
Received: 24 September 2020 Revised: 24 January 2021 Accepted: 3 February 2021

DOI: 10.1111/biom.13444

B IOMETRIC METH ODOLOGY

Determination and estimation of optimal quarantine
duration for infectious diseases with application to data
analysis of COVID-19

RuoyuWang1,2 QihuaWang1,2

1 Academy of Mathematics and Systems
Science, Chinese Academy of Sciences,
Beijing, China
2 University of Chinese Academy of
Sciences, Beijing, China

Correspondence: QihuaWang,Academy
ofMathematics andSystemsScience,
ChineseAcademyof Sciences, Beijing
100190,China.
Email: qhwang@amss.ac.cn

Funding information
NationalNatural ScienceFoundationof
China,Grant/AwardNumbers: 11871460,
61621003

Abstract
Quarantine measure is a commonly used nonpharmaceutical intervention dur-
ing the outbreak of infectious diseases. A key problem for implementing quaran-
tine measure is to determine the duration of the quarantine. Different from the
existing methods that determine a constant quarantine duration for everyone,
we develop an individualized quarantine rule that suggests different quarantine
durations for individuals with different characteristics. The proposed quarantine
rule is optimal in the sense that it minimizes the average quarantine duration of
uninfected people with the constraint that the probability of symptom presenta-
tion for infected people attains the given value closing to 1. The optimal solution
for the quarantine duration is obtained and estimated by some statistical meth-
ods with application to analyzing COVID-19 data.
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1 INTRODUCTION

During the outbreak of infectious diseases (eg, EVD, SARS,
MERS, and COVID-19), quarantine measures are com-
monly implemented to limit disease transmission andmor-
bidity. Extensive research has shown that quarantine is
important in reducing the number of people infected and
the number of deaths (Lipsitch et al., 2003; Ferguson
et al., 2006), especially when there is no effective treat-
ment for the disease. See Nussbaumer-Streit et al. (2020)
for a recent review. To establish a quarantine strategy, some
studies use epidemic models such as susceptible-exposed-
infected-recovered (SEIR)-type epidemiological models to
determine the optimal time-varying quarantine rate by
optimal control theory, see, for instance, Behncke (2000),
Yan and Zou (2008), and Ahmad et al. (2016). Lipsitch et al.
(2003) discussed the relationship between the quarantine
fraction of each infectious case’s contacts and the num-

ber of person-days in quarantine. However, a key problem
when imposing the quarantine measure is to determine
the quarantine duration. An extremely long quarantine
duration makes sure that most infected individuals would
exhibit symptoms under quarantine and then get further
quarantine and medical treatment. That is, a long quaran-
tine duration can stop the virus from spreading to others.
Nevertheless, this may inconvenience uninfected individ-
uals, incur many extra financial and social costs, and even
affect economic development (Reich et al., 2018). Hence,
a good quarantine measure should balance the effective-
ness and the cost of the quarantine measure and have a
proper duration.
Farewell et al. (2005) proposed to determine the quaran-

tine duration based on the distribution of the incubation
period. Nishiura (2009) analyzed the appropriate quaran-
tine period using the quantiles of the incubation period
distribution. The existing methods do not consider the
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characteristics of quarantined individuals and suggest the
same quarantine duration for every individual. Never-
theless, different people may have different probabilities
of being infected and different incubation periods of
a disease. Indeed, the probability of being infected for
every individual is unknown. However, some individual
characteristics such as age, sex, and infection rate in the
region from which the individual comes and whether
an individual is a close contact, which may affect the
incubation period distribution or the infected probability,
can be observed. Thus, to guarantee the effectiveness
and minimize the cost of the quarantine measure, one
may intend to set a proper quarantine duration for each
potentially exposed individual based on his or her char-
acteristics. To the best of our knowledge, no literature
addresses this issue.
In this paper, we consider the problem and develop an

optimal quarantine rule. The proposed quarantine rule
implements different quarantine durations for different
individuals depending on his or her characteristics. We
make the rule optimal by minimizing the average quaran-
tine duration (AQD) of uninfected people with the con-
straint that the probability of symptom presentation for
infected people attains any given value, which may be
close to 1. We obtain the optimal solution for the prob-
lem and estimate the optimal solution by some statisti-
cal methods. Coronavirus disease COVID-19 pandemic is
known to become a global health crisis since its emer-
gence in Asia late 2019. Considerable attention has been
paid to studying the optimal prevent and control strategy
of COVID-19 and various public health measures such as
testing, social distancing, lockdown, and quarantine in a
macroperspective (Acemoglu et al., 2020; Alvarez et al.,
2020; Charpentier et al., 2020; Piguillem and Shi, 2020).
Quarantine is one of the key aspects of infection control
during the pandemic of COVID-19. This paper focuses on
the study of optimal quarantine duration for infectious dis-
eases with application to data analysis of COVID-19, which
is not discussed in all the aforementioned literature. Com-
paring to the standard quantile methods due to Farewell
et al. (2005), Nishiura (2009), and Liu et al. (2020), the
data analysis results demonstrate that ourmethod suggests
a shorter AQD while keeping the risk of virus spreading
below a given level. That is, the proposedmethod can keep
the risk of virus spreading at the same low level as the
standard methods in addition to saving cost of days lost.
After quarantine, uninfected individuals may work and
study by keeping some social distance or some other sim-
ple and easy measures. Hence, this paper makes a signif-
icant contribution to decreasing financial and social costs
and impact on economic development with the assurance
of controlling the epidemic.

