
Oncotarget556www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 1

Tumor circulating DNA profiling in xenografted mice exposed to 
intermittent hypoxia

Rene Cortese1, Isaac Almendros1, Yang Wang1 and David Gozal1

1 Department of Pediatrics, Section of Pediatric Sleep Medicine, Pritzker School of Medicine, The University of Chicago, 
Chicago, IL 

Correspondence to: David Gozal, email: dgozal@uchicago.edu
Keywords: Obstructive sleep apnea, Intermittent hypoxia, Circulating DNA, Xenograft, Epigenetics, DNA methylation
Received: September 08, 2014 Accepted: November 15, 2014 Published: November 16, 2014

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT
Intermittent hypoxia (IH) a hallmark characteristic of obstructive sleep apnea 

(OSA), is proposed as a major determinant of processes involving tumor growth, 
invasion and metastasis. To examine whether circulating DNA (cirDNA) in blood 
plasma reflects changes in tumor cells under IH conditions, we used a xenografted 
murine model. Mice engrafted with TC1 epithelial lung cancer cells and controls 
were exposed to IH or room air (RA) conditions. Plasma cirDNA amounts were 
significantly increased in mice exposed to IH (p<0.05). Significant associations 
between plasma cirDNA concentrations and tumor size, weight and invasiveness also 
emerged (p<0.05). Using a methylation microarray-based approach, we identified 
2,094 regions showing significant differential cirDNA modifications. Systems biology 
analyses revealed an association with molecular pathways deregulated in cancer 
progression and with distal and TSS-associated transcription factor binding sites. We 
detected clusters of highly variable regions in chromosomes 7, 13, 14 and X, which 
may highlight hotspots for DNA deletions. Single locus displayed high intragroup 
variation, suggesting cellular heterogeneity within the tissue may be associated to 
cirDNA release. Thus, exposures to IH increase the shedding of cirDNA into circulation, 
which carries epigenetic modifications that may characterize cell populations within 
the tumor that preferentially release their DNA upon IH exposure.

INTRODUCTION

Sleep disorders in general, and more particularly 
obstructive sleep apnea (OSA), have been associated 
with accelerated cancer progression, aggressiveness, 
and mortality [1, 2]. OSA is a highly prevalent disorder 
that occurs in all age groups and both sexes with an 
estimated prevalence of 4 % to 10 % in adults [3]. This 
disorder is characterized by repetitive obstructions of 
the upper airway during sleep that result in intermittent 
hypoxia (IH), increased inspiratory efforts, repetitive 
arousals from sleep to reestablish respiration leading to 
sleep fragmentation (SF) and episodic elevations in the 
concentrations of blood CO2 [4, 5]. In the last 2 decades, it 
has become apparent that numerous and serious end-organ 
morbidities are associated with OSA and virtually affect all 
organ systems, including cancer [1-10]. The mechanisms 
potentially leading to the cardiovascular [11-14], cognitive 

[15-17], and metabolic [18-20] morbidities of OSA have 
been extensively studied in human and animal models, 
with IH being proposed as a major determinant of the 
processes involving tumor invasion and metastasis [21, 
22]. Indeed, we have recently shown that tumor growth, 
cell proliferation, migration and invasiveness are all 
increased in murine models of OSA, being selectively 
exposed to either IH [23] or SF [24]. 

Fragmented DNA is released into the bloodstream 
during the growth and expansion of tumors [25, 26]. 
Increased plasma cirDNA concentrations have been 
observed in several types of cancer, leading to the 
assumption that the concentrations of plasma cirDNA 
may serve as biomarker for early cancer detection and 
diagnosis, or for prognosis by monitoring or potentially 
predicting the response to therapies [27-31]. Increased 
plasma cirDNA concentration have also been reported 
in many other non-oncogenic pathologies as well (e.g., 



Oncotarget557www.impactjournals.com/oncotarget

trauma, sepsis, myocardial infarction, etc.; for review see 
[32]). One major challenge in the assessment of cirDNA is 
the complex origin of the nucleic acids that are present in 
circulation. Nucleic acids are released from tumors as well 
as from normal cells through several cellular mechanisms 
such as apoptosis, necrosis, exosome-mediated release, 
and shedding from macrophages after the absorption of 
necrotic cells [33-36]. The use of animal models injected 
with tumor cells (“xenografts”) enables the concomitant 
study of cirDNA in bodily fluids and tissue samples, and 
has been suggested as a useful model system to examine 
the origin and variations of cirDNA upon experimental 
interventions [37-40]. Notably, increasing concentrations 
of cirDNA in OSA patients have been identified and were 
positively correlated with disease severity, suggesting 
that cirDNA may reflect pathogenic changes that may be 
relevant to disease severity or to its associated morbidities 
such as cancer [41]. 

