refer to a single connection. In the simula-

tion below we will use τrec = 0.1 s and τfacil = 0.9 s and study a population of facilitating synap-

ses (Vasilaki and Giugliano used τrec = 0.9s, τfacil = 0.1 s for depressing synapses.) U is a fixed

constant, for facilitating (depressing) synapses U = 0.1(0.8). Eq 17 expresses that an individual

synapse is subject to deterministic dynamics, and that upon the arrival of a spike at time tk
both u and r undergo a finite jump, whose magnitude is dependent on the current value of u
and r. Eq 2 describes this situation, when the following transition probabilities are introduced:

Wðr0; u0jr; uÞ ¼ ndðr0 � r þ urÞdðu0 � u � Uð1 � uÞÞ � ndðr0 � rÞdðu0 � uÞ ð19Þ

We have to modify the process of generating our transition matrices: now for each quadrilat-

eral cell (p, q), we determine the centroid (u(p,q), r(p,q)) and we determine the covering set by

defining

~h ¼
� uðp;qÞrðp;qÞ

Uð1 � uðp;qÞÞ

0

@

1

A ð20Þ

and determining the cover set as before. The jump now becomes cell dependent.

It is easy to cover almost the entire state space. In Fig 12A we show the grid. In Fig 12B, we

show the sample path of three synapses, assuming that the presynaptic firing rate ν = 5 Hz. In

C-F we show the evolution of a population of synapses. The influence of the step size which

increases in the r (horizontal) direction with u and r, but decreases in the u (vertical) direction

with u. There is good agreement with Monte Carlo simulation throughout. With the joint dis-

tribution available, it is possible to use Eq 16 and calculate the distribution of Gij or its expecta-

tion value.

Fitzhugh-Nagumo neurons

We consider the well-known Fitzhugh-Nagumo neuron model [28], which is given by:

dV
dt

¼ V �
V3

3
� W þ I

dW
dt

¼ 0:08ðV þ 0:7 � 0:8WÞ
ð21Þ

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 29 / 41

https://doi.org/10.1371/journal.pcbi.1006729

It is an attractive neuron model as it captures many properties of the biologically realistic

Hodgkin-Huxley neuron, while being much more tractable—being reduced to two dimensions

aids greatly in analysis and visualization. The two variables are a nondimensionalized voltage-

like variable V and a recovery variable W. Also we note a variable I representing a constant

external current.

When I = 0, there is a stable equilibrium point at� (−1.199, −0.624) corresponding to a

resting state. As I increases, the system undergoes a Hopf bifurcation to a stable limit cycle

Fig 12. Evolution of the state of a population of facilitating Tsodyks-Markram synapses. A: Grid. B: Sample path of individual

synapses. The state dependency of the jump size is clearly visible. C-F: evolution of density over time.

https://doi.org/10.1371/journal.pcbi.1006729.g012

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 30 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g012
https://doi.org/10.1371/journal.pcbi.1006729

around an unstable equilibrium. (Increasing I further leads to a stable fixed point at positive V
and W termed “excitation block”.) In this paper, we will consider an intermediate value I = 0.5

in order to demonstrate how our method can be used on systems with limit cycles.

We simulate white noise by providing the system with both inhibitory and excitatory noisy

input with a high rate and low synaptic efficacy, and successfully capture the diffusion of prob-

ability in a neighbourhood around the limit cycle (Fig 13A–13D for t = 5, 10, 50 and 1000 s, J =

±0.02, ν = 20 spikes/s). It is interesting to study a purely excitatory input with large synapses

(J = 0.1, ν = 2 Hz). This leads to a deformed limit cycle, shifted towards higher V. This is

expected as the net input now is I = 0.7. The band is also broader, as one would expected as

higher values of synaptic efficacy imply larger variability.

Another case we consider is noisy inhibitory input (Fig 13F). As we would expect, the sys-

tem is effectively driven back below the bifurcation to a stable equilibrium, although we still

see some variance-driven probability follow a limit cycle that differs considerable from the

original limit cycle. We can understand this by converting the noisy input into zero-mean

noise and a steady inhibitory current, and looking at the streamlines of the system with these

parameters instead. As seen in Fig 14D, while all the the trajectories converge to the fixed

point, those starting on the right side of phase space first increase w until they reach the right

branch of the cubic nullcline, then follow a path close to the limit cycle to return to the fixed

point. It is interesting to see that the method captures limit cycles that do not coincide with the

limit cycle of the original grid.

Rabinovitch and Rogachevskii [29] describe the two “vertical” sections of the path to be

transient attractors (T-attractors) separated by a diagonal transient repeller (T-repeller) (alter-

natively, a separatrix [30]) close to the central branch of the cubic nullcline. Trajectories close

to each other but starting on different sides of the T-repeller separate rapidly before eventually

reaching the same steady state, which creates considerable problems in creating the grid (see

Fig 14E). The authors perform a detailed analysis of the system by extending the notion of iso-

chrones from limit cycles to excitable systems. We note that their isochrones are similar in

character to the lines in our grid perpendicular to the streamlines of the system.