2 OPTIMAL QUARANTINE RULE

Let 𝑋 be a feature vector describing the characteristics of
a potentially exposed individual. Let  be the support of
𝑋 and let 𝐼 be a variable indicating whether or not the
individual has been infected (𝐼 = 1 if infected and 𝐼 = 0

otherwise). Clearly, 𝐼 is unknown when we decide to quar-
antine the individual. A quarantine rule 𝑡(⋅) is a map that
maps the feature 𝑋 to a positive number. Under the quar-
antine rule 𝑡(⋅), the quarantine duration for an individual
with feature value 𝑋 = 𝑥 is determined to be 𝑡(𝑥) before
quarantine, whether the individual is infected or not. An
infected individual has a low risk of infecting others if
the individual has symptom presentation during the quar-
antine and hence is not released from the quarantine. A
good quarantine duration should ensure a large enough
probability that an infected individual has symptom pre-
sentation during the quarantine and minimize the AQD
of uninfected individuals. Let 𝑌 > 0 be the incubation
period of the infectious disease for 𝐼 = 1 and the incuba-
tion period is not defined for 𝐼 = 0. Then the problem of
finding the optimal quarantine rule can be expressed as
finding a map that minimizes the following problem:

min
𝑡

𝔼0𝑡(𝑋) 𝑠.𝑡. 1 − ℙ1(𝑌 ≤ 𝑡(𝑋)) ≤ 𝜖, (1)

where 𝜖 is a predefined small positive number (eg, 0.05)
and the subscript 0 or 1 denotes that the expectation or
probability is taken conditional on 𝐼 = 0 or 1. For any given
quarantine rule 𝑡(⋅), we call 𝔼0𝑡(𝑋) the AQD of uninfected
people, ℙ1(𝑌 ≤ 𝑡(𝑋)) the probability of symptom presen-
tation of an infected individual during the quarantine and
call 1 − ℙ1(𝑌 ≤ 𝑡(𝑋)) the escape probability (EP) through-
out this paper.
If there is no available feature𝑋, problem (1) reduces to

min
𝑡

𝑡 𝑠.𝑡. 1 − ℙ1(𝑌 ≤ 𝑡) ≤ 𝜖.

This just defines the 1 − 𝜖 quantile of incubation period
distribution. In particular, this suggests the 0.95 quantile
method due to Farewell et al. (2005) when 𝜖 = 0.05.

Remark 1. Suppose that 𝜃 is the proportion of quaran-
tined infected people in all the infected people and 𝑅0 is
the basic reproductive number of the disease. At the end of
quarantine, the effective reproductive number reduces to
𝑅(𝜃, 𝜖, 𝑅0) = (1 − 𝜃)𝑅0 + 𝜃𝜖𝑅0. If 𝑅(𝜃, 𝜖, 𝑅0) < 1, the virus
spreading can be controlled. For example, suppose 𝜃 = 0.8

and 𝑅0 = 4, then the epidemic can be stopped if we take 𝜖
smaller than 1∕16. However, the main purpose of quaran-
tine is to stop the spread of the virus as soon as possible,
and hence, we usually take 𝜖 to be a smaller constant such
as 0.05.
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2.1 Derivation of the optimal solution

Suppose𝑋 = (𝐶,𝑊), where 𝐶 is a categorical variable that
takes value in {1, … , 𝐾} and𝑊 ∈ ℝ𝑑 is a vector of continu-
ous variables. Let𝜇 be the product of the countingmeasure
on {1, … , 𝐾} and the Lebesguemeasure onℝ𝑑. Let 𝑓1(𝑥) be
the density function of𝑋 conditional on 𝐼 = 1with respect
to (w.r.t.) 𝜇 and 𝑓0(𝑥) the density function of𝑋 conditional
on 𝐼 = 0 w.r.t. 𝜇. We use 𝐹1(𝑦 ∣ 𝑥) to denote the distribu-
tion function of 𝑌 conditional on 𝑋 = 𝑥 and 𝐼 = 1 and
use 𝑓1(𝑦 ∣ 𝑥) to denote the corresponding density function
w.r.t. 𝜇. Then problem (1) can be reformulated as

min
𝑡 ∫ 𝑡(𝑥)𝑓0(𝑥)𝑑𝜇(𝑥)

𝑠.𝑡. 1 − ∫ 𝐹1(𝑡(𝑥) ∣ 𝑥)𝑓1(𝑥)𝑑𝜇(𝑥) ≤ 𝜖.

This is a variation problem and not easy to solve in gen-
eral. However, we find that the solution to this problem is
easy to handle under the following conditions.