As tumors develop, cells undergo major epigenetic 
changes [42]. Epigenetic aberrations can be also used to 
detect and characterize malignant growth [43], particularly 
by characterizing the scope and magnitude of epigenetic 
DNA alterations in plasma, serum and other bodily fluids 
[44]. In this study, we describe the first comprehensive 

cirDNA analysis in cancer associated to intermittent 
hypoxia in an animal model, as a hallmark of OSA in 
humans. Using xenografted mice exposed to IH and 
control conditions, we here show a significant increase 
on plasma cirDNA amounts, which is associated with the 
severity of the tumor. Moreover, we provide a large-scale 
epigenetic profiling of plasma cirDNA in xenografted 
animals exposed to intermittent hypoxia. We used system 
biology approaches to genomic variations associated 
with IH exposure. Lastly, we applied single-locus qPCR 
strategies to study candidate loci in plasma cirDNA and 
genomic DNA from tissue and blood samples.

RESULTS

Tumor growth and invasion in xenografted mice 
exposed to intermittent hypoxia

Tumor size and weight in the XenoIH group were 
higher compared to the XenoRA group (Figures 1A and 
1B, respectively). We found significant differences for 
tumor size (median sizes were 745.78 mm3 and 2211.43 

Figure 1: Effects of IH exposure on xenografted tumors. Tumors in animals exposed to IH grew significantly larger than those 
in control mices. Y-axis depicts the volume (panel A) and weight (panel B) of the tumors assessed at the time of sacrifice (4 weeks after 
injection). Horizontal red lines correspond to the median size for each group. Panel C illustrates tumor invasiveness as observed upon IH 
exposures (left panel) and non- invasive tumor, as observed mainly in RA conditions (right panel).
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mm3 for XenoRA and XenoIH, respectively; t = -2.66, df 
= 8.61, p-value = 0.026; Welch Two Sample t-test), and 
tumor weight (median weights were 0.72 mg and 1.45 
mg for XenoRA and XenoIH, respectively; t = -2.27, df 
= 13.16, p-value = 0.040). Invasion towards the skeletal 
muscle was observed in all tumors in the XenoIH group 
(n=8), but only in 3 out of 8 tumors in the XenoRA group 
(p=0.025, Fisher’s Exact test) (Figure 1C). 

Quantification of circulating DNA (cirDNA) in 
plasma

Mean cirDNA amounts were highest in IH-
exposed mice, particularly in XenoIH mice, with a 
significant group effect (F (3, 32) = 6.89, p=0.001; one-
way ANOVA) (Figure 2A). Tukey post-hoc comparisons 
indicated significant differences between the XenoRA and 
XenoIH groups (M=-510.62, 95% CI (-940.83, -80.42), 
p=0.015). Pairwise comparison showed that mice bearing 
the tumors (XenoRA and XenoIH groups together, 
mean cirDNA concentration = 591.28 ng/mL plasma) 
had significantly higher plasma cirDNA concentration 
than those not carrying the tumors (CtrlRA and CtrlIH 

together, mean cirDNA concentration = 271.44 ng/mL 
plasma) (t = -2.47, df = 21.05, p-value = 0.022, Welch 
Two sample t-test). Exposure to IH resulted in increased 
plasma cirDNA concentrations in xenografted mice (mean 
cirDNA concentrations: XenoIH=846.59 ng/mL plasma, 
XenoRA=335.96 ng/mL plasma; t = -2.53, df = 7.30, 
p-value = 0.038), and in mice not carrying the tumors, 
although the latter differences were not statistically 
significant (mean cirDNA concentrations: CtrlIH=352.76 
ng/mL plasma, CtrlRA=190.12 ng/mL plasma; t = -1.59, 
df = 12.14, p-value = 0.138).

