
The expanding roles of neuronal nitric
oxide synthase (NOS1)
Kundan Solanki1,*, Sajjan Rajpoot1,*, Evgeny E. Bezsonov2,3,4,
Alexander N. Orekhov2,3, Rohit Saluja5, Anita Wary6, Cassondra Axen6,
Kishore Wary6 and Mirza S. Baig1

1Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology
Indore (IITI), Simrol, Indore, India

2 Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State
Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”,
Moscow, Russia

3 Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology,
Moscow, Russia

4 Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical
University (Sechenov University), Moscow, Russia

5Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
6 Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago,
IL, United States

* These authors contributed equally to this work.

ABSTRACT
The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to
produce nitric oxide (NO) as a by-product in the tissue microenvironment.
NOS1 represents the predominant NO-producing enzyme highly enriched in the
brain and known to mediate multiple functions, ranging from learning and
memory development to maintaining synaptic plasticity and neuronal development,
Alzheimer’s disease (AD), psychiatric disorders and behavioral deficits.
However, accumulating evidence indicate both canonical and non-canonical roles
of NOS1-derived NO in several other tissues and chronic diseases. A better
understanding of NOS1-derived NO signaling, and identification and
characterization of NO-metabolites in non-neuronal tissues could become useful in
diagnosis and prognosis of diseases associated with NOS1 expression. Continued
investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid
in the discovery of small molecules which could be used to titrate the activities of
NOS1-derived NO signaling and NO-metabolites. Here, we address the significance
of NOS1 and its byproduct NO in modifying pathophysiological events, which could
be beneficial in understanding both the disease mechanisms and therapeutics.

Subjects Cell Biology, Molecular Biology, Pharmacology, Obesity, COVID-19
Keywords Nitric oxide synthase, Nitric oxide, Epigenetics, Transcriptional regulation,
Vasodilation, Nitric oxide signaling, Cancer, Diabetes, Cardiovascular, Redox

INTRODUCTION
The NOS enzymes are primarily responsible for oxidizing L-arginine to L-citrulline in
presence of co-factors, secondarily release biologically active NO free radical as a
by-product (Fig. 1A) (Morris, 2004). As a highly membrane permeable free radical, NO
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can modify significant number of molecular targets (Mustafa et al., 2009; Tuteja et al.,
2004). Therefore, NO has the ability to regulate diverse biological activities within cells and
tissues (Jensen, 2009; Zweier et al., 2010). As NO can modify cysteine residue(s) via the
redox-based mechanism, therefore, it controls myriad of cellular responses by activating

Figure 1 Production of nitric oxide (NO) and functional domains of human NOS1, NOS2, and
NOS3. (A) Production of nitric oxide (NO). NOS converts L-arginine to L-citrulline in presence of
nicotinamide adenine dinucleotide phosphate (NADPH) and oxygen to produce highly diffusible NO
free radical in the tissue microenvironment. (B) Functional domains of human NOS1, NOS2, and NOS3.
NOS1 harbors a PDZ domain at the NH2-terminus. The oxygenase and reductase domains are as shown.
The oxygenase domain contains heme and tetrahydrobiopterin (BH4) interacting sites, whereas the
reductase domain contains interacting sites for FMN, FAD, and NADPH; the FMN domain connects to
the oxygenase domain via a calmodulin-binding (CaM) domain. The NOS1 and NOS3 proteins contain
an autoinhibition segment that interrupts the FMN domain, while NOS2 lacks. Myristoylation (Myr),
palmitoylation (Palm), zinc-ligating (Zn) positions are as shown.

Full-size DOI: 10.7717/peerj.13651/fig-1

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 2/31

http://dx.doi.org/10.7717/peerj.13651/fig-1
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


NO-sensitive guanylyl cyclase; transcriptional and translational activities, for example, by
interacting with iron-responsive elements; and post-translational modifications, such as
ADP ribosylation (Esplugues, 2002; Forstermann & Sessa, 2012; Picón-Pagès,
Garcia-Buendia & Muñoz, 2019). Further, NO free radicals (NO�) can collide with
superoxide anion (O−

2
�) to form peroxynitrite (ONOO−) intracellularly (Ischiropoulos, Zhu

& Beckman, 1992). Peroxynitrite ONOO− species is equally a highly reactive molecule that
can stimulate or modify biological processes including oxidative damage, nitration,
peroxidation of lipids, and S-nitrosylation of proteins, lipids, and DNAs, while also
generating nitryl and hydroxyl species (Ferdinandy & Schulz, 2003; Ischiropoulos, Zhu &
Beckman, 1992). Additionally, ONOO− can induce DNA single-strand breaks thereby
activate poly-ADP-ribose polymerase (PARP) (Islam et al., 2015; Szabó, 2006). Superoxide
dismutase (SOD) competes with O−

2
� in reacting with NO� to form ONOO−. Under most

physiological conditions NO occurs at a sub-micromolar concentration (Moncada &
Higgs, 2006); however, due to the rate constant of ONOO− formation being a few orders of
magnitude higher than that of SOD-mediated H2O2 formation by O−

2 , ONOO
− is always

present even with high expression of SOD, and the formation of ONOO− gradually
increase with increasing production of NO� by NOS (Radi, 2018). The compartmentalized
action of NO in the tissue microenvironment is diverse and complex. As NO and most of
its downstream products are highly reactive and readily diffusible, therefore, it is not
surprising to find involvement of NO in many pathophysiological states.

According to their abundance or the tissue type in which they were first discovered,
three main NOS enzymes have been described; (a) neuronal NOS (nNOS or NOS1),
(b) inducible NOS (iNOS or NOS2), and (c) endothelial NOS (eNOS or NOS3) (Mattila &
Thomas, 2014; Moncada, 1999). In addition, there are five different isoforms of NOS1
proteins that are products of alternatively spliced NOS1 mRNAs: NOS1-a, m, β, γ, and
NOS1-2 (Carnicer et al., 2013). Functional domains of human NOS1, NOS2, and NOS3
are as shown (Fig. 1B). With regards to their expression and localization, NOS2 is not
constitutively expressed in cells, but its expression can be induced by infection, bacterial
lipopolysaccharide (LPS), cytokines, and other agonists (Frost, Nystrom & Lang, 2004; Kim
et al., 2005; Zamora, Vodovotz & Billiar, 2000). Although primarily identified in
macrophages, the expression of the enzyme can be stimulated in many cell types or tissues,
provided that appropriate stimuli are used (MacMicking, Xie & Nathan, 1997; Nathan,
1992). NOS3 is highly enriched in endothelial cells (ECs), responsible for the synthesis of
NO to exert vasodilation and to regulate the flow of blood throughout the body. However,
this enzyme has also been detected in cardiac myocytes, platelets, certain brain neurons,
syncytiotrophoblasts of the human placenta, and kidney tubular epithelial cells
(Forstermann et al., 1994; Forstermann & Sessa, 2012). NOS1 is constitutively expressed in
specific neurons of the brain (Northington et al., 1996; Tricoire & Vitalis, 2012). Although
highly enriched in brain tissues, immunohistochemical analysis showed the occurrence of
NOS1 in kidney macula densa (MD), pancreatic islet, vascular smooth muscle cells, spinal
cord, adrenal glands, and in peripheral nitrergic nerves (Hall et al., 1994). In mammals,
NOS1 is highly enriched in skeletal muscles (Kobayashi et al., 2019; Piknova et al., 2015).
As NOS1 is found in particulate and soluble fractions, and localizes to different
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intracellular compartments, therefore predict its multiple functions in tissue
microenvironment (Zhou & Zhu, 2009). However, the underlying molecular mechanisms
are crucially unknown.

Discussion on the role and regulation of different isoforms of NOS-derived NO in
different cellular contexts have been described elsewhere (Forstermann & Sessa, 2012;
Strijdom, Chamane & Lochner, 2009). However, the roles of NOS1 and NO, in
non-neuronal tissues have received less attention, to which we have very little insights.
We feel that the continued discussion and studies on the roles of NOS1 and NO expressed
in non-neuronal pathologies are necessary to synthesize new knowledge. In this narrative
review, we identify large gaps in our understanding of the role of NOS1 and NO signaling
as they relate to non-neuronal pathologies such as cardiovascular diseases, cancer, obesity,
and diabetes. Importantly, we present a reasonable point of view and hypothesis for the
general readers in relation to published literature.

SURVEY METHODOLOGY
For this narrative review, we screened articles from 1991 to 2022 that appeared in PubMed,
SCOPUS, and Google. We utilized keywords: nitric oxide synthase, NOS1, NOS2, NOS3,
nNOS, iNOS, eNOS, nitric oxide, cardiovascular, obesity, and cancer. To eliminate any
potential bias, the searches were conducted by two first authors (KS and SR)
independently, and titles and abstracts of the literature were identified by the search
criteria. Disagreements were resolved through arbitration with two senior authors (KW
and MSB). Cross-references were searched and analysed. Finally, the full texts were read
and analysed for relevant information.

No restrictions were used with regards to year or publication type. This narrative review
describes and discusses the pathophysiology related to non-neuronal NOS1 and NO
activities that were published in the English language. Articles with minimal or no
academic significance, editorial comments, individual contributions, and descriptive
studies with no quantitative and qualitative conclusions were excluded.

Regulation of expression of NOS1
The humanNOS1 gene located at the chromosome 12q24.2 (Hall et al., 1994;Newton et al.,
2003) is made of 29 exons, 28 introns, and these DNA elements are interspersed over
250 Kb genome. The open reading frame (ORF) of NOS1 is composed of 4,302 base pairs,
and the translation starts at exon-2 and stops at exon-28, thereby give rise to 1,434 amino
acid polypeptide species. The NOS1 gene can produce several alternatively spliced
mRNA transcripts (Brenman et al., 1997; Wang, Spitzer & Chamulitrat, 1999). Moreover,
literature survey shows complex transcriptional regulation of NOS1 gene as described
below.

The enhancers, promoters and boundary elements (chromatin insulators) spread across
the genome can fine-tune the expression of genes. These three major elements can titrate
the levels of gene expression precisely, in temporo-spatial manner in response to specific
signals. A promoter of gene usually represents a region of a genome that allows for the
recruitment of DNA binding transcription factors (TFs) including epigenetic modifiers,
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where the activities of RNA polymerase facilitate the transcription of a gene. These
promoter DNA sequences are located at the 5′ end (upstream) of the transcription
initiation site (TSS), but could also be located downstream of TSS. TFs can be positive or
negative regulators of gene transcription, however, the promoters, the TSS and the key TFs
collaborate, thereby fine tune to regulate the activities of RNA polymerase. Additionally,
the promoter DNA sequences can be found in both in forward and in reverse orientations.

The TFs including the epigenetic modifiers could directly or indirectly regulate the
expression of human NOS1 is not clearly understood. Inspection of 5′ region of the human
NOS1-promoter and enhancer suggest that the expression of this gene could be regulated
by several TFs, e.g., AP-2, TCF/LEF1, CREB/ATF/c-Fos, Ets, p53, and NF-kappa B-like
sequences (Hall et al., 1994). In addition, we observed that there are also at least 2 Kruppel
Like Factor-2 and -4 (KLF2/KLF4) recognition sites (CACCC) in the human NOS1-
promoter/enhancer-500 bp upstream of TSS (Fig. 2), and at least 11 binding sites +3.5 kb
downstream of exon-1, thereby increasing the complexity of transcriptional regulation of
NOS1 gene by KLF4/KLF2 (Zhang et al., 2005). We also found putative binding sites for
OCT4, Hypoxia Response Element (HRE) and Sox2 (Fig. 2). Additional levels of regulation
of NOS1 expression are likely due to SNPs and polymorphic loci. Nevertheless, the NOS1-
promoter driven green fluorescent protein (GFP) or Lac-Z reporter transgenic mice lines
should be used with which to study the regulated expression of NOS1 in several
pathophysiological setting. The neuronal specific functions of NOS1 are documented very
well; however, in the following sections, we highlight the neglected roles of NOS1 in
non-neuronal disease settings.

Roles of NOS1 and NO in cardiovascular disease
The NO is a fundamental modifier of wealth of biological processes in the heart and in the
vasculature (Strijdom, Chamane & Lochner, 2009). Owing to its fast reaction kinetics, the
roles of NO in different circumstances, at best, is contradictory (Massion et al., 2003;
Schulz, Kelm & Heusch, 2004). For instance, in the vasculature, it acts as a vasodilator for
smooth muscle cells and an anti-platelet aggregator for platelets (Massion et al., 2003),
whereas in cardiomyocytes, it acts as a pro-apoptotic or necrotic if present in excessive
amount (Strijdom, Chamane & Lochner, 2009). Thus, the biological effect of NO can
oscillate, subject to which NOS polypeptide species is engaged and the bioavailability of
NO (Brutsaert, 2003). Specific roles of NOS in cardiovascular systems has been reviewed
elsewhere (Strijdom, Chamane & Lochner, 2009).

The effector molecules downstream of NO include ion channels found in the
membrane, enzymes, and several key proteins in the mitochondria, cytosol and nuclear
compartment (Villanueva & Giulivi, 2010; Zhang, 2017). All three NOS isoforms are
abundant in the heart and in atherosclerotic plaques (Pong & Huang, 2015; Wilcox et al.,
1997) and have addressed the expression of NOS isoforms in normal and during the
progression of atherosclerotic lesions. NOS3 found in quiescent blood vessels is expressed
by ECs, where it maintains basal physiological functions. NOS3 expression does not
decrease appreciably in early lesions but is significantly decreased in advanced lesions in
the EC overlying the atherosclerotic lesion; whereas NOS1 and NOS2 are expressed in
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early and advanced lesions in macrophages, ECs, and mesenchymal-appearing intimal
cells, but not found in a normal quiescent vasculature. The expression of NOS2 was
confirmed by immunohistochemical staining, while in situ hybridization did not detect its
mRNA, suggesting that mRNA level was below the detection limit (Weisz et al., 1994).
In mice the loss of NOS2 gene is atheroprotective, conversely, NOS3 provided
atheroprotective effect in ApoE−/− (Kuhlencordt et al., 2001; Ponnuswamy et al., 2012).