Condition 1. ∀ 𝑥 ∈  , 𝑓1(𝑦 ∣ 𝑥) > 0 for any 𝑦 > 0 and
𝑓1(𝑦 ∣ 𝑥) is continuous with respect to 𝑦. Moreover, 𝑓1(𝑦 ∣ 𝑥)

is either strictly monotonous with respect to 𝑦 or unimodal
and strictly monotonous with respect to 𝑦 on both of the
monotone intervals.

Condition 2. 0 < inf𝑥 ℙ(𝐼 = 1 ∣ 𝑋 = 𝑥) ≤ sup𝑥 ℙ(𝐼 = 1 ∣

𝑋 = 𝑥) < 1 and inf𝑥 sup𝑦 𝑓1(𝑦 ∣ 𝑥) > 0.

Condition 1 is a mild condition and can be satisfied by
many commonly used parameterizations of the incuba-
tion period (eg, Weibull, lognormal, gamma, and Erlang
distributions). Condition 2 is a mild regular condition. It
is not of practical significance to consider the case where
ℙ(𝐼 = 1 ∣ 𝑋 = 𝑥) = 0, 1. If we assume for any 𝑥, the con-
ditional distribution 𝑓1(𝑦 ∣ 𝑥) = 𝑓1(𝑦 ∣ 𝛼𝑥, 𝜆𝑥) is Weibull
distribution with shape parameter 𝛼𝑥 and scale parameter
𝜆𝑥, then a sufficient condition for inf𝑥 sup𝑦 𝑓1(𝑦 ∣ 𝑥) > 0 is
sup𝑥 𝜆𝑥 < ∞.
Before giving themain theorem,we introduce a quantity

that is important in the theorem. By Bayes formula,

𝑓1(𝑥)

𝑓0(𝑥)
=

1 − ℙ(𝐼 = 1)

ℙ(𝐼 = 1)

ℙ(𝐼 = 1 ∣ 𝑋 = 𝑥)

1 − ℙ(𝐼 = 1 ∣ 𝑋 = 𝑥)
.

According to Condition 2, we have inf𝑥 𝑓1(𝑥)∕𝑓0(𝑥) > 0

and inf𝑥 sup𝑦 𝑓1(𝑦 ∣ 𝑥)𝑓1(𝑥)∕𝑓0(𝑥) ≥ inf𝑥 sup𝑦 𝑓1(𝑦 ∣

𝑥) inf𝑥 𝑓1(𝑥)∕𝑓0(𝑥) > 0. Define

𝑐∗ = inf
𝑥
sup
𝑦

𝑓1(𝑦 ∣ 𝑥)𝑓1(𝑥)

𝑓0(𝑥)
.
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F IGURE 1 An example for high-density ratio period with
threshold 0.02: density ratio: pink solid line; threshold, blue dashed
line; high-density ratio period, the period between the left and right
endpoints of the gray area. This figure appears in color in the
electronic version of this article, and any mention of color refers to
that version

Then we can establish the following theorem.

Theorem 1. For any 0 < 𝑐 ≤ 𝑐∗ and 𝑥 ∈  , define 𝑡𝑐(𝑥) =
sup{𝑦 ∶ 𝑓1(𝑦 ∣ 𝑥)𝑓1(𝑥)∕𝑓0(𝑥) ≥ 𝑐}. Under Conditions 1 and
2, if 𝜖 is small enough such that 𝜖 ≤ 1 − 𝔼1[𝐹1(𝑡𝑐∗(𝑋) ∣ 𝑋)],
then there is a unique constant 𝑐0 ∈ (0, 𝑐∗] such that 1 −
𝔼1[𝐹1(𝑡𝑐0(𝑋) ∣ 𝑋)] = 𝜖 and 𝑡𝑐0 (⋅) is the unique minimum
point of problem (1).

The proof of Theorem 1 is given in Web Appendix A.
In what follows, let us make some intuitive explanations
for Theorem 1. Our optimal quarantine rule is determined
based on the density ratio

𝑓1(𝑦 ∣ 𝑥)𝑓1(𝑥)

𝑓0(𝑥)
,

which is like the likelihood ratio in hypothesis testing. See,
eg, Lehmann (2005). Suppose we need to determine the
quarantine duration for an individual with feature value
𝑋 = 𝑥0. Then 𝑓1(𝑦 ∣ 𝑥0)𝑓1(𝑥0)∕𝑓0(𝑥0) is a curve of 𝑦. For a
given 𝑐, we call the set