Next, we outline some of the numerical subtleties involved in generating the computational

grid for the Fitzhugh-Nagumo model. Following the procedure from Sec. Materials and

Methods, one can attempt to generate a grid by starting with a set of initial conditions, and

solving the differential equations of the system forwards in time to obtain a set of trajectories

(or integral curves). Each pair of trajectories then has a strip between them and the individual

cells are obtained by dividing the strip into equal-time bins. However, in a system with a limit

cycle, if we start with initial conditions outside the limit cycle, we see that the trajectories gen-

erated from them converge onto the limit cycle. Moreover, it is impossible to obtain trajecto-

ries inside the limit cycle from outside the limit cycle, and vice versa. This means that we have

to handle the limit cycle, outside, and inside, as separate sections of the plane.

Since the limit cycle is a one-dimensional object with zero width, we have to artificially

define a small width around it. We then choose sets of initial conditions outside and inside the

limit cycle and integrate the trajectories until they reach a certain small Euclidean distance

from the limit cycle, and then define our limit cycle strip as the space left. In this left over space

we define quadrilaterals so as to fill up this ring. This becomes a strip in its own right, repre-

senting the limit cycle. Earlier we described the reversal mapping: mass reaching the end of a

strip must be removed and deposited in a cell representing a stable point. Here, we use a simi-

lar approach: mass that arrives at the end of a strip must be removed and deposited on the

limit cycle. We find the cell on the limit cycle that is closest in Euclidean distance to the limit

cycle. Since the machinery to do this is already in place in the form of a reversal mapping, we

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 31 / 41

https://doi.org/10.1371/journal.pcbi.1006729

will also refer here to this process as a reversal mapping. The modeler presents this reversal

mapping in the same file format as used previously.

Initially we had attempted to define our limit cycle cells as having a fixed width, and then

obtain strips by integrating backwards in time from the corners of these cells. Indeed, the

coarse schematic grid in Fig 14 has trajectories generated in this way for the interior of the

limit cycle. However, for the purposes of actual computation, this method leads to degenerate

Fig 13. A-D: Evolution of the density at t = 5, 10, 50 s an steady state for a diffusive input (J = ±0.02, ν = 20 spikes/s).

E: excitatory input for a weak rate, but with large synaptic efficacy (J = 0.1, ν = 2 spikes/s). F: inhibition captures most

neurons at the fixed point, a weak ghost cycle of neurons that escape by fluctuation is visible, but is considerably

displaced compared to the standard limit cycle.

https://doi.org/10.1371/journal.pcbi.1006729.g013

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 32 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g013
https://doi.org/10.1371/journal.pcbi.1006729

Fig 14. A: The numbered mesh provides a coarse overview of the dynamics of the system, whereas we run our simulations using the much finer mesh. B:

Different trajectories in the Fitzhugh-Nagumo model (as shown by solid and dashed lines) can merge before reaching the limit cycle. C: The region of the

Fitzhugh-Nagumo model tiled with stationary cells; limit cycle is shown for reference. D: Sample trajectories in the Fitzhugh-Nagumo model in the parameter

regime where the system tends to a fixed point. E: Trajectories that begin close to each other have the potential to diverge rapidly. F: Attempting to build cells

from these trajectories can lead to “stretched” cells that intersect other cells.

https://doi.org/10.1371/journal.pcbi.1006729.g014

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 33 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g014
https://doi.org/10.1371/journal.pcbi.1006729

cells. This is due to the fact that close to the limit cycle, trajectories move almost parallel to it,

in particular along the “horizontal” segments of the limit cycle, where the fast v dynamics dom-

inate. This leads to long, thin cells being created, which become degenerate when approaching

the limit cycle—adjacent trajectories overlap to the degree of accuracy of the numerical inte-

grator, leading to self-intersecting cells or cells with zero area.

From the outside of the limit cycle, most of the state space can be covered by simply choos-

ing points on the edge of the region of interest and integrating forwards in time until one

reaches the limit cycle. However, care must be taken when trajectories converge before arriv-

ing at the limit cycle, as shown in Fig 14B. This happens particularly along the cubic nullcline.

We handle this by checking for degenerate cells or cells with area close to zero. These cells are

then deleted from the grid, and instead a reversal mapping is created from the previous cell

onto the closest (in Euclidean terms) cell.

The interior of the limit cycle proves to be even more challenging. Not only is there an

unstable fixed point, also there exist canard trajectories, which have been the subject of consid-

erable mathematical interest [29–32]. Loosely speaking, near the central portion of the cubic

nullcline, there are slow but unstable trajectories. This leads to two types of numerical issues—

first, the slow dynamics cause a build-up of exponentially many very small cells. We work

around this by defining a minimum value of k _~vk—regions below this value are considered to

be approximately stationary, since they will have much slower dynamics than any noisy input

we consider. The region we find is shown in Fig 14C.