Significant correlations emerged between the 
concentration of plasma cirDNA and tumor weight 
(R2=0.580, p=0.029; Pearson’s product-moment 
correlation test) (Figure 2B) and tumor size (R2=0.765, 
p=0.001) (Figure 2C), but not with the weight of the mice 
(R2=-0.134, p=0.437) (Figure S1). Furthermore, we found 
that mice bearing invasive tumors (mean concentration 
718.65 ng/mL plasma) had significantly higher plasma 
cirDNA concentrations than those bearing non-invasive 
tumors (mean concentration 311.06 ng/mL plasma) (t = 
2.53, df = 10.79, p-value = 0.028; Welch Two Sample 
t-test) (Figure 2D).

Figure 2: Plasma cirDNA concentration in xenografted and control mice under IH and RA conditions. A) Mouse 
bearing the tumors showed significantly increased plasma cirDNA amounts. IH exposures are associated with elevated plasma cirDNA 
concentrations in xenografted (XenoIH and XenoRA groups) and control (CtrlIH and CtrlRA groups). Horizontal lines correspond to the 
mean size for each group. B) and C) Plasma cirDNA showed a significant positive correlation with tumor size (Panel B) and weight (Panel 
C). Dashed lines depict the trend line for each correlation. D) Plasma cirDNA is significantly elevated in invasive tumors compared to non-
invasive tumors. Plasma cirDNA concentration were assessed by qPCR. p-values < 0.05 are considered significant (t-test).
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Epigenomic profiling of plasma cirDNA

We selected 3 samples that best represented each 
group according to the biological variables (Table S1) 
and interrogated these samples using microarrays. Data 
quality control showed that all microarray results were 
robust, with equivalent densities of signal intensity. All 
microarrays were included in posterior analyses (n=3 per 
group) (Figure S2). 

Of the 4,106,240 mouse-genome features on 
the microarray, 46,589 features showed statistically 
significant differences (p-value<0.05; One-way ANOVA) 
and fold changes higher than 2 (Figure 3A). Analysis of 
chromosomal distribution showed that features showing 
differential microarray signal were overrepresented on 
chromosomes 7 (p=0.009, OR=0.96, 95% CI = 0.92-
0.98, Fisher’s exact test), 13 (p=0.005, OR=1.07, 95% 
CI = 1.02-1.12), 14 (p=0.04, OR=1.05, 95% CI = 1.00-
1.10) and X (p=0.002, OR=0.93, 95% CI = 0.88-0.97) 
(Figure 2B, Table S2). Figure 2C shows the distribution 
of the candidate regions across those chromosomes. We 
identified two chromosomal bands containing significantly 
overrepresented clusters of features with decreased 
microarray signal in the Xeno IH group compared to the 
XenoRA group: 7qB3 (p=0.002, OR=0.00, 95% CI = 0.00-
0.50) and XqF5 (p=0.039, OR=0.00, 95% CI=0.00-1.13)
(Table S2). 

To detect genomic regions showing differential 
cirDNA modification, adjacent probes showing equivalent 
differential cirDNA modification were grouped. We 
identified 2,094 differentially modified regions, with 1,053 
and 1,041 regions showing higher cDNA modification in 
XenoIH and XenoRA groups, respectively (Table S3). We 
did not detect significant differences in the length (996.25 
± 320.84 and 1002.27 ± 578.88 nucleotides, respectively) 
or number of features (26.51 ± 8.82 and 26.61 ± 12.66 
features, respectively) between regions displaying higher 
cirDNA modifications in the XenoIH or XenoRA groups 
(p=0.557; Wilcoxon rank sum test) (Figure 3A and 3B). 