{𝑦 ∶ 𝑓1(𝑦 ∣ 𝑥0)𝑓1(𝑥0)∕𝑓0(𝑥0) ≥ 𝑐}

the high-density ratio period. See the following picture for
an illustration (Figure 1). In the high-density ratio period,
the individual has a relatively high probability density
of symptom presentation if an individual is infected. A
possible quarantine policy is “release the individual if an
individual does not develop any symptom until the end
of the high-density ratio period.” We denote the resulting
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quarantine duration by 𝑡𝑐(𝑥0). A question is how to deter-
mine the threshold value 𝑐. Clearly, for every 𝑥0, 𝑐 cannot
be larger than sup𝑦 𝑓1(𝑦|𝑥0)𝑓1(𝑥0)∕𝑓0(𝑥0), the peak of
the curve. This implies that 𝑐 cannot be larger than 𝑐∗.
Condition 1 implies the strict monotonicity and continuity
of the EP, 1 − 𝔼1[𝐹1(𝑡𝑐(𝑋) ∣ 𝑋)], on 𝑐. The larger 𝑐 is,
the larger the EP is. Thus, if 𝜖 ≤ 1 − 𝔼1[𝐹1(𝑡𝑐∗(𝑋) ∣ 𝑋)],
there exists a unique constant 𝑐0 ∈ (0, 𝑐∗] such that
1 − 𝔼1[𝐹1(𝑡𝑐0(𝑋) ∣ 𝑋)] = 𝜖. And Theorem 1 states that in
this case, 𝑡𝑐0(⋅) is the optimal quarantine rule.

Remark 2. In practice, the loss of being quarantined for
different individuals may also be different. We can easily
adapt our framework to this scenario by extending problem
(1) to a more general form

min
𝑡

𝔼0𝑤(𝑋)𝑡(𝑋) 𝑠.𝑡. 1 − ℙ1(𝑌 ≤ 𝑡(𝑋)) ≤ 𝜖,

where 𝑤(𝑥) > 0 is a weighting function that indicates dif-
ferent costs of quarantine for different individuals. In this
case, a modified version of Theorem 1 with 𝑓0(𝑥) in the
definition of 𝑡𝑐(𝑥) replaced by 𝑤(𝑥)𝑓0(𝑥) follows directly
under Conditions 1 and 2 if 0 < inf𝑥 𝑤(𝑥) < sup𝑥 𝑤(𝑥) <

∞.

2.2 Estimation

Now we propose an estimation procedure for the optimal
quarantine duration for any𝑥 ∈  . To estimate the optimal
quarantine duration given in Theorem 1, we need to esti-
mate 𝑓1(𝑦 ∣ 𝑥), 𝑓1(𝑥), and 𝑓0(𝑥). Suppose we have histori-
cal quarantine data denoted by (𝑌1, 𝑋1, 𝐼1), … , (𝑌𝑛, 𝑋𝑛, 𝐼𝑛).
Note that in contrary to the scenario we considered in Sec-
tion 2.1, in the historical data, we know whether an indi-
vidual is infected and this makes our estimation method
possible. Here, we define 𝑌𝑖 = 0 for samples with 𝐼𝑖 = 0

for 𝑖 = 1, … , 𝑛. Then 𝑓1(𝑦 ∣ 𝑥), 𝑓1(𝑥), and 𝑓0(𝑥) can be esti-
mated consistently by either standard parametrical or non-
parametrical methods, eg, maximum likelihoodmethod or
kernel smoothmethod (van derVaart, 1998;Hansen, 2008).
Suppose 𝑓1(𝑦 ∣ 𝑥), 𝑓1(𝑥), and 𝑓0(𝑥) are the resulting esti-
mators. Then 𝑐∗ can be estimated by 𝑐∗ = inf𝑥 sup𝑦 𝑓1(𝑦 ∣

𝑥)𝑓1(𝑥)∕𝑓0(𝑥). Let 𝐹1(𝑦 ∣ 𝑥) = ∫ 𝑦

0
𝑓1(𝑠 ∣ 𝑥)𝑑𝑠 be the esti-

mated conditional distribution and 𝑡̂𝑐(𝑥) = sup{𝑦 ∶ 𝑓1(𝑦 ∣

𝑥)𝑓1(𝑥)∕𝑓0(𝑥) ≥ 𝑐}. Then 𝑐0 can be estimated by the solu-
tion of

1 −
1

𝑛1

∑
𝐼𝑖=1

𝐹1(̂𝑡𝑐(𝑋𝑖) ∣ 𝑋𝑖) = 𝜖 (2)

as an equation of 𝑐 on the interval (0, 𝑐∗], where 𝑛1 =∑𝑛

𝑖=1
𝐼𝑖 is the number of infected people and 𝜖 is a user-

specified positive number that meets the conditions of
Theorem 1. The resulting estimator of 𝑐0 is denoted by 𝑐0.
Finally, the estimator of the optimal quarantine duration is
𝑡̂opt(𝑥) = sup{𝑦 ∶ 𝑓1(𝑦 ∣ 𝑥)𝑓1(𝑥)∕𝑓0(𝑥) ≥ 𝑐0}. Under some
regularity conditions, we show that 𝑡̂opt(𝑥) converges to the
optimal quarantine rule provided in Theorem 1 in proba-
bility uniformly in 𝑥. Details on the regularity conditions
and the convergence rate of 𝑡̂opt(𝑥) are relegated to Web
Appendix B.