We use cubic splines to approximate the boundary of this region, and then use points on

this boundary as initial points for trajectories on the inside of the limit cycle to generate strips.

Due to the instabilities in this region of the system, trajectories can be highly curved, and tra-

jectories with initial conditions close to each other can diverge quickly, leading to cells which

may intersect with each other, as shown in Fig 14E. As these areas with highly curved trajecto-

ries are still locally smooth, it may be possible to increase the resolution of the grid until non-

degenerate cells are obtained, as we do here. However, it may not always be possible to do so

due to computational constraints—in that case it may be more practical to delete bad cells

after the creation of the grid and cover any gaps with fiducial bins.

To sum up, regions where trajectories merge—such as the limit cycle and nullclines in this

case—involve moving from the two dimensional plane onto one dimensional trajectories, and

pose conceptual as well as computational difficulties. Regions with highly curved trajectories

may be possible to handle with very fine resolutions, but may pose difficulties at coarser resolu-

tions. In both cases it is possible to handle such regions using an automated procedure: cells

are checked for being complex quadrilaterals or having too small an area. Those satisfying this

condition are deleted, and renewal mappings from the cells before them to the nearest cells are

generated. Any gaps in the grid due to this can be handled using the prescribed method for

creating fiducial bins.

In conclusion, we have successfully extended our procedure to dynamical systems with

limit cycles and complex dynamics such as canards. While we have to make some compro-

mises in the regions which pose significant analytic difficulty, these regions are those in which

neurons would not spend any significant amount of time. Hence, our method would still be

suitable for studying neural circuits of such populations.

Numerical solution and efficiency

We solve Eq 12 by a forward Euler scheme. Since we interleave moving probability mass

through the grid with a numerical solution of Eq 12, we solve Eq 12 over a period Δt, which

can be as short as 10−4 s for some neural models. This renders sophisticated adaptive size

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 34 / 41

https://doi.org/10.1371/journal.pcbi.1006729

solvers relatively inefficient. The matrices in Eq 12 tend to be sparse band matrices, and one

advantage of the forward Euler scheme is that it is embarrassingly parallel. For a single popula-

tion in this we partition Δt into neuler time steps. For most simulations in this paper neuler = 10

is adequate, we will discuss an exception below. In a forward Euler scheme Eq 12 is discretized

and a single step is given by:

Mðmapkði; jÞ; l þ 1Þ ¼ Mðmapkði; jÞ; lÞ þ DM;

with

DM ¼
nDt
neuler

X

ðp;qÞ2Chði;jÞ

ap;qMðmapkðp; qÞ; lÞ � Mðmapkði; jÞ; lÞ

()

ð22Þ

The current simulation time is tsim kΔt, where Δt is the mesh time step. The current map,

which indicates where probability mass has moved under the influence of endogenous neural

dynamics is therefore labelled by mapk(i, j), which maps cell (i, j) to a unique mass array index

as per Eq 9. Note that the mapping should not be applied to the set Ch(i, j). Simulation starts

at k = 0, l = 0. Each Euler step l is increased, until l = neuler, upon which l is reset to 0 and k is

increased by 1, until the desired end time is reached. The sets Ch(i, j) and coefficients αp,q

remain constant throughout simulation.

Despite appearances, the right-hand side of Eq 22 is of the form of a matrix vector multipli-

cation, where the matrix is very sparse (Fig 15A). The matrix elements are numerical con-

stants, and there is no dependence between rows, meaning that each row can be evaluated

independently of the others and therefore the problem is extremely parallel: each row can be

calculated in a separate thread when available.

Larger networks can be simulated by vectorizing the network: vectors representing the

mass of individual populations are laid out in a single array representing the mass of multiple

populations. Connections from population i to population j then are represented by block

matrix elements, each consisting of one or more transition matrices (one for every efficacy

associated with the connection) generated by the process described above.

We have created both a C++ and a CUDA implementation and evaluated them on single

populations, as well as networks of populations. When generating networks we consider net-

works of conductance based populations, each population connected to constant input (’corti-

cal background’), with the network being sparsely connected (connectivity 5%), efficacy

chosen fixed (h = 0.05), with the number of connections drawn from a uniform distribution

(n = 1, . . ., 100). For small networks, the running times are not particularly onerous, with or

without parallelization. For larger networks, in the C++ implementation we evaluated a single

block matrix per thread using OpenMP. This means that in our implementation individual

matrix vector calculations are not parallel, but that several matrix vector calculations are per-

formed simultaneously. Since OpenMP offers a relatively small number of threads, this still

makes efficient use of resources. The parallelization model for CUDA is different: we write a

so-called kernel to evaluate Eq 22 and launch a kernel for each block matrix. CUDA’s loop

unrolling automatically performs parallelization within the kernel, and by launching kernels in

different streams, inter kernel concurrency can be achieved. It is then the question whether the

large number of threads compensate for the inherently slower GPU hardware. In Fig 15D we

show how the GPU interacts with the C++ driver. During initialization the mass array is set up

on the GPU, as well as the mapping, and the matrix elements. During a simulation run, the

mass array mapping is updated, and firing rates are exchanged, but other than for visualization

purposes, the mass array is not transferred, meaning lightweight communication between

GPU and CPU.