Figure 2 Transcriptional regulation of NOS1. (A) Nucleotide sequence of the human NOS1-promoter
of -500 bp upstream of the transcription start site (TSS) ATG as shown. The locations of putative binding
sites for KLF2/KLF4, Hypoxia Response Element (HRE), OCT4, and SOX2 are indicated.
(B) Hypothetical diagram of transcriptional regulation of NOS1 and the potential roles of epigenetic
mediators KLF2/KLF4, HRE, OCT4, and SOX2. Epigenetic mediator-induced expression of NOS1 gene
could occur prior to the appearance of genomic instability, thereafter mutation and/or deletion of critical
genes could drive tumor cell proliferation, resist apoptosis, together alter NOS1 expression. Additionally,
SNPs and polymorphic loci in cis-regulating elements (e.g., enhancer) could up-or downregulate NOS1
expression. Expression of NOS1 gene could be measured by RT-PCR, epigenetic modifications by DNA
methylation assays or by chromatin immunoprecipitation (ChiP) experiments.

Full-size DOI: 10.7717/peerj.13651/fig-2
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Thus, it can be surmised that NOS2 acts as a pro-atherogenic agent, while NOS3 acts as an
atheroprotective agent. Although, there are points and counterpoints regarding the role
of NOS1 in atherosclerosis, studies have found that NOS1 acts as an anti-atherogenic
agent, which was evident by increased plaque formation and mortality in ApoE/nNOSa
double knockout mice (Kuhlencordt et al., 2006). Additionally, NOS1−/− increased the
mortality of ApoE−/− mice (Barouch et al., 2003). Reportedly, macrophage NOS1-derived
NO mediated the uptake of ox-LDL and foam cell formation with the subsequent
expression of adhesion molecules on the endothelial wall, thereby enhancing the
inflammatory process (Roy, Saqib & Baig, 2021; Roy et al., 2020). Chakrabarti et al. (2012)
studied the effect of NOS1 by tumor necrosis factor (TNF) stimulation in ECs.
Accordingly, NOS1-knockdown or inhibition by L-NPA (a selective inhibitor of NOS1)
enhanced the inflammatory response by elevating expression of vascular cell adhesion
molecule (VCAM)-1, IL-2, and IL-8. NOS1 inhibition also increased the expression of
GM-CSF, which plays a major role in the biology of leukocyte production and maturation
in bone marrow. NOS1 inhibition did not increase the expression of intercellular cell
adhesion molecule-1 (ICAM-1) and anti-inflammatory cytokines IFN-γ and IL-10,
suggesting a paradoxical role of NOS1 in ECs. NOS1 inhibition did not alter the mRNA
level of VCAM-1, suggesting a posttranscriptional regulatory role of NOS1 in ECs. NOS1-
derived H2O2 had been described as an important vasodilator in ECs, and a reduction in
NOS1 expression has been shown to lead to EC-dysfunction in ApoE−/− mice through
decrease in H2O2 level and subsequently decreased vasodilation (Capettini et al., 2011).
Ox-LDL reduced NOS1 expression and increased NOS-Ser852 phosphorylation, thereby
uncoupling of NOS1 with a subsequent decrease in NO and H2O2 level in ECs, thus
generating oxidative stress. Impairment of H2O2 production in ECs by ox-LDL activated
c-Jun and c-Fos, which mediate elaboration of inflammatory cytokines (Navia-Pelaez
et al., 2017; Navia-Pelaez et al., 2018). Notably, NOS1 mediated the interaction between
ECs and macrophages in the early stage of atherosclerosis. CD40 ligand is expressed on
macrophages by ox-LDL activated NOS1. Macrophage secretes soluble factors and
increases the expression of the CD40 receptor on ECs. Interaction between CD40-40L
generates an inflammatory response and leads to EC-dysfunction (Roy, Saqib & Baig,
2021). A study of myocyte hypertrophy and ventricular stiffness revealed an increased
response in NOS1−/− in the progression of both (Barouch et al., 2003), thus signifying the
beneficial effect of NOS1 on myocyte hypertrophy. As the (a) expression of NOS1 was
found in early and advanced atherosclerotic plaques (Wilcox et al., 1997) and (b) the
concentration of NO determines the pro-or anti-inflammatory processes (Brutsaert, 2003),
studies explaining the role of NOS1-derived NO in early and advanced atherosclerotic
plaque by modulating the concentration of NO and its subsequent effect on atherosclerosis
plaque could help clarify the role of NOS1-derived NO in these processes. However,
laboratory animal experiments have their own limitations as these experiments are often
carried out in inbred strains of mice coupled with restrictive dietary regiments.

NOS1 is localized on the membrane vesicles of the smooth endoplasmic reticulum
(SER) in cardiac muscles (Xu et al., 1999) that modulate contractility of cardiac muscle and
regulation of intracellular Ca2+ movement (Carnicer et al., 2013). NOS1-derived NO
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inhibited Ca2+ influx into cardiomyocyte via regulation on L-type Ca2+ channel (LTCC)
present on the cell membrane. It increased Ca2+ reabsorption in the SER by increasing
phospholamblan phosphorylation and regulating the release of Ca2+ from the SER through
S-nitrosylation of the ryanodine receptor (RyR) Ca2+ release channel present on the SER
(Carnicer et al., 2013). NOS1 gene deletion decreased the S-nitrosylation of RyR (Wang
et al., 2010). However, these contrasting results suggest the ability of NOS1 in regulating
the excitation-contraction (EC) coupling response in cardiomyocytes. Enhanced
contraction and relaxation in left-ventricular cardiomyocytes in NOS1−/− mice compared
to wild-type mice have been documented (Ashley et al., 2002), which was subsequently
confirmed by others (Burger et al., 2009; Dawson et al., 2005; Sears et al., 2003), although
some studies demonstrated otherwise (Barouch et al., 2003; Wang et al., 2010). This
signifies presence of other variable factors, which could modify the NOS1-derived
physiological responses, e.g., temperature modulated NOS1 behavior on EC coupling
(Dulce et al., 2015). Temperature has been known to modulate NO production by affecting
NOS activity (Venturini et al., 1999). Impairment in Ca2+ handling, such as Ca2+ leak,
contribute to impairment in contractibility by depleting Ca2+ storage in the SER. Xanthine
oxidase (XOR) and NOS1 have been shown to co-localize on the SER in proximity to
RyR2. NOS1-derived NO mediates the inhibitory effect on XOR and thus regulates RyR2,
and a decrease in NOS1 leads to a rise in the generation of superoxide anion (Khan et al.,
2004) and the dysregulation of RyR2-mediated Ca2+ release. In wild-type cardiomyocytes,
a reduction in temperature increased Ca2+ leak due to increased ROS generation
through XOR activity and NOS1 uncoupling, therefore decreasing the S-nitrosylation of
RyR2 and affecting the contractibility of myocardium. Every time NO collides with
superoxide anion, this event generates peroxynitrite, which induces more damage to RyR2
compared to ROS (Khan et al., 2004; Kohr et al., 2012). Mice that lack denitrosylation
machinery (GSNOR−/−) showed reversed cooling-induced ROS generation and calcium
leak. In a NOS1−/− mice model, higher temperature (>30 �C) increased Ca2+ leak and
elevated ROS (Dulce et al., 2015). Therefore, this observation indicated that the effect of
NOS1 on cellular activity cannot be studied by modulating the intrinsic parameters only,
as extrinsic factors could also be a major player.

Further complicating the picture, epigenetic modification in the NOS gene and in the
promoter/enhancer regions could also modulate disease states, because such modification
can alter gene expression, generation and bioavailability of NO in the cells and tissues
(Das, Ravikanth & Sujatha, 2010). Methylation of the NOS1 gene plays an essential role in
atherogenesis in children (Breton et al., 2014). The methylation pattern of 16 CpG loci
located within NOS1, NOS2A, NOS3, ARG1, and ARG2 genes was analysed in 377
children, with a history of carotid intima-media thickness (CIMT), and linear regression
was plotted with CIMTmeasurement. CIMT was found to increase by 1.2 mm for every 1%
increase in the average DNAmethylation of the NOS1 gene (p = 0.02) (Breton et al., 2014).
Methylation patterns on the non-CpG island and their correlation to CIMT were
addressed as well, in which the subject with high mean methylation on the non-CpG island
of the NOS1 gene had a 15.8 mm higher measurement of CIMT (p = 0.004). Although
extrapolation of this study’s findings on larger cohorts would clarify the correlation of
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CIMT with NOS1 methylation status, the findings on these subjects signify the importance
of epigenetic modification on NOS1 gene. In addition, the occurrence of single nucleotide
polymorphism (SNP) in NOS1 genome has been suggested to elevate the risk of
cardiovascular disease, for example, in coronary heart disease and in hypertension (Fiatal
& Adany, 2017). In a total of 3,351 individuals (560 cases of coronary heart disease (CHD)
and 2,791 controls in which 1,158 individuals were hypertensive) genotyped for 58 SNPs in
NOS genes, the presence of NOS1 SNP rs3782218 showed a positive correlation with
disease pathogenesis in both cases of CHD and hypertension, whereas another NOS1 SNP
(rs2682826) showed a positive correlation with CHD but not with hypertension (Levinsson
et al., 2014). Thus, early detection of these SNPs in individuals can serve as an effective
marker for the pathogenesis of CHD and hypertension, leading to early treatment. Sudden
cardiac death caused by abrupt decline of heart function within 1 h of the onset of these
symptoms (Sara et al., 2014). In this regard, coronary artery disease is likely the main
driver of sudden cardiac death, and most deaths harbor genetic variations (Chang et al.,
2013). For example, SNP in NOS1 adaptor protein (NOS1AP; also known as CAPON) was
linked with QT prolongation phenomena (delayed ventricular repolarization) in the
general population (Kao et al., 2009) and increased sudden death in patients with type 1
QT (Tomás et al., 2010). NOS1AP is expressed in the cardiac myocyte, which interacts with
NOS1 to suppress the sarcolemma L-type calcium channel (LTCC) via the S-nitrosylation,
thereby enhance Iκr current, accelerating cardiac repolarization (Treuer & Gonzalez,
2014). Analysis of SNP in NOS1AP could serve as an indicative marker for the estimation
of potential sudden cardiac death and for early treatment in patients. Nevertheless, genetic
experiments with mouse model mimicking human SNPs with the use of CRISPR/Cas9
technology, thereby introducing precise SNP variations analogous to human counterparts,
might be useful in determining the precise roles of SNPs in the above-described
cardiovascular diseases. SNPs that are found within the promoter/enhancer regions have
been hypothesized to increase or decrease or even create a new binding site for TFs,
thereby controlling RNA-polymerase activities to turn on the transcription of downstream
target genes. Careful genetic and biochemical studies are needed to address such
possibilities.

What is known about the roles of NOS1 and NO expression in Cancer?
The roles of NO in cancer, at best, represent crucially important unknowns. For example,
low levels (<100 nM) of NO are thought to enhance tumor progression and metastasis,
while high levels (>300 nM) of NO induce cell cycle arrest, senescence, and apoptosis
(Choudhari et al., 2013). All three NOS have the potential to either inhibit or promote
cancer growth by adjusting the level of NO. Accumulation of NOS1-derived NO in various
types of cancer cells seemingly plays a crucial role in tumor progression, however,
mechanistic details are far from understood (Hamaoka et al., 1999). NO can modify the
DNA damage and repair mechanisms in tumor by upregulating p53, poly(ADP-ribose)
polymerase (PARP), and DNA-dependent protein kinase (DNA-PK), thereby modulating
the cellular apoptosis (Weiming et al., 2002). In the following sections, we describe the
cellular mechanisms governed by NOS1 in the progression of a subset of tumors.
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Cervical cancer
Cervical cancer is the fourth most common form of cancer that occur in women
(Vaccarella et al., 2014). In these patients, the expression of adenosine triphosphate (ATP)-
binding cassette sub-family G member 2 (ABCG2) correlates strongly with anti-neoplastic
drug resistance and migratory/invasive cancer cell phenotypes (Robey et al., 2007).
Accordingly, the mRNA expression of NOS1 and ABCG2 were analyzed in 40 human
cervical cancer tissues and 20 control tissues (Ding et al., 2019). The expression levels of
NOS1 and ABCG2 mRNAs increased compared to the normal control group with a mean
difference of 2.63 and 2.02 times, respectively (p < 0.05), and therefore strongly correlate
(r-value, 1.246; p = 0.014). In an experiment, NOS1-depletion decreased ABCG2 protein
level, in contrast, ABCG2-depletion did not change the NOS1 protein level, indicating that
NOS1 is upstream of ABCG2 in cervical cancer cells. In their study, NOS1-depletion
significantly decreased the proliferation and increased the apoptosis of cervical cancer cells
(p < 0.05), suggesting pro-life roles of NOS1 in cervical cancer (Ding et al., 2019). In a
separate study, a positive correlation was reported between ABCG2 and NOS1 expression
in cisplatin-induced chemoresistance in ovarian cancer (Li et al., 2019). Thus, delineating
the signaling cascade involved in the regulation of ABCG2 by NOS1 would unravel clearer
mechanism into the specific role of NOS1 in cervical cancer cells, which could be an
effective target in the management of cervical cancer.