3 SIMULATION

In this section, some simulation studies are conducted to
evaluate the performance of the optimal quarantine rule.
Let TN(𝜇, 𝜎2, 𝑎, 𝑏) be the distribution of a truncated nor-
mal variable withmean 𝜇 and variance 𝜎2 that is truncated
to lie in [𝑎, 𝑏]. First, we generate (𝐼, 𝑋) from the following
model:

𝐼 ∼ Bernoulli (0.05), 𝑋 ∣ 𝐼 = 1 ∼ TN(55, 625, 10, 80),

𝑋 ∣ 𝐼 = 0 ∼ TN(25, 400, 10, 80).

To evaluate the performance of the optimal quarantine rule
under different situations, we consider four data genera-
tion processes for the distribution of 𝑌 conditional on 𝑋

and 𝐼 = 1.

∙ Scenario 1: 𝑌 ∣ 𝑋 = 𝑥, 𝐼 = 1 ∼Weibull(1.5, 4.5 +
0.0025(𝑥 − 30)2);

∙ Scenario 2: 𝑌 ∣ 𝑋 = 𝑥, 𝐼 = 1 ∼Weibull(1.5, 3 + log 𝑥);
∙ Scenario 3: 𝑌 ∣ 𝑋 = 𝑥, 𝐼 = 1 ∼ lognormal(1.5, 0.6 +
0.0002(𝑥 − 35)2);

∙ Scenario 4: 𝑌 ∣ 𝑋 = 𝑥, 𝐼 = 1 ∼ 0.5 ∗Weibull(1.5, 4.5 +
0.0025(𝑥 − 30)2) + 0.5 ∗Weibull(4, 10).

In the simulation, we generate 10 000 independent and
identical distributed samples from the aforementioned
data generation processes. Then 𝑓1(𝑥) and 𝑓0(𝑥) are esti-
mated by kernel method. And we assume a Weibull work-
ing model for 𝑓1(𝑦 ∣ 𝑥):

𝑓1(𝑦 ∣ 𝑥, 𝛼, 𝛾) =
𝛼

𝛾T𝑣(𝑥)

(
𝑦

𝛾T𝑣(𝑥)

)𝛼−1

exp
{
−

(
𝑦

𝛾T𝑣(𝑥)

)𝛼}
,

where 𝑣(𝑥) = (1, 𝑥, 𝑥2)T. The parameters 𝛼 and 𝛾 are estimated
by themaximum likelihoodmethod. Thenwe estimate the
optimal quarantine rule by the procedure proposed in Sec-
tion 2.2 with 𝜖 = 0.05. Under the conditions of Theorem 1,
(2) has a unique solution with probability approaching 1.
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(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3. (d) Scenario 4.

F IGURE 2 Quarantine duration for people with different feature values: 0.95 quantile, red dashed line; 0.95 conditional quantile, green
dashed dotted line; optimal duration, blue dotted line; theoretical optimal duration, black solid line. This figure appears in color in the
electronic version of this article, and any mention of color refers to that version

However, in finite sample, the equation may not have a
solution. In this case, we simply take 𝑐0 = 𝑐∗ and this treat-
ment performs fairly well in our simulation. We consider
the aforementioned four scenarios to evaluate the robust-
ness of the optimal quarantine rule against the violation of
model or distribution assumptions. The working model is
correctly specified under Scenario 1; the function form of
the scale parameter is misspecified under Scenario 2; the
conditional distribution is misspecified under Scenario 3;
and the monotonicity assumption is violated under Sce-
nario 4. There are two other ways to make sure 1 − ℙ1(𝑌 ≤
𝑡(𝑋)) ≤ 0.05. One is to omit the feature variables and use
the 0.95 sample quantile of the incubation period as the
quarantine duration for everyone (Farewell et al., 2005) and
another is to use the 0.95 estimated quantile of the con-
ditional incubation period distribution as the quarantine
duration for people with the corresponding feature value
(Liu et al., 2020). Quarantine durations for people with dif-

ferent feature values obtained by the proposedmethod and
the two quantilemethods under the four scenarios are plot-
ted in Figure 2. All the results are averaged over 200 simu-
lation datasets.
We do not plot a theoretical optimal duration in Sce-

nario 4 because the data generation process violates
the assumptions of Theorem 1 under Scenario 4. From
Figure 2, we can see that the estimated optimal duration is
close to the theoretical optimal duration when the model
is correctly specified, which confirms the convergence
result in Web Appendix B. When the model is misspec-
ified, the estimated optimal durations deviate from the
theoretical ones. However, the estimated optimal dura-
tions still capture some trends of the theoretical optimal
durations. Next, we evaluate the performance of the three
quarantine rules under different scenarios. We calculate
the AQD of uninfected people and the EP. The results are
summarized in the following table. Because noninteger
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TABLE 1 Average quarantine duration of uninfected people
and escape probability associated with the three quarantine rules
under different scenarios

Scenario Method AQD EP
1 0.95 quantile 13.90 5.1%

0.95 conditional quantile 10.45 5.1%
optimal quarantine rule 9.33 5.1%

2 0.95 quantile 14.17 5.3%
0.95 conditional quantile 13.43 5.2%
optimal quarantine rule 11.80 5.0%

3 0.95 quantile 14.39 5.0%
0.95 conditional quantile 13.20 5.4%
optimal quarantine rule 11.41 5.2%