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 35 / 41

https://doi.org/10.1371/journal.pcbi.1006729

We find that the number of cells in a mesh determines the performance. In Fig 15 we exam-

ine the conductance based neuron example again. If we use the original mesh, without consid-

ering performance, we find that the method is slower than direct simulation as performed by

NEST by a factor of three (6s per population for NEST—20s per population for the CUDA

Fig 15. A-B: Comparison of the default mesh for conductance based neurons to a reduced mesh. Although coarser cells are visible in B, the density is not visibly

affected, in particular in the white areas, where the bulk of the density is present. C: Firing rates are almost identical. D: Interaction between the C++ driver and the

GPU registers, Interaction between CPU and GPU in a CUDA-based simulation. During the initialization, the mass array (red), the map array (green), the matrix

elements (yellow) are copied onto the GPU. During simulation only the map (green) is updated in C++ and copied to the GPU, and firing rates are calculated from the

meshes on the GPU. On the CPU the firing rates are processed by the network, and delays are applied where applicable. Resulting firing rates are sent back to the GPU

for processing the the next simulation step. E: Run time factors for direct simulation, CUDA and C++ implementation (default and reduced mesh). F: memory use,

NEST and CUDA implementation.

https://doi.org/10.1371/journal.pcbi.1006729.g015

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 36 / 41

https://doi.org/10.1371/journal.pcbi.1006729.g015
https://doi.org/10.1371/journal.pcbi.1006729

implementation). If we reduce the granularity of the original mesh, we find that we can bring

the size of the mesh down from 120k cells to 25k cells, with the density and firing rate predic-

tions unaffected (Fig 15A vs Fig 15B for density, B being the coarser mesh which is only visible

in the bigger cells on top, C for firing rate). For the reduced mesh, the performance of the

C++ implementation is equal to that of NEST, where the CUDA implementation is a little bit

slower (measured on a Tesla P100). Both direct (NEST) simulation and C++ implementation

use parallelization with 16 threads for this comparison. The real time factors (real time second

divided by wall time of one simulated second) are shown in Fig 15E. A striking difference is

the memory use (Fig 15F), which for the CUDA implementation is orders of magnitudes

lower (300 MB for the largest network of 1000 populations, whereas a 100 population network

with NEST already uses 10 GB). We conclude that the CUDA implementation supports the

simulation of large networks on a single PC equipped with a GPGPU, whereas direct simula-

tion requires a substantial cluster.

In the method we considered so far, a relatively large number of cells emerge around sta-

tionary points due to the exponential shrinkage of state space around them. In principle it is

possible to group these cells together into larger ones, and to group them into strips that would

run at a lower speed compared to the basic time step of the mesh. This would reduce the num-

ber of cells in the mesh considerably, while the basic granularity of the mesh will not be

affected much. Such resulting merged cells are no longer quadrilateral and the method will

have to be extended to be able to handle non-convex cells, which will be one of the first priori-

ties in further work.

General remarks

We have demonstrated a very general method to study noise in 2D dynamical systems and

applied them to various neural models and Tsodyks-Markram synapses. The state space of the

deterministic model must be represented by a grid. The requirement that a grid be made is

both a strength and a weakness: the state space relevant to the simulation must be chosen judi-

ciously before the simulation starts. But since it must be constructed beforehand, integration

can be done very accurately, using time steps that are much smaller than typically used in

Monte Carlo simulators. If general purpose simulators are used with a default time step, and

without adaptive methods that monitor errors, they may not alert the user to problematic

regions of state space. Our method requires a careful layout of state space before simulation

starts. We found that the requirement of a grid forces visualization and thereby already creates

an understanding of the dynamics that can be expected.

When the state space cannot contain the simulation, this is clearly visible, either through

loss of mass, or by the accumulation of mass at the edge of the grid. This proved useful in one

instance, where a well known neural simulator produced a crash (due to an instability of the

particular neural model implementation, not the simulator as such). Our method is very

robust and stable, once a suitable grid is available. In general, we find that grids can be taken

quite coarse in state space, but that a relatively small time step must be used for completely

accurate results, such as comparison to analytic results like gain curves. When numerical

errors are acceptable, and only qualitative agreement is required, much coarser grids can be

used that require far less simulation time.