Melanoma
Perturbation of immune system is a hallmark of neoplastic transformation. For example,
type I interferon (IFN) dysfunction allows for immune escape and tumor metastasis.
In contrast, constitutive activation of IFN signaling affords increased immune surveillance
against cancer (Budhwani, Mazzieri & Dolcetti, 2018). STAT1 phosphorylation by IFNa
activates the intrinsic signaling cascade, which activates the expression of
interferon-stimulated genes (ISGs) (Critchley-Thorne et al., 2007). In melanoma as well as
colon and breast carcinoma, exposure to peripheral blood mononuclear cells (PBMC) with
IFN-a ex vivo, activated ISGs, reduced phosphorylation of STAT-1 and decreased immune
response, which was due to decreased expression of ISGs (Critchley-Thorne et al., 2007,
2009). Studies identifying the link between the genetics of cancer patients and its effect on
IFN signaling in PBMC can help in predicting the clinical outcome in the patient due to
modulation in immunosurveillance. Analysis of the transcription level of the genes in
different melanoma patients dictated that a decrease in IFN signaling in PBMC correlates
with amplification of NOS1 locus and its expression in melanoma cells (Liu et al., 2014).
The same research group further addressed the mechanism of action of NOS1 in the
suppression of IFN signaling in melanoma cells (Xu et al., 2019). Histone deacetylase 2
(HDAC2) plays a key role in the expression of ISGs at the transcriptional level, as HDAC2-
knockdown decreases the response to IFNa (Icardi, De Bosscher & Tavernier, 2012).
Accordingly, NOS1 mediated S-nitrosylation of HDAC2 at Cys-262 and -274 (Nott et al.,
2008). In a controlled experiment, HDAC2 deacetylated H4K16, thereby recruiting RNA
polymerase II to the promoter and lead to expression of ISGs in melanoma cells.
In this study, NOS1 decreased the IFNa response by S-nitrosylating HDAC2 at position
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Cys262/Cys274 (Nott et al., 2008). S-nitrosylation of HDAC2 by NOS1 decreased the
binding of HDAC2 to STAT1, thereby reduced HDAC2 recruitment to the promoter
of ISGs, subsequently decreased deacetylation of H4K16. A mutant form of HDAC2
(Cys262/Cys274) that cannot be nitrosylated, reversed NOS1-mediated ISG inhibition,
reduced NOS1-induced lung metastasis, and inhibited tumor-homing lymphocytes in a
mouse models of melanoma (Xu et al., 2019). Thus, NOS1 mediated repression of ISGs
through HDAC S-nitrosylation serves as a novel pathway in the progression of melanoma,
and studies identifying the targets of NOS1 would help in understanding the cellular
mechanism and in designing better immunotherapeutic strategies to target melanoma.

Non-small cell lung carcinoma (NSCLC)

The lung tumors such as NSCLC, lung adenocarcinoma, and lung squamous cell
carcinoma, together add up to 80% of the lung cancer incidences (Goldstraw et al., 2011). A
hallmark of tumor microenvironment is the accumulation of stromal fibroblasts, by
interacting with tumor cells, these cells can accelerate tumor growth and metastasis (Ji
et al., 2018; Quail & Joyce, 2013). Chemo-attractant cytokines, called the chemokines
control cellular behavior such as cell migration during organogenesis and immune
surveillance (Song et al., 2010). CXCL14 (C-X-C Motif Chemokine Ligand 14) is expressed
in various types of cancer and in stromal cells (Kleer et al., 2008; Schwarze et al., 2005;
Wente et al., 2008; Zeng et al., 2013). The specific role of CXCL14 is likely context
dependent, in that it can promote or regress depending upon which cell type expresses the
ligand. For instance, when expressed by the stromal fibroblasts, it showed a
tumor-promoting effect (Augsten et al., 2009), in contrast, it acted as an antitumor when
expressed by carcinoma cells (Gu et al., 2012). Immunohistochemical combined with
morphometric analyses were conducted to address the relevance of expression and
correlation of CXCL14 and NOS1 in Stage I–IIIA NSCLC patients. In their analyses,
CXCL14 was expressed by stromal fibroblasts as well as in cancer cells, while NOS1 was
seen only in cancer cells, but not in stromal fibroblast. However, NOS1 level in cancer cells
was strongly associated with CXCL14 level in stromal fibroblasts, showing a decrease in
progression-free survival (PFS) and overall survival (OS) (Ji et al., 2018). While CXCL14-
expressing fibroblasts promoted the growth of prostate tumors by NOS1 secretion; in
NCSLC, the expression of CXCL14 and NOS1 served as surrogate markers of cancer
progression (Augsten et al., 2014). Thus, more research is warranted to understand how
CXCL14 in stromal fibroblasts modulates the level of NOS1 expression in relation to
NSCLC disease states. In addition, it would be a rewarding endeavor to carry-out loss- and
gain-of-function experiments, thereby titrating down- or up- the levels of CXCL14 to
address how CXCL14 levels in stromal cells alters the fate of NSCLC. Indeed, if CXCL14 is
required for tumor growth and metastasis, CXCL14 neutralizing antibody could have
therapeutic use in the treatment of NSCLC.

Colon cancer
The N-terminus of the NOS1 protein harbors a PDZ (PSD-95/Dlg/ZO-1) domain, which
mediates its subcellular localization (Zhou & Zhu, 2009). In their study, NOS1 protein
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translocated to mitochondria through Hsp90, as geldanamycin (C-terminal inhibitor of
Hsp90) treatment inhibited mitochondrial localization. The mitochondria produced
reactive oxygen species (ROS) in response to cisplatin, which mediated apoptotic pathway
through the release of Cytochrome-c. Additionally, overexpression of mitochondrial
NOS1 (mNOS1) inhibited the formation of superoxide anions and the expression of
Cytochrome-c after cisplatin treatment. Thus, mNOS inhibits cisplatin-induced apoptosis
via mitochondrial ROS suppression (Wang et al., 2019). Superoxide dismutase 2 (SOD2)
helps in the removal of mitochondrial superoxide (Wang et al., 2018). Anticancer drugs
increase ROS production to a toxic level in cells, thus mediating tumor cell death
(Aggarwal et al., 2019). Sirtuin 3 (SIRT3) maintains mitochondrial ROS below toxic level,
thereby optimizing tumor cell survival and proliferative mechanism. Enhanced SIRT3
activity enhanced cancer cell resistance to radiation, as well as by chemotherapeutic drugs
(Liu et al., 2015). mNOS1 increased SIRT3 activity, thereby attenuating mitochondrial
superoxide- and cisplatin-induced apoptosis (Wang et al., 2019). Thus, Hsp90 induced
translocation of mNOS1 to the mitochondria, accordingly enhanced SIRT3 activity to
decrease cisplatin-induced ROS generation, suppressed intrinsic apoptosis pathway and
promoted tumor growth (Wang et al., 2019). Thus, NOS1 limits the magnitude of toxicity
of superoxide in mitochondria, thereby providing survival advantage. However,
sophisticated cellular and molecular experiments are needed to determine the roles of
NOS1 and NO signaling in colon cancer progression.

What is the role of NOS1 and NO signaling in diabetes?
Diabetes mellitus (DM) is a metabolic syndrome defined by chronic hyperglycemia
occurring owing to defects in insulin secretion or action mechanisms, or a combination
of both (American Diabetes, 2015). The magnitude and kinetics of hyperglycemia
can give rise to EC dysfunction and blood vessel complications. These complications
are, (a) microvascular: diabetic kidney disease, retinopathy, and neuropathy; and
(b) macrovascular: coronary artery disease, peripheral vascular disease, and stroke, that are
linked with morbidity and mortality events in diabetic patients (Assmann et al., 2016).
One of the underlying factors in vascular pathophysiology is NO, where hyperglycemia has
a major impact (Heltianu & Guja, 2011; Vareniuk et al., 2009; Yamagishi & Matsui, 2011).
Additionally, the incidences of DM have been linked with alterations in NO-mediated
vasomotor dysfunction (Komers et al., 2000a; Pieper, 1998). NO function has been shown
to regulate systemic and local hemodynamics (Dellamea et al., 2014; Khamaisi et al., 2006;
Komers et al., 2000a). NOS1-derived NO in MD cells and its role in the regulation of
glomerular hemodynamic and renal dysfunctions are of great interest to nephrologists;
accordingly, several studies reported NOS1-mediated NO in controlling the DM disease
states (Khamaisi et al., 2006; Komers et al., 2000a; Komers et al., 2000b; Komers et al., 2004;
Zhang et al., 2019). Diabetes nephropathy (DN) represents one of the main chronic
complications associated with T1DM and T2DMs, together represent the leading causes of
renal failure, defined by an increased glomerular filtration rate (GFR), perfusion, and renal
hypertrophy (Khamaisi et al., 2006; Zhang et al., 2019). Although the role of NOS1-derived
NO is not fully elucidated as it relates to pathogenesis of glomerular hyperfiltration in
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diabetes, a few studies have delineated its significance and the underlying biological
mechanism. A recent study reported a SGLT1 (Sodium-Glucose Cotransporter 1)-NOS1-
TGF signaling axis mediating acute hyperglycemia-associated glomerular hyperfiltration,
where NOS1 and SGLT1 may prove to be key therapeutic targets (Zhang et al., 2019). This
mechanism suggests that acute hyperglycemia-induced hyperfiltration increases luminal
glucose at MD, leading to an increase in the expression and activity of NOS1 via SGTL1,
thus blunting the tubuloglomerular feedback (TGF) response and promoting glomerular
hyperfiltration. The authors observed that in both mice and human renal cortices, high
glucose upregulated NOS1 level and increased phosphorylation of NOS1 at Ser1417.
Interestingly, MD-NOS1 knockout showed no defect in NO generation and effect upon
glucose addition to the MD perfusate, as well as no significant TGF response after glucose
addition to tubular perfusate. Eventually, acute hyperglycemia-induced elevation in GFR
was significantly attenuated, which suggests the key role of NOS1 in mediating
glucose-induced hyperfiltration (Zhang et al., 2019). As discussed above the NOS1-
mediated NO production is a major factor in the pathogenesis of renal hemodynamic
changes in the early course of diabetes and considered it as the major denominator in the
NO mechanisms in this pathology (Komers et al., 2000a, 2004, 2000b). In their previous
study, the inhibition of NOS1 by the administration of S-methyl-l-thiocitrulline (SMTC)
both in control and experimentally induced diabetic rats increased blood pressure, but not
in normal rats; additionally, diabetic rats showed elevated renal hemodynamic response,
suggesting diabetic rats are more sensitive to this inhibition (Komers et al., 2000a).
Subsequently, these authors reported that STZ-induced diabetic rats have increased the
number of NOS1-positive cells; and in these rats SMTC administration normalized the
elevated GFR in diabetic rats but had no effect on non-diabetic rats, defining the NOS1-
specific role in renal hemodynamics in diabetes (Komers et al., 2000b). Additionally, the
same group of authors published a separate study to analyze the nephroprotective role of
NOS1 and addressed the progression of renal injury in terms of proteinuria and
glomerular sclerosis in uninephrectomized diabetic and non-diabetic rats (Komers et al.,
2004). This time, the long-term impact of the NOS1-selective inhibitor SMTC was
assessed, revealing a modest effect where the renal injury was delayed in diabetic mice,
whereas no beneficial effects were observed in normal rats; rather, it increased
glomerulosclerosis. Further, SMTC-treated diabetic rats displayed a reduction in weight
gain (Komers et al., 2004). However, cyclooxygenase-2 (COX-2) expression and activity
increase in renal injury, and its action has been implicated in the pathophysiology of such
conditions, while NOS1 derived NO in MD is reported as one of the COX-2 activators
(Cheng et al., 2000; Wang et al., 2000). Thus, NOS1 inhibition can modulate COX-2
activity to provide therapeutic benefits in conditions such as proteinuria and
glomerulosclerosis. However, SMTC inhibition of NOS1 had no effect in COX-2 level in
the renal cortex, and this finding does not represent the COX-2 role in mediating the
beneficial effect via NOS1 inhibition in diabetic rats; nevertheless, the effect of the NOS1-
COX-2 axis during nephropathy cannot be excluded (Komers et al., 2004).

Excluding DN, the role of NOS1 has also been studied in diabetic cardiomyopathy
(DCM). DCM is characterized by cardiac muscle dysfunction and change in
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cardiomyocyte architecture, caused mostly due to altered glucose metabolism homeostasis,
characterized by cardiac muscle contractility dysfunction (González, Treuer & Novoa,
2016; Pappachan et al., 2013). As diabetes progresses, systolic dysfunction develops, the
cardiac muscle deteriorates, and the production of oxidative stress increases. An increase
in oxygen species is directly proportional to NOS uncoupling, which can be reversed for
NOS1, upon treatment with cofactor tetrahydrobiopterin (BH4) and sepiapterin, thereby
reconfiguring the production of superoxide rather than NO (Ansley & Wang, 2013;
González, Treuer & Novoa, 2016). T1DM predicts adverse cardiovascular events, e.g., the
incidence of heart failure is 2–3 fold higher in diabetic than in normal cohorts (Rosano,
Vitale & Seferovic, 2017). Reduction of myocyte and cardiac contractility is the hallmark of
DCM (Amour et al., 2007). Due to NOS1 activity in the regulation of RyR2 S-nitrosylation
(Wang et al., 2010), β-adrenergic in the heart, and preventing cardiac dysfunction (Ashley
et al., 2002), and the roles of NOS1-derived NO in DCM has been reported. Increased NO
concentration could develop EC-dysfunction and atherosclerotic complications in DM;
however, it may precipitate into insulin resistance. In one study, NOS1 knockout showed
insulin resistance, hypertension, and dyslipidemia (Duplain et al., 2001). The subsequent
hyperglycemia, hyperlipidemia, and insulin resistance, together, augmented oxidative
stress in the diabetic cardiac muscles. In diabetic vascular and cardiomyopathy, the
oxidation of NOS cofactor BH4 and dysfunctional activity of NOS are known. In a recent
study, an increase in cardiac muscle BH4 prevented and reversed left ventricular
remodeling and systolic dysfunction associated with diabetes, via a mechanism whereby
NOS1-derived NO mediated an increase in insulin-independent myocardial glucose
absorption and consumption (Carnicer et al., 2021).

Independent studies have reported that in DCM, NOS1-derived NO mediates the effect
of the β3-adrenoceptor (β3-AR) being involved in an altered positive ionotropic activity to
β-adrenoceptor agonist stimulation (Birenbaum et al., 2008; Moens et al., 2010; Niu et al.,
2012). NOS1 also exerts a crucial role in the mechanism of this disease by the β3-AR-
NOS1-RyR2 specific pathway. Inhibition of NOS1 leads to normalization of adverse
conditions. In cardiomyocytes, NOS1 is coupled to β3-AR/caveolin3 (Cav3) complex
present in the sarcolemma. NOS1 translocation from the sarcoplasmic reticulum (SR) to
Sarcolemma caveolae decreased the nitrosylation of RyR2 and activated to release
uncontrolled Ca2+ induced arrhythmias (Gonzalez et al., 2007). Regular exercise plus
insulin treatment has been regarded as an effective therapy for avoiding the complications
of type 1 diabetes (T1DM) (Gulve, 2008). Combined insulin treatment with exercise
training was studied on diabetic male Wistar rats for 8 weeks to deduce its effect on
baseline heart physiology and NOS1, β3-AR, and RyR2 signaling pathways. Experiments
were conducted in four diabetic rodent cohorts: (1) with no treatment, (2) with insulin
treatment, (3) trained with exercise, and (4) trained with exercise that received insulin.
The diabetic control group showed decreased basal systolic and diastolic cardiac function,
and RyR2 expression, with increased β3-AR and NOS1 expression. However, combined
treatment in Group 4 did not display normalized diastolic pressure but showed normalized
systolic pressure and induced increased RyR2 expression, and this effect was higher than in
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Group-2 and -3 rodents. Complete normalization of β3-AR and downregulation of NOS1
were observed in all three treatment cohorts (Lahaye et al., 2011).