4 0.95 quantile 13.29 5.3%
0.95 conditional quantile 13.50 3.0%
optimal quarantine rule 12.17 4.7%

quarantine duration is impractical, the quarantine dura-
tion is rounded to the nearest integer in calculation. All
the results are averaged over 200 simulation datasets.
From Table 1, we can see that the estimated optimal

quarantine rule performs well in the aspect of AQD and
EP in the four scenarios. The estimated optimal quarantine
rule does have some robustness against model misspec-
ification and the violation of the monotonicity assump-
tion although the performance is not as good as that of
the case where the model is correctly specified. This may
be due to the fact that the optimal quarantine rule com-
bines information contained in 𝑓1(𝑦 ∣ 𝑥), 𝑓1(𝑥), and 𝑓0(𝑥),
and the estimated optimal quarantine rule is able to extract
information from the marginal feature distributions 𝑓1(𝑥)
and 𝑓0(𝑥) even though the conditional distribution model
is misspecified. Some extra simulation results with the
choice 𝜖 = 0.01 are relegated to Web Appendix C.

4 APPLICATION TO COVID-19 DATA

4.1 Optimal quarantine rule using age
as a feature

In this subsection, we apply our method to analyzing
COVID-19 data. Demographic features such as age, sex,
and comorbidities are important in analyzing epidemio-
logical data (Dowd et al., 2020). The incubation period data
along with age information are available from the websites
of the centers of disease control, or the daily public reports
on COVID-19 in 29 provinces in China and are reported by
Liu et al. (2020). In this subsection, we use this dataset to
construct the optimal quarantine rule using age as the fea-
ture 𝑋. Here we only use the information of patients who

are infected before January 23th to avoid the biased sam-
pling problem discussed in Liu et al. (2020). The total num-
ber of samples is 1770. We use these data to estimate 𝑓1(𝑥)
and 𝑓1(𝑦 ∣ 𝑥). In the dataset, the proportions of patients
younger than 11 and patients older than 80 are very small
(1.9% and 0.6%, respectively). Considering the accuracy of
the estimation, we focus on the people aged between 11 and
80 and take these people as the whole population in our
analysis (ie,  = {11, … , 80}). We apply the kernel method
with aGaussian associate kernel introduced inKokonendji
and Kiesse (2011) to estimate 𝑓1(𝑥).
The reported integer incubation period is regarded as the

least integer greater than or equal to the true incubation
period. Let𝑍 = ⌈𝑌⌉where ⌈⋅⌉ is the ceiling function. Then
the data are regarded as i.i.d. sample from 𝑍,𝑋 ∣ 𝐼 = 1 and
denoted by (𝑍1, 𝑋1), … , (𝑍𝑛, 𝑋𝑛). We assume conditional
on 𝑋 = 𝑥 the incubation period 𝑌 follows a Weibull distri-
bution, which is commonly used in analyzing incubation
period (Lauer et al., 2020). Andwe further assume the con-
ditional density has the form

𝑓1(𝑦 ∣ 𝑥, 𝛼0, 𝛾0) =
𝛼0

𝛾T0 𝑣(𝑥)

(
𝑦

𝛾T0 𝑣(𝑥)

)𝛼0−1

exp
⎡⎢⎢⎣−

(
𝑦

𝛾T0 𝑣(𝑥)

)𝛼0⎤⎥⎥⎦,
where 𝑣(𝑥) = (1, 𝑥, 𝑥2)T and 𝛼0 and 𝛾0 = (𝛾10, 𝛾20, 𝛾30)

T are
unknown parameters satisfying 𝛼0 and 𝛾T

0
𝑣(𝑥) > 0. Let 𝛼 > 0,

𝛾 = (𝛾1, 𝛾2, 𝛾3)
T and 𝑉𝑖 = (1, 𝑋𝑖, 𝑋

2
𝑖
)T for 𝑖 = 1, … , 𝑛. Then the log

likelihood function Odell et al. (1992) is

𝑙(𝛼, 𝛾) =
1

𝑛

𝑛∑
𝑖=1

log

{
exp

[
−

(
𝑍𝑖 − 1

𝛾T𝑉𝑖

)𝛼
]
− exp

[
−

(
𝑍𝑖

𝛾T𝑉𝑖

)𝛼
]}

,

and 𝑓1(𝑦 ∣ 𝑥) can be estimated by 𝑓1(𝑦 ∣ 𝑥, 𝛼̂, 𝛾), where (𝛼̂, 𝛾T)T

is the maximum likelihood estimator. Here we use a
quadratic function to fit the conditional distribution based
on the exploratory data analysis. The estimated values of
the parameters with standard error in the bracket are listed
as follows:
In the Web Appendix D, we show that the assumed

model fits our data well.
Since the number of infected people in China is rela-

tively small compared to the entire population, we use the
age distribution of the entire population of China to esti-
mate the age distribution conditional on 𝐼 = 0 and apply
the kernel methodwith a Gaussian associate kernel to esti-
mate 𝑓0(𝑥).
In this section, we choose 𝜖 = 0.05 that is sufficient

to control the epidemic under the scenario discussed in
Remark 1. Quarantine durations for people at different
ages obtained by the proposed method and the two quan-
tile methods are plotted in Figure 3.
Figure 3 shows that the 0.95 sample quantile of incuba-

tion period is 15 days, which is 1 day longer than the current
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F IGURE 3 Quarantine duration for people at different ages:
0.95 quantile, red dashed line; 0.95 conditional quantile, green
dashed dotted line; optimal duration, blue solid line. This figure
appears in color in the electronic version of this article, and any
mention of color refers to that version