Our method is not as efficient as effective 1D methods [15–17], but makes very few assump-

tions. It handles time-dependent input without any restrictions. This is useful, for example,

when comparing against basis functions expansions [13, 14, 33]. These basis functions are typi-

cally determined for constant input, and time-dependent input must be treated as an adiabatic

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 37 / 41

https://doi.org/10.1371/journal.pcbi.1006729

approximation. Our method does not require this. In short, our method may serve as bench-

mark for faster methods.

Population density techniques are part of an emerging ecology of simulation techniques,

and it is important to consider their strength and weaknesses compared to related approaches.

Direct spiking neuron simulations are straightforward in small to medium-sized networks, but

hard to get right in large-scale simulations, where they are resource intensive (they can have

large memory requirements, as well as being CPU intensive). The “missing spike” problem,

and the need to keep track of spike information and its exchange between the various proces-

sors involved are just examples demonstrating that direct simulations are not straightforward.

They have developed into a discipline of their own [34]. Population density techniques are

conceptually simple, but unable to model pairwise correlations within a population, and the

inclusion of finite-size effects is not straightforward (see [14] for an attempt). In general, popu-

lation density techniques are not able to describe quenched network states, although fully con-

nected networks are amenable to such analyses [35, 36]. Recently, a number of studies have

explored path integral approaches to calculate pairwise correlations and to suggest a functional

role for such correlations (e.g. [36–38]). Often, these techniques use the diffusion approxima-

tion, or are restricted to remain close to stationary states. Two advantages of the technique

described in this paper is that the latter restrictions do not apply. Theoretically, population

density equations have been put on a rigorous mathematical footing [39], justifying its use for

weakly connected networks where the quenched state of the network is not important. These

papers also add to a substantial body of observation that even for small networks population

density techniques predict the firing rate correctly (e.g. [6, 40] and many others). So, when

modeling firing rates is the main objective, and the network is such that the populations may

be far from equilibrium, population density techniques are a good candidate. They are also

valuable in repeat experiments on single cells, as they show what noise will do to otherwise

identical neurons.

Modeling a complex system of real neurons probably requires a hybrid approach. Mazzu-

cato et al. [41] give an example of such an approach. They analyse the dimensionality of neural

data recorded by multielectrode array. The dimensionality is estimated from pairwise correla-

tions, something which would be impossible in a pure population density approach, as the

pairwise correlations would vanish in an infinitely large population. However, they also pro-

duce a spiking network model, to validate their explanation and here they use population den-

sity techniques to establish the dynamical regime for their spiking network.

The study of 2D systems subject to noise is an important topic in its own right, given that

limit cycles require at least two dimensions. The current trend in neuroscience towards 2D

geometrical models reinforces this point.

An important prerequisite for the method to work is that the dynamical system can be rep-

resented faithfully. We found that some systems have challenging regions of state space: sta-

tionary points, whether stable or not, and limit cycles need careful handling and a full cover of

state space is not possible. However, we find that we can infer motion of probability mass

inside such regions from the immediate surroundings, the limit cycle of the Fitzhugh-Nagumo

system as a case in point: it emerges as a region rather than as a curve from terminating the

grid as it approaches the limit cycle.

There are interesting parallels between our method and a recently proposed method for

determining missing spikes in hybrid time-driven, event-driven spiking neuron simulations

[42]. Here, the authors consider the problem of missing spikes: the possibility that a neuron is

below threshold at the end of a simulation step, but has crossed the threshold during the step.

They solve this problem by determining whether a neuron is inside a volume in state space

between the threshold and the backpropagated threshold. They find this easier than

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 38 / 41

https://doi.org/10.1371/journal.pcbi.1006729

determining the actual point of crossing, and their method is reminiscent of ours when we cal-

culate the transition matrix. They too consider a mapping like Eq 6 which they are able to cal-

culate explicitly for current based neurons. They conclude that apart from the threshold and

the backpropagated threshold, the boundary is given by the vanishing tangent space of the

map, precisely the criterion we used numerically (area of cell—in the absence of analytic solu-

tions) to define boundaries of state space.

It is interesting to speculate about extending the method towards even higher dimensions.

At first sight, this seems unfeasible: a three dimensional grid might already require millions

of bins. It is not efficient to simulate systems with a size of the order 104 particles by a larger

number of bins. It would also be considerably harder to visualize the results. Nonetheless,

probability tends to cluster in specific areas of state space and we find large parts of state space

effectively unoccupied. A dynamical representation of the occupied part of state space would

lead to a more scalable method.

Our simulation results have shown that we can simulate large networks consisting of hun-

dreds or thousands of populations. To make really large networks run more efficiently, we

need smaller meshes and the best way to achieve that we now believe is to lump the large num-

ber of small cells that emerge near stationary points into larger ones, as described above. This

will be our main focus for the near future.