Among the differentially modified regions, 1,568 were 
associated to annotated RNA transcripts, with 1,406 
associated to mRNA transcripts and 107 to non-coding 
RNAs (ncRNA). Regions were mapped associated to 
the Transcription Start Site (TSS) (n=231; association 
was defined as TSS ± 2 kb) or to the gene coding portion 
(n=1,337) of the gene (Table S3). We found significant 
differences in the distribution of the distance to the TSS 
between regions with higher cirDNA modifications in 
the XenoIH (n=723; mean distance to TSS=48.6 ± 84.4 
kbp) and the XenoRA groups (n=845; mean distance to 
TSS=68.8 ± 115.0 kbp) (p=6.41 x 10-6; Wilcoxon rank sum 
test) (Figure 4C). The number of TSS-associated regions 
was significantly overrepresented among the regions 
with higher cirDNA modification in the XenoIH group 
(n=131/723) compared to those in the XenoRA group 
(n=100/845) (p=5.8 x 10-4 OR=1.65, 95% CI = 1.23-2.21, 
Fisher’s exact test). To identify the putative regulatory 
elements located within those regions, we selected the 
top 10 motifs in each group and compared them against 
databases of DNA binding factors. We identified 53 DNA 
binding factors, of which 13 were unique for the regions 
with high cirDNA modification in the XenoIH group, 
28 for those in the XenoRA group and 15 were shared 
between the candidate lists. Table 1 shows the top 10 
transcription binding site regions found in each group. 

We further assessed the Gene Ontology (GO) 
groups overrepresented in regions displaying differential 
cirDNA modifications (Table S4). Among the regions 
showing higher cirDNA modification in the XenoIH 
group, we observed enrichment in categories associated to 
glutamate metabolism (i.e. GO:0014065~phosphoinositide 
3-kinase cascade; 45.9 FC) and transport mechanisms 
(i.e. GO:0051938~L-glutamate import; 23.0 FC; 
GO:0032983~kainate selective glutamate receptor 
complex; 23.2 FC). Conversely, in regions with cirDNA 
modification that were lower in XenoIH, we observed 
high enrichment in categories associated to establishment 
of location (i.e. GO:0010159~specification of organ 
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Figure 3: Large-scale cirDNA modification profiling using promoter microarrays. A) Volcano plot of microarray data. 
The x-axis represents fold changes differences between the groups, with coefficients expressed in the log2 scale. Samples with increased 
microarray signals in XenoIH and XenoRA groups had positive and negative coefficients, respectively. The y-axis represents the -log10-
transformed p-values. The horizontal dashed red line depicts the cutoff value for the p-value (-log10(p< 0.05)=1.3). The vertical dashed red 
lines depict the cutoff vallues for the fold changes (log2(4)=2). B) Chromosomal distribution of microarray features showing differential 
cirDNA modification between the groups. Stacked bars show the number of features that showed (black) or not showed (white) differential 
cirDNA modification per chromosome. Significance level have been determined by Fisher test (**: p<0.01; *: p<0.05) C) Genome browser 
images showing the distribution of differential cirDNA modification in chromosomes 7, 13, 14 and X. Chromosome bands are shown in 
black, grey and white scale. RefSeq genes are shown in blue. Regions of differential cirDNA modification in XenoIH and XenoRA groups 
are shown as red and green bars, respectively. Red and green peaks correspond to fold changes higher in the XenoIH and XenoRA groups, 
respectively.
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position; 24.8 FC), cyclic nucleotide metabolism (i.e. 
GO:0004115~3’,5’-cyclic-AMP phosphodiesterase 
activity; 18.7 FC) and cellular organization (i.e. 
GO:0016010~dystrophin-associated glycoprotein 
complex; 9.5 FC; GO:0005605~basal lamina with 8.8 FC). 

Single locus DNA modification analysis of 
candidate regions

We selected 6 loci (Table 2, Figure 5A) displaying 
significant differential cirDNA modification in the 
microarray analysis (Rab3a, Atp6v0c, B4galnt1, Slc1a1, 
Ttl and Krt15) and whose corresponding genes have 
been reported as associated to lung cancer phenotypes 
(Table 2). The qMSRE-PCR assays contained, at least, 
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Figure 4: Characterization of regions showing differential cirDNA modifications. Adjacent microarray features showing 
equivalent differences between the XenoIH and XenoRA groups were combined, according to the MAT algorithm. A) Density plot of the 
number of features per region in each group. B) Density plot of the length of the candidate region in each group. C) Distribution of the 
distance to TSS in each group. The distance from the begining of each region to the closest TSS are shown in the X-axis. Gray-shaded area 
depicts the segment designed as “TSS-associated”(± 2 kbp from TSS). Dashed and solid lines represent the XenoIH and XenoRA groups, 
respectively. 