Polymorphism in NOS1 in DM and the genetic variant of NOS1 have been reported.
For example, common variation in NOS1AP loci is associated with T2DM in African
American and Caucasian cohorts; specifically, the study found that variation in NOS1AP
rs12742393 was strongly linked with susceptibility to T2DM (Wang et al., 2014). Analyses
of 79 SNPs in a group of Shanghai Chinese subjects comprised of 1,691 diabetic and 1,720
normal individuals, an association between NOS1AP SNP rs12742393 and T2DM were
observed. Although this variant locus may not be a clinically relevant to T2DM incidence,
its effect cannot be neglected (Hu et al., 2010). Nevertheless, the roles of SNPs are far from
clear, therefore, novel techniques are needed to address the roles of SNPs, not only in
cardiovascular disease and diabetes, but also in many neglected diseases as well.

What is the role of NOS1 in obesity?
Obesity is a major health concern worldwide (Yazdi, Clee & Meyre, 2015) as risks for
hypertension, diabetes, metabolic syndrome, and stroke are increased in these patients
(Ma et al., 2012). Sedentary lifestyle and genetic variations are considered main drivers of
obesity (Yazdi, Clee & Meyre, 2015). In this regard, obesity is associated with an imbalance
of energy, where the consumption of calories is higher than those required by bodily
processes (Sansbury & Hill, 2014; Tseng, Cypess & Kahn, 2010). The homeostatic steady
state between energy consumption and expenditure is complicated, likely modulated by
several factors, however, understanding underlying mechanism of this metabolic disorder
and its key players is crucial. To this end, NO is likely to be a proximal cause of obesity
(Sansbury & Hill, 2014), as obese rodents and human cells reportedly have elevated levels
of BH2, an oxidized form of BH4. BH4 deficiency is a major factor in the EC damage and
dysfunction that occur during obesity, which uncouples the ability of NOS1 to superoxide
generation (Ding & Triggle, 2010; Sánchez et al., 2012; Sansbury & Hill, 2014).
The underlying facts of NOS1-derived NO in obesity are described as drivers of
hyperphagia, a phenomenon in which individuals desire to increase food intake (Sansbury
& Hill, 2014). Mice cohort receiving a high-fat diet had an increase in NOS1 in their aortas,
and the induction of NOS1 was demonstrated to be due to leptin stimulation (Benkhoff
et al., 2012; Sansbury & Hill, 2014). Interestingly, a study stated that leptin deficiency
decreases the expression of NOS1 and NO, with an increase in xanthine oxidoreductase
(XOR) activity and oxidative stress, thus mediating imbalance in nitroso-redox generation
and generating myocardium dysfunction in obesity. Mice lacking leptin (ob/ob) develop
cardiac hypertrophy, increased apoptosis of cardiac muscle cells, and decreased survival.
Nitrate and nitrite production were reduced in myocardium of ob/ob mice. Leptin
treatment restored NOS1 protein in ob/ob mice. The ratio of GSH/GSSG was decreased,
suggesting an increase in oxidative stress in ob/ob mice (Saraiva et al., 2007). In another
study, the production NOS1 increased, but decreased catalytic activity of NOS1 in
pancreatic beta-cell hyperactivity, in insulin-resistant rats and islets of obese human
individuals. Islets from Zucker fa/fa rats showed increased sensitivity to glucose, with
subsequent utilization and oxidation. These results in the hypersecretion of insulin due to
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the fatty acid esterification resulting from increased glucose responsiveness in beta cells
(Mezghenna et al., 2011). Therefore, these studies suggested that 50–70% of the variation in
body weight can be attributed to genetic variation. In a Korean population, three SNPs
(rs2293048, rs9658490, and rs4766843) were described in the NOS1 gene; two of which
(rs2293048 and rs9658490) showed close association with obesity. A total of six haplotypes
among the SNPs of NOS1 (CCG, CGA, TCA, TCG, TGG, and CCG, and TCG and TGG)
were associated with increased susceptibility to obesity (Park et al., 2016). Therefore, NOS1
in the regulation of obesity warrants more in-depth studies to reveal the significance of
NOS1-derived NO in relation to obese subjects.

What is NOS1 doing in other diseases?
In addition to the above-mentioned diseases, the role of NOS1-derived NO has also been
described in other pathologies, such as sepsis, achalasia, and infantile hypertrophic pyloric
stenosis. NO modulates leukocytes activities and the response of the immune system to
infection, sepsis, or septic shock (Baig et al., 2015; Duma et al., 2011). NOS1 also occurs in
the epithelium and microvasculature of the gastrointestinal tract (Takahashi, 2003), in the
myocytes of skeletal muscle (Baldelli et al., 2014), in the bronchial epithelium (Shan et al.,
2007), in mast cells and neutrophils (Yoshimura et al., 2012). During sterile peritonitis,
NOS1−/− mice displayed increased rolling of leukocytes and adhesion to the post-capillary
venule endothelium and its subsequent migration to the peritoneal cavity. Although
NOS1−/− mice displayed increased migration of leukocytes in chemical peritonitis and live
bacterial peritonitis, a genetic deficiency in NOS1 lead to increased mortality (Cui et al.,
2007), indicating its pro-life function.

In a mouse model sepsis, increased elaboration of proinflammatory cytokines TNF-a,
IL-1β, IL-12, and IL-17 were reported (Schulte, Bernhagen & Bucala, 2013). NO plays a
pivotal role during sepsis, exemplified by hypotension (low blood pressure) or
hypo-responsiveness (decrease in the response to vasoconstrictors) (Levy et al., 2012).
NOS1 and soluble guanylate cyclase are expressed at high levels in vascular tissue during
sepsis, and the blockade of NOS1 inhibits cGMP production, indicating a physical
interaction between the two. Pharmacological blockade of NOS1 by 7-nitroindazole (7-NI)
or S-methyl-L-thiocitrulline (SMTC) decreased hypo-responsiveness and increased
vasoconstriction in a mouse model. Thus, inhibiting NOS1 may help to increase the effect
of vasopressors during the late sepsis (Nardi et al., 2014). In contrast, NOS1-derived NO
regulated downstream signaling and cytokine expression in macrophages (Baig et al.,
2015). This investigation suggested that NOS1-derived NO plays an early role and targets
the SOCS1 protein, leading to its degradation. SOCS1 is mainly responsible for the
proteasomal degradation of the TIRAP protein, which eventually disrupts TLR-mediated
inflammatory signaling and inactivate TF NF-κB. However, the inhibition of SOCS1 by
NOS1-derived NO activated NF-κB mediated elaboration of pro-inflammatory cytokines
(Baig et al., 2015; Rajpoot et al., 2021). Therefore, it is conceivable that the complete
ablation of NOS1 could alter signaling pathways at several cellular and molecular levels in
the tissue microenvironment.
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Achalasia is a rare disorder, wherein a patient experience trouble passing food or liquid
from the esophagus into the stomach. Reduced peristaltic action of the esophagus emerges
as smooth muscles fail to relax, thereby causing the lower esophageal sphincter to remain
closed, inhibiting the passage of food (Pandolfino & Gawron, 2015). NO activity can delay
the contraction of the distal esophagus and relaxing the lower esophageal sphincter to
allow peristaltic action (Ghoshal, Daschakraborty & Singh, 2012). A study of the genetic
polymorphism of NOS correlated with the presence of nNOS29 C/T with achalasia (Singh
et al., 2015). NOS1 C/T allelic variant in exon 29 that resides in the untranslated region of
the gene likely alters the NOS1 mRNA stability (Levecque et al., 2003). Thus, the loss of
NOS1 predicts poor prognosis of achalasia. Analysis of two siblings with infant-onset
achalasia displayed bilateral premature stop codon in the NOS1 gene, which resulted in
defects in folding, cofactor binding, and NO production, suggesting the importance of
NOS1-derived NO in the prevention of achalasia (Shteyer et al., 2015). Nevertheless,
additional studies in aged populations should provide a clearer insight into its role in
achalasia.

Infantile hypertrophic pyloric stenosis (IHPS) results from hypertrophy (increase in cell
size) of the pyloric muscle and is the most common disease of the gastrointestinal tract in
infants (Galea & Said, 2018). NOS1 is the main source of NO in the gut (Saur et al., 2000)
and plays a major role as a neurotransmitter in the gastrointestinal tract, causing relaxation
of smooth muscle of the tract (Takahashi, 2003). Genetic disequilibrium of the NOS1
variant locus has been found to pose a susceptibility to IHPS (Chung et al., 1996). Genetic
analysis of the NOS1 gene conducted in IHPS patients revealed two different mutations,
(a) one between the 21st and 22nd exomes, which affected splicing, and (b) another at the 3′
untranslated region, which affects the binding of TFs. The first variant decreased the
mRNA expression of NOS1 in IHPS patients (Jabło�nski et al., 2016). However, there are
contrasting results for NOS1 polymorphisms in IHPS patients. Genetic analysis of the
NOS1 gene in IHPS patients found 19 polymorphisms in the NOS1 coding region but
found no statistically significant correlation with IHPS (Serra et al., 2011). SNP at −84 G/A
on the promoter of NOS1 exon 1c (rs41279104) has been correlated with an increased
risk for the development of IHPS, with a 30% decrease in NOS1 expression in 16 IHPS
patients (Saur et al., 2004), although no such correlation was found in 54 familial and 28
sporadic cases of IHPS (Lagerstedt-Robinson, Svenningsson & Nordenskjöld, 2009),
suggesting that the expression of NOS1 in IHPS is regulated by different factors other than
SNPs. The −84 G/A polymorphism of NOS1 with IHPS was correlated in Caucasian
subjects but was not found in the Chinese population, suggesting that genetic
heterogeneity in different populations also plays a crucial role (Miao et al., 2010).
Differences across population subjects in allelic frequency and linkage disequilibrium also
allow for contrasting results. Analyses of DNAs obtained from three Swedish families
with multiple affected members did not correlate with NOS1 locus (Söderhäll &
Nordenskjöld, 1998); however, a study of 37 Swedish vs 31 British families with IHPS
suggested positive correlation (Svenningsson et al., 2012). The major limitation of all
studies was the limited number of subjects used. Study on larger samples with individuals
from different races might help rule out the possibility of genetic heterogeneity due to
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different populations and direct us in analyzing the other factors responsible for NOS1
expression in IHPS. As discussed above, the mechanisms by which SNPs regulate gene
expression constitute a large gap. To address this crucial gap, new technologies are
required to fully elucidate the exact roles of SNPs in normal and disease settings.

CONCLUSION AND PERSPECTIVES
At the basal state, the NOS1 is the sole producer of NO in the brain, and involved in
learning and memory development, and modulating synaptic plasticity. As NOS1 can be
detected in non-neuronal tissues and organs including in cardiovascular disease, cancer,
diabetes, and obesity (Fig. 3); therefore, we attempted to provide an overview of the roles of
NOS1 in several pathologies to understand the importance of this molecule in different
tissue and organ systems. The biological roles of NO in higher organism relies on its
basal-state bioavailability and its temporo-spatial concentration. The organ- and cell
type-specific NO production can also add to the complexity in signaling activities.
Additionally, organelle specific localization or mis-localization could produce signaling
cross-talks and unexpected phenotypes. However, the real workings of NOS1 mediated
NO-modified proteins and how they transmit and modulate signaling mechanisms remain
unknown.

Although found in a subset of tumors, NOS1 is not an oncogene or a tumor suppressor
gene; in other words, NOS1 inhibition or activation in tumor cells may not inhibit the
tumor cell proliferation. Conversely, whether the overexpression of NOS1 could transform

Figure 3 Inflammatory and anti-inflammatory activities of NOS1-derived NO in indicated diseases.
NOS1-mediated production of NO acts as an inflammatory molecule and mediates the progression of
disease such as macrophage NOS1-driven atherosclerosis, and in a subset of cancer, obesity and diabetes;
while it acts as a protector in conditions such as endothelial NOS1-driven atherosclerosis, infantile
hypertrophic pyloric stenosis (IHPS), sepsis and achalasia. Full-size DOI: 10.7717/peerj.13651/fig-3
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NIH-3T3 fibroblast cells or the knockdown of NOS1 in tumor cells induce apoptosis,
remain unknown. Thus, the precise role of NOS1 in tumor progression is not completely
understood. Nevertheless, altered expression or misexpression of NOS1 and NO
production thereby signaling cross-talks are likely to define pathophysiological states.
Cell-specific NOS1 gene knockouts studies are expected to clarify its exact function.
Additionally, the use of small molecule agonist or antagonist for NOS1 and NO in
combination with other tools that mediate downstream effect on e.g., NF-ƙB constitute a
potential application for NOS1 mediated interventions in the complications associated
with NO produced by NOS1.