Acknowledgments

We thank Gaute Einevoll, Michele Giugliano and Viktor Jirsa for discussions, and Martı́n

Pérez-Guevara for pushing large-scale use of the method.

Author Contributions

Conceptualization: Marc de Kamps.

Formal analysis: Marc de Kamps, Yi Ming Lai.

Funding acquisition: Marc de Kamps.

Investigation: Mikkel Lepperød, Yi Ming Lai.

Methodology: Marc de Kamps, Yi Ming Lai.

Software: Marc de Kamps, Mikkel Lepperød, Yi Ming Lai.

Validation: Mikkel Lepperød.

Visualization: Mikkel Lepperød.

Writing – original draft: Marc de Kamps.

Writing – review & editing: Marc de Kamps, Mikkel Lepperød, Yi Ming Lai.

References
1. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons.

Biophysical Journal. 1972; 12(1):1. https://doi.org/10.1016/S0006-3495(72)86068-5 PMID: 4332108

2. Stein RB. A theoretical analysis of neuronal variability. Biophysical Journal. 1965; 5(2):173. https://doi.

org/10.1016/S0006-3495(65)86709-1 PMID: 14268952

3. Johannesma PIM. Stochastic neural activity: A theoretical investigation. Nijmegen: Faculteit der Wis-

kunde en Natuurwetenschappen; 1969.

4. Knight BW. Dynamics of encoding in a population of neurons. The Journal of general physiology. 1972;

59(6):734–766. https://doi.org/10.1085/jgp.59.6.734 PMID: 5025748

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 39 / 41

https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1016/S0006-3495(65)86709-1
https://doi.org/10.1016/S0006-3495(65)86709-1
http://www.ncbi.nlm.nih.gov/pubmed/14268952
https://doi.org/10.1085/jgp.59.6.734
http://www.ncbi.nlm.nih.gov/pubmed/5025748
https://doi.org/10.1371/journal.pcbi.1006729

5. Omurtag A, Knight BW, Sirovich L. On the simulation of large populations of neurons. Journal of

Computational Neuroscience. 2000; 8(1):51–63. https://doi.org/10.1023/A:1008964915724 PMID:

10798499

6. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Jour-

nal of computational neuroscience. 2000; 8(3):183–208. https://doi.org/10.1023/A:1008925309027

PMID: 10809012

7. Gerstner W. Population dynamics of spiking neurons: fast transients, asynchronous states, and locking.

Neural computation. 2000; 12(1):43–89. https://doi.org/10.1162/089976600300015899 PMID:

10636933

8. Ly C, Tranchina D. Spike train statistics and dynamics with synaptic input from any renewal process: a

population density approach. Neural Computation. 2009; 21(2):360–396. https://doi.org/10.1162/neco.

2008.03-08-743 PMID: 19431264

9. Nykamp DQ, Tranchina D. A population density approach that facilitates large-scale modeling of neural

networks: Analysis and an application to orientation tuning. Journal of computational neuroscience.

2000; 8(1):19–50. https://doi.org/10.1023/A:1008912914816 PMID: 10798498

10. de Kamps M. A simple and stable numerical solution for the population density equation. Neural compu-

tation. 2003; 15(9):2129–2146. https://doi.org/10.1162/089976603322297322 PMID: 12959669

11. Iyer R, Menon V, Buice M, Koch C, Mihalas S. The influence of synaptic weight distribution on neuronal

population dynamics. PLoS computational biology. 2013; 9(10):e1003248. https://doi.org/10.1371/

journal.pcbi.1003248 PMID: 24204219

12. de Kamps M. A generic approach to solving jump diffusion equations with applications to neural popula-

tions. arXiv preprint arXiv:13091654. 2013.

13. Mattia M, Del Giudice P. Population dynamics of interacting spiking neurons. Physical Review E. 2002;

66(5):051917. https://doi.org/10.1103/PhysRevE.66.051917

14. Mattia M, Del Giudice P. Finite-size dynamics of inhibitory and excitatory interacting spiking neurons.

Physical Review E. 2004; 70(5):052903. https://doi.org/10.1103/PhysRevE.70.052903

15. Augustin M, Ladenbauer J, Baumann F, Obermayer K. Low-dimensional spike rate models derived

from networks of adaptive integrate-and-fire neurons: comparison and implementation. PLoS computa-

tional biology. 2017; 13(6):e1005545. https://doi.org/10.1371/journal.pcbi.1005545 PMID: 28644841

16. Cain N, Iyer R, Koch C, Mihalas S. The computational properties of a simplified cortical column model.

PLoS computational biology. 2016; 12(9):e1005045. https://doi.org/10.1371/journal.pcbi.1005045