TABLE 2 Estimated parameters

Parameter 𝜶𝟎 𝜸𝟏𝟎 𝜸𝟐𝟎 𝜸𝟑𝟎

Estimation 1.57 (0.03) 9.09 (0.92) −0.11 (0.04) 0.0015 (0.0005)

quarantine duration in China. The estimated 0.95 condi-
tional quantile of incubation period of middle-aged people
is shorter compared to the young people and the old peo-
ple. The estimated optimal quarantine durations are close
to 15 days for people older than 30 and are shorter than
15 days for people younger than 30. This is because the
optimal quarantine rule depends on the probability that
an individual is infected and young people are less likely
infected in the dataset we consider. For 𝑥 ∈  , let 𝑡̂q(𝑥) and
𝑡̂cq(𝑥) be the quarantine durations obtained by 0.95 sample
quantile and 0.95 estimated conditional quantile, respec-
tively. To compare the performance of these two methods
and the optimal quarantine rule, we calculate the AQD of
uninfected people and EP by

80∑
𝑗=11

𝑝𝑗𝑡̂𝑠(𝑗),

and

1 −

∑1770

𝑖=1
1{𝑍𝑖 ≤ 𝑡̂𝑠(𝑋𝑖)}

1770
,

where 𝑝𝑗 denotes the population proportion aged 𝑗 in
China for 𝑗 = 11, … , 80 and 𝑠 denotes q, cq, or opt, respec-
tively. Because noninteger quarantine duration is not prac-
tical, the quarantine duration is rounded to the nearest
integer in calculation. The results are listed in Table 3.

TABLE 3 Average quarantine duration of uninfected people
and escape probability associated with the three quarantine rules
using age as a feature

Method AQD EP
0.95 quantile 15.00 3.3%
0.95 conditional quantile 15.04 3.3%
optimal quarantine rule 14.32 3.8%

Table 3 shows that the optimal quarantine rule has the
shortest AQD with guaranteed EP. The 0.95 conditional
quantile and the optimal quarantine rule are derived based
on the conditional distributionmodel of incubation period.
Their reasonable escape probabilities in Table 3 also justify
our model assumption. The improvement is not great in
terms of AQD. The reasonmay be that age does not provide
sufficient information for obtaining a quarantine rule with
good performance. Next, let us consider an example with
infection rate in the individual’s origin country observed in
addition to age.

4.2 Optimal quarantine rule based on
age and infection rate of origin country

Travel quarantine for out-of-country travelers and resi-
dents from another country is a common policy around the
world during the COVID-19 pandemic. When determin-
ing quarantine duration, the traveler’s age and infection
rate of the disease in the origin country can be observed.
In this case, infection rate in a traveler’s origin country is
an important feature that reflects the probability that the
traveler is infected. For every country, we can calculate a
current infection index (CII): CII = 106 ∗ 𝑎∕𝑏 where 𝑎 is
the number of new cases in the country during the last 2
weeks and 𝑏 is the total population of the country. Here
we multiply the rate by a constant 106 to avoid this index
being too small. We only consider the number of infec-
tions in the last 2 weeks because the number of infections
before 2 weeks provides little information about the infec-
tion probability of current traveler. We divide the coun-
tries with different CIIs into three groups because many
countries have similar infection rates. Countries with CII
larger than 300 are divided into the high-risk group, coun-
tries with 50 < CII ≤ 300 are divided into themedium-risk
group, and countries with CII ≤ 50 are divided into the
low-risk group. Besides age, we take the risk level of the
traveler’s origin country as a feature.
In this subsection,we obtain the optimal quarantine rule

using information from multiple datasets. We consider 79
countries in our model because their data are relatively
complete in all the data sources. The number of confirmed
cases of each country is reported by the Center for Systems
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Science and Engineering (CSSE) at JohnsHopkins Univer-
sity (JHU) (Dong et al., 2020). We use the number of cases
confirmed between May 1st to May 14th in each country to
calculate theCII.WebTable S2 shows countries at different
risk levels.
As in the previous subsection, we focus on the people

aged between 11 and 80. We approximate the feature dis-
tribution of uninfected people by the distribution of the
entire population (people in the 79 countries) and estimate
𝑓0(𝑥) by the kernel method with a Gaussian associate ker-
nel proposed by Kokonendji and Kiesse (2011) using data
from the website of the United Nations (Department of
Economic and Social Affairs PopulationDynamics, United
Nations, 2019). Data of 5008 COVID-19 patients from Xu
et al. (2020) are used to estimate 𝑓1(𝑥). However, we take
the proportion of confirmed cases from different countries
reported by CSSE at JHU instead of that in the dataset
(Open COVID-19 Data Working Group, 2020) of Xu et al.
(2020) since the proportion reported by CSSE at JHU is
regarded more exact.
The dataset of Xu et al. (2020) does not contain the incu-