Thus, the expression of NOS1 outside the brain in regulating many pathological states
can no longer be neglected (Table S1). Therefore, sophisticated experiments delineating
the signaling pathways and molecules regulated by NOS1-derived NO in non-neuronal
tissues are needed. As the personalized medicine becomes more clinically relevant in
combating certain ailments, elucidation of the complexity of NO signaling pathway will
remain a topic of basic research. We feel that continued research on NOS1 in various
pathophysiological situations will synthesize new knowledge as well as to identify
therapeutic targets. State of the art techniques including bioelectronics to generate NO in
vivo, assay for transposase-accessible chromatin with sequencing (ATAC-Seq), single-cell
RNA-seq and biochemical methods combined with computational approaches will be
required to address this problem more effectively.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The Indian Institute of Technology Indore (IITI) and The Ministry of Education (MoE)-
Cumulative Professional Development Allowance (CPDA) provided funding for Mirza
S. Baig. Cassondra Axen was supported by NIH/NHLBI-T32 HL144459 and by the
American Heart Association grant GRNT33700162 and TPA34910205 to Kishore Wary.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Indian Institute of Technology Indore (IITI).
Ministry of Education (MoE)-Cumulative Professional Development Allowance (CPDA).
NIH/NHLBI-T32 HL144459.
American Heart Associatio: GRNT33700162 and TPA34910205.

Competing Interests
The authors declare that they have no competing interests.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 19/31

http://dx.doi.org/10.7717/peerj.13651/supp-1
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Author Contributions
� Kundan Solanki conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Sajjan Rajpoot conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

� Evgeny E. Bezsonov conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Alexander N. Orekhov conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Rohit Saluja conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

� Anita Wary conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

� Cassondra Axen conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

� Kishore Wary conceived, designed and supervised the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

� Mirza S. Baig conceived, designed and supervised the experiments, analyzed the data,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13651#supplemental-information.

REFERENCES
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, KhanMA, Sethi G.

2019. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent
advancements. Biomolecules 9(11):735 DOI 10.3390/biom9110735.

American Diabetes A. 2015. (2) Classification and diagnosis of diabetes. Diabetes Care
38(Suppl):S8–S16 DOI 10.2337/dc15-S005.

Amour J, Loyer X, Le Guen M, Mabrouk N, David JS, Camors E, Carusio N, Vivien B,
Andriantsitohaina R, Heymes C, Riou B. 2007. Altered contractile response due to increased
beta3-adrenoceptor stimulation in diabetic cardiomyopathy: the role of nitric oxide synthase 1-
derived nitric oxide. Anesthesiology 107(3):452–460 DOI 10.1097/01.anes.0000278909.40408.24.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 20/31

http://dx.doi.org/10.7717/peerj.13651#supplemental-information
http://dx.doi.org/10.7717/peerj.13651#supplemental-information
http://dx.doi.org/10.3390/biom9110735
http://dx.doi.org/10.2337/dc15-S005
http://dx.doi.org/10.1097/01.anes.0000278909.40408.24
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Ansley DM, Wang B. 2013. Oxidative stress and myocardial injury in the diabetic heart. Journal of
Pathology 229(2):232–241 DOI 10.1002/path.4113.

Ashley EA, Sears CE, Bryant SM, Watkins HC, Casadei B. 2002. Cardiac nitric oxide synthase 1
regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation
105(25):3011–3016 DOI 10.1161/01.CIR.0000019516.31040.2D.

Assmann TS, Brondani LA, Boucas AP, Rheinheimer J, de Souza BM, Canani LH, Bauer AC,
Crispim D. 2016. Nitric oxide levels in patients with diabetes mellitus: a systematic review and
meta-analysis. Nitric Oxide 61(S8–S16):1–9 DOI 10.1016/j.niox.2016.09.009.

Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A,
Micke P, Egevad L, Ostman A. 2009. CXCL14 is an autocrine growth factor for fibroblasts and
acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy
of Sciences of the United States of America 106(9):3414–3419 DOI 10.1073/pnas.0813144106.

Augsten M, Sjoberg E, Frings O, Vorrink SU, Frijhoff J, Olsson E, Borg A, Ostman A. 2014.
Cancer-associated fibroblasts expressing CXCL14 rely upon NOS1-derived nitric oxide signaling
for their tumor-supporting properties. Cancer Research 74(11):2999–3010
DOI 10.1158/0008-5472.CAN-13-2740.

Baig MS, Zaichick SV, Mao M, de Abreu AL, Bakhshi FR, Hart PC, Saqib U, Deng J,
Chatterjee S, Block ML, Vogel SM, Malik AB, Consolaro ME, Christman JW, Minshall RD,
Gantner BN, Bonini MG. 2015. NOS1-derived nitric oxide promotes NF-kappaB
transcriptional activity through inhibition of suppressor of cytokine signaling-1. Journal of
Experimental Medicine 212(10):1725–1738 DOI 10.1084/jem.20140654.

Baldelli S, Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. 2014. The role of nNOS and
PGC-1alpha in skeletal muscle cells. Journal of Cell Science 127:4813–4820
DOI 10.1242/jcs.154229.

Barouch LA, Cappola TP, Harrison RW, Crone JK, Rodriguez ER, Burnett AL, Hare JM. 2003.
Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and
age-related hypertrophic cardiac remodeling in mice. Journal of Molecular and Cellular
Cardiology 35(6):637–644 DOI 10.1016/S0022-2828(03)00079-8.

Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, Fleming I, Shimokawa H, Grisk O,
Brandes RP, Schroder K. 2012. Leptin potentiates endothelium-dependent relaxation by
inducing endothelial expression of neuronal NO synthase. Arteriosclerosis, Thrombosis, and
Vascular Biology 32(7):1605–1612 DOI 10.1161/ATVBAHA.112.251140.

Birenbaum A, Tesse A, Loyer X, Michelet P, Andriantsitohaina R, Heymes C, Riou B, Amour J.
2008. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent
heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology 109(6):1045–1053
DOI 10.1097/ALN.0b013e31818d7e5a.

Brenman JE, Xia H, Chao DS, Black SM, Bredt DS. 1997. Regulation of neuronal nitric oxide
synthase through alternative transcripts. Developmental Neuroscience 19(3):224–231
DOI 10.1159/000111211.

Breton CV, Park C, Siegmund K, Gauderman WJ, Whitfield-Maxwell L, Hodis HN, Avol E,
Gilliland FD. 2014. NOS1 methylation and carotid artery intima-media thickness in children.
Circulation: Cardiovascular Genetics 7(2):116–122 DOI 10.1161/CIRCGENETICS.113.000320.

Brutsaert DL. 2003. The indispensable role of cardiac endothelium in the structure and function of
the heart. Verhandelingen-Koninklijke Academie voor Geneeskunde van Belgie 65(2):75–116.

Budhwani M, Mazzieri R, Dolcetti R. 2018. Plasticity of type I interferon-mediated responses in
cancer therapy: from anti-tumor immunity to resistance. Frontiers in Oncology 8:322
DOI 10.3389/fonc.2018.00322.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 21/31

http://dx.doi.org/10.1002/path.4113
http://dx.doi.org/10.1161/01.CIR.0000019516.31040.2D
http://dx.doi.org/10.1016/j.niox.2016.09.009
http://dx.doi.org/10.1073/pnas.0813144106
http://dx.doi.org/10.1158/0008-5472.CAN-13-2740
http://dx.doi.org/10.1084/jem.20140654
http://dx.doi.org/10.1242/jcs.154229
http://dx.doi.org/10.1016/S0022-2828(03)00079-8
http://dx.doi.org/10.1161/ATVBAHA.112.251140
http://dx.doi.org/10.1097/ALN.0b013e31818d7e5a
http://dx.doi.org/10.1159/000111211
http://dx.doi.org/10.1161/CIRCGENETICS.113.000320
http://dx.doi.org/10.3389/fonc.2018.00322
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Burger DE, Lu X, Lei M, Xiang F-L, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM,
Feng Q. 2009. Neuronal nitric oxide synthase protects against myocardial infarction-induced
ventricular arrhythmia and mortality in mice. Circulation 120(14):1345–1354
DOI 10.1161/CIRCULATIONAHA.108.846402.

Capettini LS, Cortes SF, Silva JF, Alvarez-Leite JI, Lemos VS. 2011. Decreased production of
neuronal NOS-derived hydrogen peroxide contributes to endothelial dysfunction in
atherosclerosis. British Journal of Pharmacology 164(6):1738–1748
DOI 10.1111/j.1476-5381.2011.01500.x.

Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. 2013. Nitric oxide synthases in
heart failure. Antioxidants & Redox Signaling 18(9):1078–1099 DOI 10.1089/ars.2012.4824.

Carnicer R, Duglan D, Ziberna K, Recalde A, Reilly S, Simon JN, Mafrici S, Arya R,
Rosello-Lleti E, Chuaiphichai S, Tyler D, Lygate CA, Channon KM, Casadei B. 2021. BH4
Increases nNOS activity and preserves left ventricular function in diabetes. Circulation Research
128(5):585–601 DOI 10.1161/CIRCRESAHA.120.316656.

Chakrabarti S, Chan CK, Jiang Y, Davidge ST. 2012. Neuronal nitric oxide synthase regulates
endothelial inflammation. Journal of Leukocyte Biology 91(6):947–956 DOI 10.1189/jlb.1011513.

Chang KC, Sasano T, Wang YC, Huang SK. 2013. Nitric oxide synthase 1 adaptor protein, an
emerging new genetic marker for QT prolongation and sudden cardiac death. Acta Cardiologica
Sinica 29:217–225.

Cheng HF, Wang JL, Zhang MZ, McKanna JA, Harris RC. 2000. Nitric oxide regulates renal
cortical cyclooxygenase-2 expression. American Journal of Physiology-Renal Physiology
279(1):F122–F129 DOI 10.1152/ajprenal.2000.279.1.F122.

Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. 2013. Nitric oxide and cancer: a
review. World Journal of Surgical Oncology 11(1):1–11 DOI 10.1186/1477-7819-11-118.

Chung E, Curtis D, Chen G, Marsden PA, Twells R, Xu W, Gardiner M. 1996. Genetic evidence
for the neuronal nitric oxide synthase gene (NOS1) as a susceptibility locus for infantile pyloric
stenosis. American Journal of Human Genetics 58:363–370.

Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL, Swetter SM,
Carlson RW, Fisher GA, Koong A. 2009. Impaired interferon signaling is a common immune
defect in human cancer. Proceedings of the National Academy of Sciences of the United States of
America 106(22):9010–9015 DOI 10.1073/pnas.0901329106.

Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, Lee PP. 2007. Down-regulation of the
interferon signaling pathway in T lymphocytes from patients with metastatic melanoma. PLOS
Medicine 4(5):e176 DOI 10.1371/journal.pmed.0040176.

Cui X, Besch V, Khaibullina A, Hergen A, Quezado M, Eichacker P, Quezado ZM. 2007.
Neuronal nitric oxide synthase deficiency decreases survival in bacterial peritonitis and sepsis.
Intensive Care Medicine 33(11):1993–2003 DOI 10.1007/s00134-007-0814-9.

Das JS, Ravikanth VV, Sujatha M. 2010. Nitric oxide as a major risk factor for oxidative stress in
coronary artery disease: a preliminary investigation. Science and Culture 76:174–175.

Dawson D, Lygate CA, Zhang M-H, Hulbert K, Neubauer S, Casadei B. 2005. nNOS gene
deletion exacerbates pathological left ventricular remodeling and functional deterioration after
myocardial infarction. Circulation 112(24):3729–3737
DOI 10.1161/CIRCULATIONAHA.105.539437.

Dellamea BS, Leitao CB, Friedman R, Canani LH. 2014. Nitric oxide system and diabetic
nephropathy. Diabetology & Metabolic Syndrome 6(1):17 DOI 10.1186/1758-5996-6-17.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 22/31

http://dx.doi.org/10.1161/CIRCULATIONAHA.108.846402
http://dx.doi.org/10.1111/j.1476-5381.2011.01500.x
http://dx.doi.org/10.1089/ars.2012.4824
http://dx.doi.org/10.1161/CIRCRESAHA.120.316656
http://dx.doi.org/10.1189/jlb.1011513
http://dx.doi.org/10.1152/ajprenal.2000.279.1.F122
http://dx.doi.org/10.1186/1477-7819-11-118
http://dx.doi.org/10.1073/pnas.0901329106
http://dx.doi.org/10.1371/journal.pmed.0040176
http://dx.doi.org/10.1007/s00134-007-0814-9
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.539437
http://dx.doi.org/10.1186/1758-5996-6-17
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Ding H, Triggle CR. 2010. Endothelial dysfunction in diabetes: multiple targets for treatment.
Pflügers Archiv-European Journal of Physiology 459(6):977–994
DOI 10.1007/s00424-010-0807-3.

Ding M, Zhang H, Liu L, Liang R. 2019. Effect of NOS1 regulating ABCG2 expression on
proliferation and apoptosis of cervical cancer cells. Oncology Letters 17:1531–1536
DOI 10.3892/ol.2018.9786.

Dulce RA, Mayo V, Rangel EB, Balkan W, Hare JM. 2015. Interaction between neuronal nitric
oxide synthase signaling and temperature influences sarcoplasmic reticulum calcium leak: role
of nitroso-redox balance. Circulation Research 116(1):46–55
DOI 10.1161/CIRCRESAHA.116.305172.

Duma D, Fernandes D, Bonini MG, Stadler K, Mason RP, Assreuy J. 2011.NOS-1-derived NO is
an essential triggering signal for the development of systemic inflammatory responses. European
Journal of Pharmacology 668(1–2):285–292 DOI 10.1016/j.ejphar.2011.05.065.

Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, Vollenweider P, Pedrazzini T,
Nicod P, Thorens B. 2001. Insulin resistance, hyperlipidemia, and hypertension in mice lacking
endothelial nitric oxide synthase. Circulation 104(3):342–345 DOI 10.1161/01.CIR.104.3.342.

Esplugues JV. 2002. NO as a signalling molecule in the nervous system. British Journal of
Pharmacology 135(5):1079–1095 DOI 10.1038/sj.bjp.0704569.

Ferdinandy P, Schulz R. 2003. Nitric oxide, superoxide, and peroxynitrite in myocardial
ischaemia-reperfusion injury and preconditioning. British Journal of Pharmacology
138(4):532–543 DOI 10.1038/sj.bjp.0705080.

Fiatal S, Adany R. 2017. Application of single-nucleotide polymorphism-related risk estimates in
identification of increased genetic susceptibility to cardiovascular diseases: a literature review.
Frontiers in Public Health 5:358 DOI 10.3389/fpubh.2017.00358.

Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H. 1994. Nitric
oxide synthase isozymes. Characterization, purification, molecular cloning, and functions.
Hypertension 23(6_pt_2):1121–1131 DOI 10.1161/01.HYP.23.6.1121.

Forstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. European Heart
Journal 33(7):829–837 DOI 10.1093/eurheartj/ehr304.

Frost RA, Nystrom GJ, Lang CH. 2004. Lipopolysaccharide stimulates nitric oxide synthase-2
expression in murine skeletal muscle and C(2)C(12) myoblasts via Toll-like receptor-4 and c-Jun
NH(2)-terminal kinase pathways. American Journal of Physiology-Cell Physiology
287(6):C1605–C1615 DOI 10.1152/ajpcell.00010.2004.

Galea R, Said E. 2018. Infantile hypertrophic pyloric stenosis: an epidemiological review. Neonatal
Network 37(4):197–204 DOI 10.1891/0730-0832.37.4.197.

Ghoshal UC, Daschakraborty SB, Singh R. 2012. Pathogenesis of achalasia cardia. World Journal
of Gastroenterology 18(24):3050–3057 DOI 10.3748/wjg.v18.i24.3050.

Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, Shepherd FA. 2011. Non-
small-cell lung cancer. The Lancet 378(9804):1727–1740 DOI 10.1016/S0140-6736(10)62101-0.

Gonzalez DR, Beigi F, Treuer AV, Hare JM. 2007. Deficient ryanodine receptor S-nitrosylation
increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes.
Proceedings of the National Academy of Sciences of the United States of America
104(51):20612–20617 DOI 10.1073/pnas.0706796104.

González DR, Treuer AV, Novoa U. 2016. Nitroso-redox crosstalk in diabetic cardiomyopathy.
In: Ahmad R, ed. Free Radicals and Diseases. Janeza Trdine 9, Rijeka, Croatia, 179–200
DOI 10.5772/61358.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 23/31

http://dx.doi.org/10.1007/s00424-010-0807-3
http://dx.doi.org/10.3892/ol.2018.9786
http://dx.doi.org/10.1161/CIRCRESAHA.116.305172
http://dx.doi.org/10.1016/j.ejphar.2011.05.065
http://dx.doi.org/10.1161/01.CIR.104.3.342
http://dx.doi.org/10.1038/sj.bjp.0704569
http://dx.doi.org/10.1038/sj.bjp.0705080
http://dx.doi.org/10.3389/fpubh.2017.00358
http://dx.doi.org/10.1161/01.HYP.23.6.1121
http://dx.doi.org/10.1093/eurheartj/ehr304
http://dx.doi.org/10.1152/ajpcell.00010.2004
http://dx.doi.org/10.1891/0730-0832.37.4.197
http://dx.doi.org/10.3748/wjg.v18.i24.3050
http://dx.doi.org/10.1016/S0140-6736(10)62101-0
http://dx.doi.org/10.1073/pnas.0706796104
http://dx.doi.org/10.5772/61358
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Gu X-L, Ou Z-L, Lin F-J, Yang X-L, Luo J-M, Shen Z-Z, Shao Z-M. 2012. Expression of CXCL14
and its anticancer role in breast cancer. Breast Cancer Research and Treatment 135(3):725–735
DOI 10.1007/s10549-012-2206-2.

Gulve EA. 2008. Exercise and glycemic control in diabetes: benefits, challenges, and adjustments to
pharmacotherapy. Physical Therapy 88(11):1297–1321 DOI 10.2522/ptj.20080114.

Hall AV, Antoniou H, Wang Y, Cheung AH, Arbus AM, Olson SL, Lu WC, Kau C-L,
Marsden PA. 1994. Structural organization of the human neuronal nitric oxide synthase gene
(NOS1). Journal of Biological Chemistry 269(52):33082–33090
DOI 10.1016/S0021-9258(20)30099-5.

Hamaoka R, Yaginuma Y, Takahashi T, Fujii J, Koizumi M, Seo HG, Hatanaka Y,
Hashizume K, Ii K, Miyagawa J, Hanafusa T, Matsuzawa Y, Ishikawa M, Taniguchi N. 1999.
Different expression patterns of nitric oxide synthase isozymes in various gynecological cancers.
Journal of Cancer Research and Clinical Oncology 125(6):321–326 DOI 10.1007/s004320050281.

Heltianu C, Guja C. 2011. Role of nitric oxide synthase family in diabetic neuropathy. Journal of
Diabetes & Metabolism 1(S5):1–7 DOI 10.4172/2155-6156.S5-002.

Hu C, Wang C, Zhang R, Ng MC, Bao Y, Wang C, So WY, Ma RC, Ma X, Chan JC, Xiang K,
Jia W. 2010. Association of genetic variants of NOS1AP with type 2 diabetes in a Chinese
population. Diabetologia 53(2):290–298 DOI 10.1007/s00125-009-1594-2.

Icardi L, De Bosscher K, Tavernier J. 2012. The HAT/HDAC interplay: multilevel control of
STAT signaling. Cytokine & Growth Factor Reviews 23(6):283–291
DOI 10.1016/j.cytogfr.2012.08.002.

Ischiropoulos H, Zhu L, Beckman JS. 1992. Peroxynitrite formation from macrophage-derived
nitric oxide. Archives of Biochemistry and Biophysics 298(2):446–451
DOI 10.1016/0003-9861(92)90433-W.

Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin Ali A. 2015. Pathophysiological role of
peroxynitrite induced DNA damage in human diseases: a special focus on poly(ADP-ribose)
polymerase (PARP). Indian Journal of Clinical Biochemistry 30(4):368–385
DOI 10.1007/s12291-014-0475-8.

Jabło�nski J, Drozdz I, Borowiec M, Fendler W, Młynarski W, Lewandowska M,
Andrzejewska E. 2016.Mutations of NOS1 and MLN regulatory sequences are a potential cause
of infantile hypertrophic pyloric stenosis. Archives of Medical Science-Civilization Diseases
1:79–80 DOI 10.5114/amscd.2016.62218.

Jensen FB. 2009. The role of nitrite in nitric oxide homeostasis: a comparative perspective.
Biochimica et Biophysica Acta (BBA)-Bioenergetics 1787(7):841–848
DOI 10.1016/j.bbabio.2009.02.010.

Ji X, Shen Z, Zhao B, Yuan X, Zhu X. 2018. CXCL14 and NOS1 expression in specimens from
patients with stage I-IIIA nonsmall cell lung cancer after curative resection. Medicine
97(10):e0101 DOI 10.1097/MD.0000000000010101.

Kao WHL, Arking DE, Post W, Rea TD, Sotoodehnia N, Prineas RJ, Bishe B, Doan BQ,
Boerwinkle E, Psaty BM. 2009. Genetic variations in nitric oxide synthase 1 adaptor protein are
associated with sudden cardiac death in US white community-based populations. Circulation
119(7):940–951 DOI 10.1161/CIRCULATIONAHA.108.791723.

Khamaisi M, Keynan S, Bursztyn M, Dahan R, Reinhartz E, Ovadia H, Raz I. 2006. Role of renal
nitric oxide synthase in diabetic kidney disease during the chronic phase of diabetes. Nephron
Physiology 102(3–4):p72–p80 DOI 10.1159/000089946.

Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM.
2004. Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 24/31

http://dx.doi.org/10.1007/s10549-012-2206-2
http://dx.doi.org/10.2522/ptj.20080114
http://dx.doi.org/10.1016/S0021-9258(20)30099-5
http://dx.doi.org/10.1007/s004320050281
http://dx.doi.org/10.4172/2155-6156.S5-002
http://dx.doi.org/10.1007/s00125-009-1594-2
http://dx.doi.org/10.1016/j.cytogfr.2012.08.002
http://dx.doi.org/10.1016/0003-9861(92)90433-W
http://dx.doi.org/10.1007/s12291-014-0475-8
http://dx.doi.org/10.5114/amscd.2016.62218
http://dx.doi.org/10.1016/j.bbabio.2009.02.010
http://dx.doi.org/10.1097/MD.0000000000010101
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.791723
http://dx.doi.org/10.1159/000089946
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


cardiac excitation-contraction coupling. Proceedings of the National Academy of Sciences of the
United States of America 101(45):15944–15948 DOI 10.1073/pnas.0404136101.

Kim S-J, Ha M-S, Choi E-Y, Choi J-I, Choi I-S. 2005. Nitric oxide production and inducible nitric
oxide synthase expression induced by Prevotella nigrescens lipopolysaccharide. FEMS
Immunology & Medical Microbiology 43(1):51–58 DOI 10.1016/j.femsim.2004.07.001.

Kleer CG, Bloushtain-Qimron N, Chen Y-H, Carrasco D, Hu M, Yao J, Kraeft S-K, Collins LC,
Sabel MS, Argani P. 2008. Epithelial and stromal cathepsin K and CXCL14 expression in breast
tumor progression. Clinical Cancer Research 14(17):5357–5367
DOI 10.1158/1078-0432.CCR-08-0732.

Kobayashi J, Uchida H, Kofuji A, Ito J, Shimizu M, Kim H, Sekiguchi Y, Kushibe S. 2019.
Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: a review.
FASEB BioAdvances 1(6):364–374 DOI 10.1096/fba.2018-00080.

Kohr M, Roof S, Zweier J, Ziolo MT. 2012. Modulation of myocardial contraction by
peroxynitrite. Frontiers in Physiology 3:468 DOI 10.3389/fphys.2012.00468.

Komers R, Lindsley JN, Oyama TT, Allison KM, Anderson S. 2000a. Role of neuronal nitric
oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes.
American Journal of Physiology-Renal Physiology 279(3):F573–F583
DOI 10.1152/ajprenal.2000.279.3.F573.

Komers R, Lindsley JN, Oyama TT, Anderson S. 2004. Effects of long-term inhibition of neuronal
nitric oxide synthase (NOS1) in uninephrectomized diabetic rats. Nitric Oxide 11(2):147–155
DOI 10.1016/j.niox.2004.08.005.

Komers R, Oyama TT, Chapman JG, Allison KM, Anderson S. 2000b. Effects of systemic
inhibition of neuronal nitric oxide synthase in diabetic rats. Hypertension 35(2):655–661
DOI 10.1161/01.HYP.35.2.655.

Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH,
Huang PL. 2001. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart
disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation
104(4):448–454 DOI 10.1161/hc2901.091399.

Kuhlencordt PJ, Hötten S, Schödel J, Rützel S, Hu K, Widder J, Marx A, Huang PL, Ertl G.
2006. Atheroprotective effects of neuronal nitric oxide synthase in apolipoprotein e knockout
mice. Arteriosclerosis, Thrombosis, and Vascular Biology 26(7):1539–1544
DOI 10.1161/01.ATV.0000223143.88128.19.

Lagerstedt-Robinson K, Svenningsson A, Nordenskjöld A. 2009. No association between a
promoter NOS1 polymorphism (rs41279104) and infantile hypertrophic pyloric stenosis.
Journal of Human Genetics 54(12):706–708 DOI 10.1038/jhg.2009.101.

Lahaye SLD, Rebillard A, Zguira MS, Malardé L, Saïag B, Gratas-Delamarche A, Carré F,
Bekono FR. 2011. Effects of exercise training combined with insulin treatment on cardiac NOS1
signaling pathways in type 1 diabetic rats. Molecular and Cellular Biochemistry 347(1–2):53–62
DOI 10.1007/s11010-010-0611-6.

Levecque C, Elbaz A, Clavel J, Richard F, Vidal J-S, Amouyel P, Tzourio C, Alpérovitch A,
Chartier-Harlin M-C. 2003. Association between Parkinson’s disease and polymorphisms in
the nNOS and iNOS genes in a community-based case-control study. Human Molecular
Genetics 12(1):79–86 DOI 10.1093/hmg/ddg009.

Levinsson A, Olin A-C, Björck L, Rosengren A, Nyberg F. 2014. Nitric oxide synthase (NOS)
single nucleotide polymorphisms are associated with coronary heart disease and hypertension in
the INTERGENE study. Nitric Oxide 39(15):1–7 DOI 10.1016/j.niox.2014.03.164.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 25/31

http://dx.doi.org/10.1073/pnas.0404136101
http://dx.doi.org/10.1016/j.femsim.2004.07.001
http://dx.doi.org/10.1158/1078-0432.CCR-08-0732
http://dx.doi.org/10.1096/fba.2018-00080
http://dx.doi.org/10.3389/fphys.2012.00468
http://dx.doi.org/10.1152/ajprenal.2000.279.3.F573
http://dx.doi.org/10.1016/j.niox.2004.08.005
http://dx.doi.org/10.1161/01.HYP.35.2.655
http://dx.doi.org/10.1161/hc2901.091399
http://dx.doi.org/10.1161/01.ATV.0000223143.88128.19
http://dx.doi.org/10.1038/jhg.2009.101
http://dx.doi.org/10.1007/s11010-010-0611-6
http://dx.doi.org/10.1093/hmg/ddg009
http://dx.doi.org/10.1016/j.niox.2014.03.164
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, Perez P, Meziani F. 2012.
Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Applied
Physiology in Intensive Care Medicine 2:251–261 DOI 10.1007/978-3-642-28233-1.

Li X, Zou Z, Tang J, Zheng Y, Liu Y, Luo Y, Liu Q, Wang Y. 2019. NOS1 upregulates ABCG2
expression contributing to DDP chemoresistance in ovarian cancer cells. Oncology Letters
17(2):1595–1602 DOI 10.3892/ol.2018.9787.

Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, Zou JX, Zhang T, Juma S, Jin C. 2015.
CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance.
Molecular Cancer Therapeutics 14(9):2090–2102 DOI 10.1158/1535-7163.MCT-15-0017.

Liu Q, Tomei S, Ascierto ML, De Giorgi V, Bedognetti D, Dai C, Uccellini L, Spivey T, Pos Z,
Thomas J. 2014. Melanoma NOS1 expression promotes dysfunctional IFN signaling. The
Journal of Clinical Investigation 124(5):2147–2159 DOI 10.1172/JCI69611.

Ma SH, Park B-Y, Yang JJ, Jung E-J, Yeo Y, Whang Y, Chang S-H, Shin H-R, Kang D, Yoo K-Y.
2012. Interaction of body mass index and diabetes as modifiers of cardiovascular mortality in a
cohort study. Journal of Preventive Medicine and Public Health 45(6):394–401
DOI 10.3961/jpmph.2012.45.6.394.