PMID: 27617444

17. Schwalger T, Deger M, Gerstner W. Towards a theory of cortical columns: From spiking neurons to

interacting neural populations of finite size. PLoS computational biology. 2017; 13(4):e1005507. https://

doi.org/10.1371/journal.pcbi.1005507 PMID: 28422957

18. Ly C, Tranchina D. Critical analysis of dimension reduction by a moment closure method in a population

density approach to neural network modeling. Neural computation. 2007; 19(8):2032–2092. https://doi.

org/10.1162/neco.2007.19.8.2032 PMID: 17571938

19. Casti ARR, Omurtag A, Sornborger A, Kaplan E, Knight B, Victor J, et al. A population study of inte-

grate-and-fire-or-burst neurons. Neural Computation. 2002; 14(5):957–986. https://doi.org/10.1162/

089976602753633349 PMID: 11972903

20. Apfaltrer F, Ly C, Tranchina D. Population density methods for stochastic neurons with realistic synaptic

kinetics: Firing rate dynamics and fast computational methods. Network: Computation in Neural Sys-

tems. 2006; 17(4):373–418. https://doi.org/10.1080/09548980601069787

21. Richardson MJ. Effects of synaptic conductance on the voltage distribution and firing rate of spiking

neurons. Physical Review E. 2004; 69(5):051918. https://doi.org/10.1103/PhysRevE.69.051918

22. Izhikevich EM. Dynamical systems in neuroscience. MIT press; 2007.

23. Lai YM, de Kamps M. Population density equations for stochastic processes with memory kernels.

Physical Review E. 2017; 95(6):062125. https://doi.org/10.1103/PhysRevE.95.062125 PMID:

28709222

24. Vasilaki E, Giugliano M. Emergence of connectivity motifs in networks of model neurons with short-and

long-term plastic synapses. PloS one. 2014; 9(1):e84626. https://doi.org/10.1371/journal.pone.

0084626 PMID: 24454735

25. Fourcaud-Trocmé N, Hansel D, Van Vreeswijk C, Brunel N. How spike generation mechanisms deter-

mine the neuronal response to fluctuating inputs. The Journal of neuroscience. 2003; 23(37):11628–

11640. https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003 PMID: 14684865

26. Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neu-

ronal activity. Journal of neurophysiology. 2005; 94(5):3637–3642. https://doi.org/10.1152/jn.00686.

2005 PMID: 16014787

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 40 / 41

https://doi.org/10.1023/A:1008964915724
http://www.ncbi.nlm.nih.gov/pubmed/10798499
https://doi.org/10.1023/A:1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1162/089976600300015899
http://www.ncbi.nlm.nih.gov/pubmed/10636933
https://doi.org/10.1162/neco.2008.03-08-743
https://doi.org/10.1162/neco.2008.03-08-743
http://www.ncbi.nlm.nih.gov/pubmed/19431264
https://doi.org/10.1023/A:1008912914816
http://www.ncbi.nlm.nih.gov/pubmed/10798498
https://doi.org/10.1162/089976603322297322
http://www.ncbi.nlm.nih.gov/pubmed/12959669
https://doi.org/10.1371/journal.pcbi.1003248
https://doi.org/10.1371/journal.pcbi.1003248
http://www.ncbi.nlm.nih.gov/pubmed/24204219
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.1103/PhysRevE.70.052903
https://doi.org/10.1371/journal.pcbi.1005545
http://www.ncbi.nlm.nih.gov/pubmed/28644841
https://doi.org/10.1371/journal.pcbi.1005045
http://www.ncbi.nlm.nih.gov/pubmed/27617444
https://doi.org/10.1371/journal.pcbi.1005507
https://doi.org/10.1371/journal.pcbi.1005507
http://www.ncbi.nlm.nih.gov/pubmed/28422957
https://doi.org/10.1162/neco.2007.19.8.2032
https://doi.org/10.1162/neco.2007.19.8.2032
http://www.ncbi.nlm.nih.gov/pubmed/17571938
https://doi.org/10.1162/089976602753633349
https://doi.org/10.1162/089976602753633349
http://www.ncbi.nlm.nih.gov/pubmed/11972903
https://doi.org/10.1080/09548980601069787
https://doi.org/10.1103/PhysRevE.69.051918
https://doi.org/10.1103/PhysRevE.95.062125
http://www.ncbi.nlm.nih.gov/pubmed/28709222
https://doi.org/10.1371/journal.pone.0084626
https://doi.org/10.1371/journal.pone.0084626
http://www.ncbi.nlm.nih.gov/pubmed/24454735
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
http://www.ncbi.nlm.nih.gov/pubmed/14684865
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1152/jn.00686.2005
http://www.ncbi.nlm.nih.gov/pubmed/16014787
https://doi.org/10.1371/journal.pcbi.1006729

27. Tsodyks MV, Markram H. The neural code between neocortical pyramidal neurons depends on neuro-

transmitter release probability. Proceedings of the National Academy of Sciences. 1997; 94(2):719–