bation period of the patients. To overcome this difficulty,
we assume that the distributions of the incubation period
for patients at the same age are the same across coun-
tries at different risk levels. Thus, we can use the condi-
tional distribution model of the incubation period fitted
in the previous subsection to impute the missing incuba-
tion period. Then we can estimate the three individualized
quarantine durations using the imputed dataset. Here we
employ the multiple imputation method that is standard
in missing data literature. See, eg, Little and Rubin (2019).
We impute the dataset 10 times and average the result-
ing estimators over different imputed datasets. Quarantine
durations obtained by the sample 0.95 quantile, the esti-
mated 0.95 conditional quantile, and the estimated opti-
mal quarantine duration are plotted in Figure 4. It can be
seen that the optimal quarantine rule gives a much longer
duration to travelers from the high-risk countries, a dura-
tion slightly longer than the 0.95 quantile to travelers from
the medium-risk countries, and a very short duration to
travelers from the low-risk countries. Optimal quarantine
durations for travelers from high-, medium-, and low-risk
countries show different trends on age. The trend of high-
and medium-risk countries is consistent with the trend
of the conditional quantile curve. This may be because
if the infection rate is relatively high, optimal quarantine
duration mainly depends on the incubation period. For
travelers from low risk countries, the optimal quarantine
rule gives shorter quarantine duration for young people
compared to old people. The reason may be that in the
low-risk countries, infection rate of young people is rel-
atively low. The sample 0.95 quantile and the estimated
0.95 conditional quantile methods give quarantine dura-
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F IGURE 4 Quarantine durations for people at different ages:
0.95 quantile, red dashed line; conditional quantile, green dashed
dotted line; optimal quarantine duration for travelers from high-risk
countries, pink dotted line; optimal quarantine duration for travelers
from medium-risk countries, black short dashed line with crosses;
optimal quarantine duration for travelers from low-risk countries,
blue solid line. This figure appears in color in the electronic version
of this article, and any mention of color refers to that version

TABLE 4 Average quarantine duration of uninfected people
and escape probability associated with the three quarantine rules
using age and the risk level of the traveler’s origin country as
features

Method AQD EP
0.95 quantile 15.00 5.1%
0.95 conditional quantile 14.99 4.9%
optimal duration 10.94 4.2%

tions that are not dependent on the risk level of the origin
country because these twomethods are independent of the
national infected rate by definition.
We calculate the AQD of uninfected people and the EP

for the three methods by a similar procedure as in the pre-
vious subsection. The results are reported in Table 4.
Table 4 shows that our optimal quarantine rule shortens

the AQD of uninfected people greatly with the guaranteed
probability of finding the infected individual. Comparing
the results in Tables 3 and 4, we can see that it is signif-
icant to add the risk level of the traveler’s origin country
as a feature for the optimal rule. If one can collect other
features that are associated with the incubation period or
the probability that an individual is infected, the optimal
quarantine rule may perform even better.

5 DISCUSSION

Although we mainly discuss COVID-19 in this paper,
our method is general and can be applied to establishing
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optimal quarantine rule for any infectious disease as long
as some historical quarantine data are available. Clearly,
the conception “optimal” depends on the available fea-
tures. As mentioned before, if there is no available feature,
then our optimal quarantine duration reduces to the 1 − 𝜖

quantile of the incubation period. There may be some
other features that are useful to determine the quarantine
duration. For example, underlying diseases of an individ-
ual and whether an individual is a close contact may also
serve as important features. Moreover, it is common that
a pathogen test is undertaken before starting quarantine.
The test result can also serve as an important feature even
though the sensitivity and specificity of the test are not
that high. If more features are included, more information
is used. However, if we use too many features to construct
the optimal quarantine rule, it may be hard to estimate
the densities and hence the optimal quarantine duration
well. Hence, there is a trade-off. It is of great importance
to select features that are the most important to determine
the quarantine duration and use a few features to con-
struct a quarantine rule that uses information sufficiently.
This may be an interesting topic for future works.
The proposed quarantine rule is based on some features.

Some of them are stable across time and the others may
change from time to time. For example, a country with a
high infection rate may have a low infection rate after a
fewmonths. Hence, we should use the current feature dis-
tribution to build the current quarantine rule.
The expected number of onward infections may be

another useful metric. The use of the metric may lead to
another rule. As pointed out by a referee, however, it may
be impractical to consider such a metric since it is hard to
obtain related data andmodel them. Another quantity one
may want to consider is the subsequent infection, that is,
the number of infections caused by infected people who
are released from the quarantine. This is actually consid-
ered by the reproductive number, which is discussed in
Remark 1. According to Remark 1, the quarantine rule pro-
posed in this paper controls the subsequent infection in the
average sense by the reproductive number. How to control
the subsequent infection more precisely may be an inter-
esting direction for future research.
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