MacMicking J, Xie Q-w, Nathan C. 1997. Nitric oxide and macrophage function. Annual Review
of Immunology 15(1):323–350 DOI 10.1146/annurev.immunol.15.1.323.

Massion PB, Feron O, Dessy C, Balligand JL. 2003. Nitric oxide and cardiac function: ten years
after, and continuing. Circulation Research 93(5):388–398
DOI 10.1161/01.RES.0000088351.58510.21.

Mattila JT, Thomas AC. 2014. Nitric oxide synthase: non-canonical expression patterns. Frontiers
in Immunology 5(7):478 DOI 10.3389/fimmu.2014.00478.

Mezghenna K, Pomies P, Chalancon A, Castex F, Leroy J, Niclauss N, Nadal B, Cambier L,
Cazevieille C, Petit P. 2011. Increased neuronal nitric oxide synthase dimerisation is involved
in rat and human pancreatic beta cell hyperactivity in obesity. Diabetologia 54(11):2856–2866
DOI 10.1007/s00125-011-2264-8.

Miao X, Garcia-Barceló M-M, So M-t, Tang W-k, Dong X, Wang B, Mao J, Ngan ES-w, Chen Y,
Lui VC-h. 2010. Lack of association between nNOS−84G> A polymorphism and risk of infantile
hypertrophic pyloric stenosis in a Chinese population. Journal of Pediatric Surgery
45(4):709–713 DOI 10.1016/j.jpedsurg.2009.07.067.

Moens AL, Yang R,Watts VL, Barouch LA. 2010. Beta 3-adrenoreceptor regulation of nitric oxide
in the cardiovascular system. Journal of Molecular and Cellular Cardiology 48(6):1088–1095
DOI 10.1016/j.yjmcc.2010.02.011.

Moncada S. 1999. Nitric oxide: discovery and impact on clinical medicine. Journal of the Royal
Society of Medicine 92(4):164–169 DOI 10.1177/014107689909200402.

Moncada S, Higgs EA. 2006. Nitric oxide and the vascular endothelium. The Vascular
Endothelium 176/I:213–254 DOI 10.1007/3-540-32967-6.

Morris SM Jr. 2004. Enzymes of arginine metabolism. The Journal of Nutrition
134(10):2743S–2747S DOI 10.1093/jn/134.10.2743S.

Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R,
Snyder SH. 2009. H2S signals through protein S-sulfhydration. Science Signaling 2(96):ra72
DOI 10.1126/scisignal.2000464.

Nardi GM, Scheschowitsch K, Ammar D, de Oliveira SK, Arruda TB, Assreuy J. 2014. Neuronal
nitric oxide synthase and its interaction with soluble guanylate cyclase is a key factor for the
vascular dysfunction of experimental sepsis. Critical Care Medicine 42(6):e391–e400
DOI 10.1097/CCM.0000000000000301.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 26/31

http://dx.doi.org/10.1007/978-3-642-28233-1
http://dx.doi.org/10.3892/ol.2018.9787
http://dx.doi.org/10.1158/1535-7163.MCT-15-0017
http://dx.doi.org/10.1172/JCI69611
http://dx.doi.org/10.3961/jpmph.2012.45.6.394
http://dx.doi.org/10.1146/annurev.immunol.15.1.323
http://dx.doi.org/10.1161/01.RES.0000088351.58510.21
http://dx.doi.org/10.3389/fimmu.2014.00478
http://dx.doi.org/10.1007/s00125-011-2264-8
http://dx.doi.org/10.1016/j.jpedsurg.2009.07.067
http://dx.doi.org/10.1016/j.yjmcc.2010.02.011
http://dx.doi.org/10.1177/014107689909200402
http://dx.doi.org/10.1007/3-540-32967-6
http://dx.doi.org/10.1093/jn/134.10.2743S
http://dx.doi.org/10.1126/scisignal.2000464
http://dx.doi.org/10.1097/CCM.0000000000000301
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. The FASEB Journal
6(12):3051–3064 DOI 10.1096/fasebj.6.12.1381691.

Navia-Pelaez JM, Campos GP, Araujo-Souza JC, Stergiopulos N, Capettini LSA. 2018.
Modulation of nNOSser852 phosphorylation and translocation by PKA/PP1 pathway in
endothelial cells. Nitric Oxide 72(Suppl E):52–58 DOI 10.1016/j.niox.2017.11.007.

Navia-Pelaez JM, Campos-Mota GP, De Souza JCA, Aguilar EC, Stergiopulos N,
Alvarez-Leite JI, Capettini LSA. 2017. nNOS uncoupling by oxidized LDL: implications in
atherosclerosis. Free Radical Biology and Medicine 113:335–346
DOI 10.1016/j.freeradbiomed.2017.09.018.

Newton DC, Bevan SC, Choi S, Robb GB, Millar A, Wang Y, Marsden PA. 2003. Translational
regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5’-untranslated
region leader exon. Journal of Biological Chemistry 278(1):636–644
DOI 10.1074/jbc.M209988200.

Niu X, Watts VL, Cingolani OH, Sivakumaran V, Leyton-Mange JS, Ellis CL, Miller KL,
Vandegaer K, Bedja D, Gabrielson KL. 2012. Cardioprotective effect of beta-3 adrenergic
receptor agonism: role of neuronal nitric oxide synthase. Journal of the American College of
Cardiology 59(22):1979–1987 DOI 10.1016/j.jacc.2011.12.046.

Northington FJ, Koehler RC, Traystman RJ, Martin LJ. 1996. Nitric oxide synthase 1 and nitric
oxide synthase 3 protein expression is regionally and temporally regulated in fetal brain.
Developmental Brain Research 95(1):1–14 DOI 10.1016/0165-3806(96)00051-X.

Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. 2008. S-Nitrosylation of histone
deacetylase 2 induces chromatin remodelling in neurons. Nature 455(7211):411–415
DOI 10.1038/nature07238.

Pandolfino JE, Gawron AJ. 2015. Achalasia: a systematic review. JAMA 313(18):1841–1852
DOI 10.1001/jama.2015.2996.

Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. 2013. Diabetic cardiomyopathy:
pathophysiology, diagnostic evaluation and management. World Journal of Diabetes 4(5):177
DOI 10.4239/wjd.v4.i5.177.

Park HK, Kim SK, Kwon OY, Chung J-H, Lee S-K. 2016. Analysis between nitric oxide synthase 1
(NOS1) and risk of obesity. Molecular & Cellular Toxicology 12(2):217–222
DOI 10.1007/s13273-016-0026-x.

Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. 2019. Functions and dysfunctions of nitric oxide in
brain. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1865(8):1949–1967
DOI 10.1016/j.bbadis.2018.11.007.

Pieper GM. 1998. Review of alterations in endothelial nitric oxide production in diabetes:
protective role of arginine on endothelial dysfunction. Hypertension 31(5):1047–1060
DOI 10.1161/01.HYP.31.5.1047.

Piknova B, Park JW, Swanson KM, Dey S, Noguchi CT, Schechter AN. 2015. Skeletal muscle as
an endogenous nitrate reservoir. Nitric Oxide 47(1994):10–16 DOI 10.1016/j.niox.2015.02.145.

Pong T, Huang PL. 2015. Effects of nitric oxide on atherosclerosis. In: Wang H, Patterson C, eds.
Atherosclerosis: Risks, Mechanisms, and Therapies. Wiley, 355–364
DOI 10.1002/9781118828533.ch28.

Ponnuswamy P, Schröttle A, Ostermeier E, Grüner S, Huang PL, Ertl G, Hoffmann U,
Nieswandt B, Kuhlencordt PJ. 2012. eNOS Protects from atherosclerosis despite relevant
superoxide production by the enzyme in apoE−/− Mice. PLOS ONE 7(1):e30193
DOI 10.1371/journal.pone.0030193.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 27/31

http://dx.doi.org/10.1096/fasebj.6.12.1381691
http://dx.doi.org/10.1016/j.niox.2017.11.007
http://dx.doi.org/10.1016/j.freeradbiomed.2017.09.018
http://dx.doi.org/10.1074/jbc.M209988200
http://dx.doi.org/10.1016/j.jacc.2011.12.046
http://dx.doi.org/10.1016/0165-3806(96)00051-X
http://dx.doi.org/10.1038/nature07238
http://dx.doi.org/10.1001/jama.2015.2996
http://dx.doi.org/10.4239/wjd.v4.i5.177
http://dx.doi.org/10.1007/s13273-016-0026-x
http://dx.doi.org/10.1016/j.bbadis.2018.11.007
http://dx.doi.org/10.1161/01.HYP.31.5.1047
http://dx.doi.org/10.1016/j.niox.2015.02.145
http://dx.doi.org/10.1002/9781118828533.ch28
http://dx.doi.org/10.1371/journal.pone.0030193
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis.
Nature Medicine 19(11):1423–1437 DOI 10.1038/nm.3394.

Radi R. 2018. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular
medicine. Proceedings of the National Academy of Sciences of the United States of America
115(23):5839–5848 DOI 10.1073/pnas.1804932115.

Rajpoot S, Wary KK, Ibbott R, Liu D, Saqib U, Thurston TLM, Baig MS. 2021. TIRAP in the
mechanism of inflammation. Frontiers in Immunology 12:697588
DOI 10.3389/fimmu.2021.697588.

Robey RW, Polgar O, Deeken J, To KW, Bates SE. 2007. ABCG2: determining its relevance in
clinical drug resistance. Cancer and Metastasis Reviews 26(1):39–57
DOI 10.1007/s10555-007-9042-6.

Rosano GMC, Vitale C, Seferovic P. 2017.Heart failure in patients with diabetes mellitus. Cardiac
Failure Review 3(1):52–55 DOI 10.15420/cfr.2016:20:2.

Roy A, Saqib U, Baig MS. 2021. NOS1-mediated macrophage and endothelial cell interaction in
the progression of atherosclerosis. Cell Biology International 45(6):1191–1201
DOI 10.1002/cbin.11558.

Roy A, Saqib U, Wary K, Baig MS. 2020. Macrophage neuronal nitric oxide synthase (NOS1)
controls the inflammatory response and foam cell formation in atherosclerosis. International
Immunopharmacology 83:106382 DOI 10.1016/j.intimp.2020.106382.

Sánchez A, Contreras C, Martínez MP, Climent B, Benedito S, García-Sacristán A,
Hernández M, Prieto D. 2012. Role of neural NO synthase (nNOS) uncoupling in the
dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats.
PLOS ONE 7(4):e36027 DOI 10.1371/journal.pone.0036027.

Sansbury BE, Hill BG. 2014. Regulation of obesity and insulin resistance by nitric oxide. Free
Radical Biology and Medicine 73:383–399 DOI 10.1016/j.freeradbiomed.2014.05.016.

Sara JD, Eleid MF, Gulati R, Holmes DR Jr. 2014. Sudden cardiac death from the perspective of
coronary artery disease. Mayo Clinic Proceedings 89(12):1685–1698
DOI 10.1016/j.mayocp.2014.08.022.

Saraiva RM, Minhas KM, Zheng M, Pitz E, Treuer A, Gonzalez D, Schuleri KH, Vandegaer KM,
Barouch LA, Hare JM. 2007. Reduced neuronal nitric oxide synthase expression contributes to
cardiac oxidative stress and nitroso-redox imbalance in ob/ob mice. Nitric Oxide 16(3):331–338
DOI 10.1016/j.niox.2006.12.001.

Saur D, Paehge H, Schusdziarra V, Allescher HD. 2000. Distinct expression of splice variants of
neuronal nitric oxide synthase in the human gastrointestinal tract. Gastroenterology
118(5):849–858 DOI 10.1016/S0016-5085(00)70171-5.

Saur D, Vanderwinden J-M, Seidler B, Schmid RM, De Laet M-H, Allescher H-D. 2004. Single-
nucleotide promoter polymorphism alters transcription of neuronal nitric oxide synthase exon
1c in infantile hypertrophic pyloric stenosis. Proceedings of the National Academy of Sciences of
the United States of America 101(6):1662–1667 DOI 10.1073/pnas.0305473101.

Schulte W, Bernhagen J, Bucala R. 2013. Cytokines in sepsis: potent immunoregulators and
potential therapeutic targets—an updated view. Mediators of Inflammation 2013(6):1–16
DOI 10.1155/2013/165974.

Schulz R, Kelm M, Heusch G. 2004. Nitric oxide in myocardial ischemia/reperfusion injury.
Cardiovascular Research 61(3):402–413 DOI 10.1016/j.cardiores.2003.09.019.

Schwarze SR, Luo J, Isaacs WB, Jarrard DF. 2005.Modulation of CXCL14 (BRAK) expression in
prostate cancer. The Prostate 64:67–74 DOI 10.1002/(ISSN)1097-0045.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 28/31

http://dx.doi.org/10.1038/nm.3394
http://dx.doi.org/10.1073/pnas.1804932115
http://dx.doi.org/10.3389/fimmu.2021.697588
http://dx.doi.org/10.1007/s10555-007-9042-6
http://dx.doi.org/10.15420/cfr.2016:20:2
http://dx.doi.org/10.1002/cbin.11558
http://dx.doi.org/10.1016/j.intimp.2020.106382
http://dx.doi.org/10.1371/journal.pone.0036027
http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.016
http://dx.doi.org/10.1016/j.mayocp.2014.08.022
http://dx.doi.org/10.1016/j.niox.2006.12.001
http://dx.doi.org/10.1016/S0016-5085(00)70171-5
http://dx.doi.org/10.1073/pnas.0305473101
http://dx.doi.org/10.1155/2013/165974
http://dx.doi.org/10.1016/j.cardiores.2003.09.019
http://dx.doi.org/10.1002/(ISSN)1097-0045
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA,
Casadei B. 2003. Cardiac neuronal nitric oxide synthase isoform regulates myocardial
contraction and calcium handling. Circulation Research 92(5):e52–e59
DOI 10.1161/01.RES.0000064585.95749.6D.