723. https://doi.org/10.1073/pnas.94.2.719

28. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical

journal. 1961; 1(6):445–466. https://doi.org/10.1016/S0006-3495(61)86902-6 PMID: 19431309

29. Rabinovitch A, Rogachevskii I. Threshold, excitability and isochrones in the Bonhoeffer–van der Pol

system. Chaos: An Interdisciplinary Journal of Nonlinear Science. 1999; 9(4):880–886. https://doi.org/

10.1063/1.166460

30. Rabinovitch A, Thieberger R, Friedman M. Forced Bonhoeffer˘van der Pol oscillator in its excited mode.

Phys Rev E. 1994; 50:1572–1578. https://doi.org/10.1103/PhysRevE.50.1572

31. Desroches M, Jeffrey MR. Canards and curvature: the ‘smallness of �’ in slow–fast dynamics. Proceed-

ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2011; 467

(2132):2404–2421. https://doi.org/10.1098/rspa.2011.0053

32. Rotstein HG, Coombes S, Gheorghe AM. Canard-Like Explosion of Limit Cycles in Two-Dimensional

Piecewise-Linear Models of FitzHugh–Nagumo Type. SIAM Journal on Applied Dynamical Systems.

2012; 11(1):135–180. https://doi.org/10.1137/100809866

33. Stefanescu RA, Jirsa VK. Reduced representations of heterogeneous mixed neural networks with syn-

aptic coupling. Physical Review E. 2011; 83(2):026204. https://doi.org/10.1103/PhysRevE.83.026204

34. Kunkel S, Potjans TC, Eppler JM, Plesser HEE, Morrison A, Diesmann M. Meeting the memory chal-

lenges of brain-scale network simulation. Frontiers in Neuroinformatics. 2012; 5:35. https://doi.org/10.

3389/fninf.2011.00035 PMID: 22291636

35. Montbrió E, Pazó D, Roxin A. Macroscopic description for networks of spiking neurons. Physical Review

X. 2015; 5(2):021028.

36. Buice MA, Chow CC. Dynamic finite size effects in spiking neural networks. PLoS computational biol-

ogy. 2013; 9(1):e1002872. https://doi.org/10.1371/journal.pcbi.1002872 PMID: 23359258

37. Schücker J, Goedeke S, Dahmen D, Helias M. Functional methods for disordered neural networks.

arXiv preprint arXiv:160506758. 2016.

38. Dahmen D, Grün S, Diesmann M, Helias M. Two types of criticality in the brain. arXiv preprint

arXiv:171110930. 2017.

39. Baladron J, Fasoli D, Faugeras O, Touboul J. Mean-field description and propagation of chaos in net-

works of Hodgkin-Huxley and FitzHugh-Nagumo neurons. The Journal of Mathematical Neuroscience.

2012; 2(1):10. https://doi.org/10.1186/2190-8567-2-10 PMID: 22657695

40. Amit DJ, Brunel N. Model of global spontaneous activity and local structured activity during delay peri-

ods in the cerebral cortex. Cerebral cortex (New York, NY: 1991). 1997; 7(3):237–252.

41. Mazzucato L, Fontanini A, La Camera G. Stimuli reduce the dimensionality of cortical activity. Frontiers

in systems neuroscience. 2016; 10:11. https://doi.org/10.3389/fnsys.2016.00011 PMID: 26924968

42. Krishnan J, Porta Mana P, Helias M, Diesmann M, Di Napoli EA. Perfect detection of spikes in the linear

sub-threshold dynamics of point neurons. Frontiers in neuroinformatics. 2017; 11:75. https://doi.org/10.

3389/fninf.2017.00075 PMID: 29379430

Computational geometry for modeling neural populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006729 March 4, 2019 41 / 41

https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1016/S0006-3495(61)86902-6
http://www.ncbi.nlm.nih.gov/pubmed/19431309
https://doi.org/10.1063/1.166460
https://doi.org/10.1063/1.166460
https://doi.org/10.1103/PhysRevE.50.1572
https://doi.org/10.1098/rspa.2011.0053
https://doi.org/10.1137/100809866
https://doi.org/10.1103/PhysRevE.83.026204
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2011.00035
http://www.ncbi.nlm.nih.gov/pubmed/22291636
https://doi.org/10.1371/journal.pcbi.1002872
http://www.ncbi.nlm.nih.gov/pubmed/23359258
https://doi.org/10.1186/2190-8567-2-10
http://www.ncbi.nlm.nih.gov/pubmed/22657695
https://doi.org/10.3389/fnsys.2016.00011
http://www.ncbi.nlm.nih.gov/pubmed/26924968
https://doi.org/10.3389/fninf.2017.00075
https://doi.org/10.3389/fninf.2017.00075
http://www.ncbi.nlm.nih.gov/pubmed/29379430
https://doi.org/10.1371/journal.pcbi.1006729