Serra A, Schuchardt K, Genuneit J, Leriche C, Fitze G. 2011. Genomic variants in the coding
region of neuronal nitric oxide synthase (NOS1) in infantile hypertrophic pyloric stenosis.
Journal of Pediatric Surgery 46(10):1903–1908 DOI 10.1016/j.jpedsurg.2011.05.021.

Shan J, Carbonara P, Karp N, Tulic M, Hamid Q, Eidelman DH. 2007. Localization and
distribution of NOS1 in murine airways. Nitric Oxide 17(1):25–32
DOI 10.1016/j.niox.2007.05.001.

Shteyer E, Edvardson S, Wynia-Smith SL, Pierri CL, Zangen T, Hashavya S, Begin M, Yaacov B,
Cinamon Y, Koplewitz BZ. 2015. Truncating mutation in the nitric oxide synthase 1 gene is
associated with infantile achalasia. Gastroenterology 148(3):533–536
DOI 10.1053/j.gastro.2014.11.044.

Singh R, Ghoshal UC, Misra A, Mittal B. 2015. Achalasia is associated with eNOS4a4a,
iNOS22GA, and nNOS29TT genotypes: a case-control study. Journal of Neurogastroenterology
and Motility 21(3):380–389 DOI 10.5056/jnm14123.

Söderhäll C, Nordenskjöld A. 1998. Neuronal nitric oxide synthase, nNOS, is not linked to
infantile hypertrophic pyloric stenosis in three families. Clinical Genetics 53(5):421–422
DOI 10.1111/j.1399-0004.1998.tb02758.x.

Song JS, Kang CM, Kang HH, Yoon HK, Kim YK, Kim KH, Moon HS, Park SH. 2010.
Inhibitory effect of CXC chemokine receptor 4 antagonist AMD3100 on bleomycin induced
murine pulmonary fibrosis. Experimental & Molecular Medicine 42(6):465–476
DOI 10.3858/emm.2010.42.6.048.

Strijdom H, Chamane N, Lochner A. 2009. Nitric oxide in the cardiovascular system: a simple
molecule with complex actions. Cardiovascular Journal of Africa 20:303–310
DOI 10520/EJC23284.

Svenningsson A, Söderhäll C, Persson S, Lundberg F, Luthman H, Chung E, Gardiner M,
Kockum I, Nordenskjöld A. 2012. Genome-wide linkage analysis in families with infantile
hypertrophic pyloric stenosis indicates novel susceptibility loci. Journal of Human Genetics
57(2):115–121 DOI 10.1038/jhg.2011.137.

Szabó C. 2006. Poly (ADP-ribose) polymerase activation by reactive nitrogen species—relevance
for the pathogenesis of inflammation. Nitric Oxide 14(2):169–179
DOI 10.1016/j.niox.2005.06.008.

Takahashi T. 2003. Pathophysiological significance of neuronal nitric oxide synthase in the
gastrointestinal tract. Journal of Gastroenterology 38(5):421–430
DOI 10.1007/s00535-003-1094-y.

Tomás M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A, Bellazzi R, Arking DE,
Marban E, Chakravarti A. 2010. Polymorphisms in the NOS1AP gene modulate QT interval
duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of
Cardiology 55(24):2745–2752 DOI 10.1016/j.jacc.2009.12.065.

Treuer AV, Gonzalez DR. 2014.NOS1AP modulates intracellular Ca2+ in cardiac myocytes and is
up-regulated in dystrophic cardiomyopathy. International Journal of Physiology,
Pathophysiology and Pharmacology 6(2):37 DOI 10.1016/j.bpj.2013.11.700.

Tricoire L, Vitalis T. 2012. Neuronal nitric oxide synthase expressing neurons: a journey from
birth to neuronal circuits. Frontiers in Neural Circuits 6:82 DOI 10.3389/fncir.2012.00082.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 29/31

http://dx.doi.org/10.1161/01.RES.0000064585.95749.6D
http://dx.doi.org/10.1016/j.jpedsurg.2011.05.021
http://dx.doi.org/10.1016/j.niox.2007.05.001
http://dx.doi.org/10.1053/j.gastro.2014.11.044
http://dx.doi.org/10.5056/jnm14123
http://dx.doi.org/10.1111/j.1399-0004.1998.tb02758.x
http://dx.doi.org/10.3858/emm.2010.42.6.048
http://dx.doi.org/10520/EJC23284
http://dx.doi.org/10.1038/jhg.2011.137
http://dx.doi.org/10.1016/j.niox.2005.06.008
http://dx.doi.org/10.1007/s00535-003-1094-y
http://dx.doi.org/10.1016/j.jacc.2009.12.065
http://dx.doi.org/10.1016/j.bpj.2013.11.700
http://dx.doi.org/10.3389/fncir.2012.00082
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Tseng Y-H, Cypess AM, Kahn CR. 2010. Cellular bioenergetics as a target for obesity therapy.
Nature Reviews Drug Discovery 9(6):465–482 DOI 10.1038/nrd3138.

Tuteja N, Chandra M, Tuteja R, Misra MK. 2004. Nitric oxide as a unique bioactive signaling
messenger in physiology and pathophysiology. Journal of Biomedicine and Biotechnology
2004(4):227–237 DOI 10.1155/S1110724304402034.

Vaccarella S, Franceschi S, Engholm G, Lönnberg S, Khan S, Bray F. 2014. 50 years of screening
in the Nordic countries: quantifying the effects on cervical cancer incidence. British Journal of
Cancer 111(5):965–969 DOI 10.1038/bjc.2014.362.

Vareniuk I, Pacher PAL, Pavlov IA, Drel VR, Obrosova IG. 2009. Peripheral neuropathy in mice
with neuronal nitric oxide synthase gene deficiency. International Journal of Molecular Medicine
23(5):571–580 DOI 10.3892/ijmm_00000166.

Venturini G, Colasanti M, Fioravanti E, Bianchini A, Ascenzi P. 1999. Direct effect of
temperature on the catalytic activity of nitric oxide synthases types I, II, and III. Nitric Oxide
3(5):375–382 DOI 10.1006/niox.1999.0250.

Villanueva C, Giulivi C. 2010. Subcellular and cellular locations of nitric oxide synthase isoforms
as determinants of health and disease. Free Radical Biology and Medicine 49(3):307–316
DOI 10.1016/j.freeradbiomed.2010.04.004.

Wang Y, Branicky R, Noë A, Hekimi S. 2018. Superoxide dismutases: dual roles in controlling
ROS damage and regulating ROS signaling. Journal of Cell Biology 217(6):1915–1928
DOI 10.1083/jcb.201708007.

Wang J-L, Cheng H-F, Shappell S, Harris RC. 2000. A selective cyclooxygenase-2 inhibitor
decreases proteinuria and retards progressive renal injury in rats. Kidney International
57(6):2334–2342 DOI 10.1046/j.1523-1755.2000.00093.x.

Wang E, Spitzer JJ, Chamulitrat W. 1999. Differential regulation of inducible nitric oxide
synthase gene expression by ethanol in the human intestinal epithelial cell line DLD-1. Nitric
Oxide 3(3):244–253 DOI 10.1006/niox.1999.0230.

Wang H, Viatchenko-Karpinski S, Sun J, Györke I, Benkusky NA, Kohr MJ, Valdivia HH,
Murphy E, Györke S, Ziolo MT. 2010. Regulation of myocyte contraction via neuronal nitric
oxide synthase: role of ryanodine receptor S-nitrosylation. The Journal of Physiology
588(15):2905–2917 DOI 10.1113/jphysiol.2010.192617.

Wang T,Wang Y, Lv DM, Song JF, Lu Q, Gao X, Zhang F, Guo H, LiW, Yin XX. 2014. Effects of
NOS 1 AP rs12742393 polymorphism on repaglinide response in chinese patients with type 2
diabetes mellitus. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy
34(2):131–139 DOI 10.1002/phar.1379.

Wang Q, Ye S, Chen X, Xu P, Li K, Zeng S, Huang M, Gao W, Chen J, Zhang Q. 2019.
Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3
activity. Biochemical and Biophysical Research Communications 515(4):517–523
DOI 10.1016/j.bbrc.2019.05.114.

Weiming XU, Liu LZ, Loizidou M, Ahmed M, Charles IG. 2002. The role of nitric oxide in
cancer. Cell Research 12(5–6):311–320 DOI 10.1038/sj.cr.7290133.

Weisz A, Oguchi S, Cicatiello L, Esumi H. 1994. Dual mechanism for the control of
inducible-type NO synthase gene expression in macrophages during activation by
interferon-gamma and bacterial lipopolysaccharide. transcriptional and post-transcriptional
regulation. Journal of Biological Chemistry 269(11):8324–8333
DOI 10.1016/S0021-9258(17)37197-1.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 30/31

http://dx.doi.org/10.1038/nrd3138
http://dx.doi.org/10.1155/S1110724304402034
http://dx.doi.org/10.1038/bjc.2014.362
http://dx.doi.org/10.3892/ijmm_00000166
http://dx.doi.org/10.1006/niox.1999.0250
http://dx.doi.org/10.1016/j.freeradbiomed.2010.04.004
http://dx.doi.org/10.1083/jcb.201708007
http://dx.doi.org/10.1046/j.1523-1755.2000.00093.x
http://dx.doi.org/10.1006/niox.1999.0230
http://dx.doi.org/10.1113/jphysiol.2010.192617
http://dx.doi.org/10.1002/phar.1379
http://dx.doi.org/10.1016/j.bbrc.2019.05.114
http://dx.doi.org/10.1038/sj.cr.7290133
http://dx.doi.org/10.1016/S0021-9258(17)37197-1
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/


Wente MN, Mayer C, Gaida MM, Michalski CW, Giese T, Bergmann F, Giese NA, Büchler MW,
Friess H. 2008. CXCL14 expression and potential function in pancreatic cancer. Cancer Letters
259(2):209–217 DOI 10.1016/j.canlet.2007.10.021.

Wilcox JN, Subramanian RR, Sundell CL, Tracey WR, Pollock JS, Harrison DG, Marsden PA.
1997. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic
vessels. Arteriosclerosis, Thrombosis, and Vascular Biology 17(11):2479–2488
DOI 10.1161/01.ATV.17.11.2479.

Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC. 1999. Nitric oxide synthase in cardiac
sarcoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of
America 96(2):657–662 DOI 10.1073/pnas.96.2.657.

Xu P, Ye S, Li K, Huang M, Wang Q, Zeng S, Chen X, Gao W, Chen J, Zhang Q. 2019. NOS1
inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2. Journal of
Experimental & Clinical Cancer Research 38(1):1–16 DOI 10.1186/s13046-019-1448-9.

Yamagishi S-i, Matsui T. 2011. Nitric oxide, a janus-faced therapeutic target for diabetic
microangiopathy—friend or foe? Pharmacological Research 64(3):187–194
DOI 10.1016/j.phrs.2011.05.009.

Yazdi FT, Clee SM, Meyre D. 2015. Obesity genetics in mouse and human: back and forth, and
back again. PeerJ 3:e856 DOI 10.7717/peerj.856.

Yoshimura T, Moon TC, Laurent CDS, Puttagunta L, Chung K, Wright E, Yoshikawa M,
Moriyama H, Befus AD. 2012. Expression of nitric oxide synthases in leukocytes in nasal
polyps. Annals of Allergy, Asthma & Immunology 108:172–177 DOI 10.1016/j.anai.2011.12.013.

Zamora R, Vodovotz Y, Billiar TR. 2000. Inducible nitric oxide synthase and inflammatory
diseases. Molecular Medicine 6:347–373 DOI 10.1007/BF03401781.

Zeng J, Yang X, Cheng L, Liu R, Lei Y, Dong D, Li F, Lau QC, Deng L, Nice EC. 2013.
Chemokine CXCL14 is associated with prognosis in patients with colorectal carcinoma after
curative resection. Journal of Translational Medicine 11:1–16 DOI 10.1186/1479-5876-11-6.

Zhang YH. 2017. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under
stress. F1000Research 6:742 DOI 10.12688/f1000research.10128.1.

Zhang P, Basu P, Redmond LC, Morris PE, Rupon JW, Ginder GD, Lloyd JA. 2005. A functional
screen for Krüppel-like factors that regulate the human gamma-globin gene through the
CACCC promoter element. Blood Cells, Molecules, and Diseases 35(2):227–235
DOI 10.1016/j.bcmd.2005.04.009.

Zhang J, Wei J, Jiang S, Xu L, Wang L, Cheng F, Buggs J, Koepsell H, Vallon V, Liu R. 2019.
Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for
glomerular hyperfiltration during hyperglycemia. Journal of the American Society of Nephrology
30:578–593 DOI 10.1681/ASN.2018080844.

Zhou L, Zhu D-Y. 2009. Neuronal nitric oxide synthase: structure, subcellular localization,
regulation, and clinical implications. Nitric Oxide 20(4):223–230
DOI 10.1016/j.niox.2009.03.001.

Zweier JL, Li H, Samouilov A, Liu X. 2010.Mechanisms of nitrite reduction to nitric oxide in the
heart and vessel wall. Nitric Oxide 22(2):83–90 DOI 10.1016/j.niox.2009.12.004.

Solanki et al. (2022), PeerJ, DOI 10.7717/peerj.13651 31/31

http://dx.doi.org/10.1016/j.canlet.2007.10.021
http://dx.doi.org/10.1161/01.ATV.17.11.2479
http://dx.doi.org/10.1073/pnas.96.2.657
http://dx.doi.org/10.1186/s13046-019-1448-9
http://dx.doi.org/10.1016/j.phrs.2011.05.009
http://dx.doi.org/10.7717/peerj.856
http://dx.doi.org/10.1016/j.anai.2011.12.013
http://dx.doi.org/10.1007/BF03401781
http://dx.doi.org/10.1186/1479-5876-11-6
http://dx.doi.org/10.12688/f1000research.10128.1
http://dx.doi.org/10.1016/j.bcmd.2005.04.009
http://dx.doi.org/10.1681/ASN.2018080844
http://dx.doi.org/10.1016/j.niox.2009.03.001
http://dx.doi.org/10.1016/j.niox.2009.12.004
http://dx.doi.org/10.7717/peerj.13651
https://peerj.com/

	The expanding roles of neuronal nitric oxide synthase (NOS1)
	Introduction
	Survey methodology
	Conclusion and perspectives
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