Figure 5: Single locus cirDNA modification analysis. A) Plasma cirDNA modifications were assessed in six loci by qMSRE-PCR 
in the same samples used in the microarray. Y-axis shows the XenoIH/XenoRA fold changes. B) cirDNA modification by qMSP results in 
all plasma samples. Y-axis represents the % of cirDNA modification. C) and D) qMSP results in plasma, tissue and blood samples for the 
Rab3a and Ttl loci, respectively. Solid black, dashed bars, solid gray and dotted bars represent the XenoRA, XenoIH, CtrlRA and CtrlIH 
groups, respectively. The height of the bars corresponds to the mean values. Error bars are SE. Significance level was determined by F-test 
(**: p<0.01; *: p<0.05).



Oncotarget563www.impactjournals.com/oncotarget

one site for the restriction enzyme used in the microarray 
analysis. We observed high intragroup variation in the 
cirDNA modification enrichment across all studied loci. 
Noteworthy, while the MATscores show the cumulative 
DNA modification effects at the restriction sites of the 
three enzymes across extended DNA fragments captured 
by adjacent probes in the tiling microarray, qMSRE-PCR 
assays cover much shorter DNA fragments (around 100 
bp) enabling the assessment of DNA modification only at 
one restriction site. Therefore, the precise CG positions 
driving the cirDNA modifications observed by microarray 
might have not been targeted in the verification effort. 
Despite the biological and methodological caveats, we 
detected one locus (Rab3a) showing significant cirDNA 
modification differences between the XenoRA and 
XenoIH groups (mean enrichment: XenoRA=0.7 ± 0.3 FC, 
XenoIH=9.83 ± 5.2 FC; p=0.008, F-test) (Table 2; Figure 
5A). 

Next, we extended the analysis to all mice included 
in the study. We quantified the cirDNA modification in 
the 6 loci in plasma cirDNA (Table 2 and Figure 5B) as 
well as genomic DNA samples from tumor tissues and 
peripheral blood cells (PBC) (Table 2 and Figures 5C and 
D). Quantitative methylation specific PCR (qMSP) assays 
contained at least one restriction site for the enzymes used 
in the microarray and qMSRE-PCR assays. Similarly to 
the observations by qMSRE-PCR, intragroup variation 
in plasma cirDNA samples was high. We detected 
two loci (Slc1a1 and Ttl) showing significant cirDNA 
modification differences between the groups (Slc1a1 
locus: mean cirDNA modification: XenoRA= 28.7 ± 
15.9 %, XenoIH= 5.9 ± 2.8 %; p=0.005; Ttl locus: mean 
cirDNA modification: XenoRA= 26.9 ± 20.8 %, XenoIH= 
9.0 ± 4.1 %; p=0.025) (Figure 5B). We quantified the DNA 
modification values in two loci (Rab3a and Ttl; Table 2 
and Figure 5C and D, respectively) in genomic DNA 
from tissue and PBC samples. The observed intragroup 
variation was lower than in plasma cirDNA. For the 
Rab3a locus, we detected significant DNA modification 
differences in tissue genomic DNA concordant with those 
observed in plasma cirDNA (mean cirDNA modification: 
XenoRA= 8.4 ± 1.2 %, XenoIH= 12.6 ± 2.8 %; p=0.042), 
but no differences were detected in PBC genomic DNA 
(mean cirDNA modification: XenoRA= 9.9 ± 1.2 %, 
XenoIH= 7.6 ± 1.3 %; p=0.916) (Figure 5C). Conversely, 
DNA modification percentages in the Ttl locus were 
equivalent for the XenoRA and XenoIH groups in tissue 
genomic DNA (mean cirDNA modification: XenoRA= 
84.4 ± 5.6 %, XenoIH= 83.6 ± 6.5 %; p=0.796), but DNA 
modification in PBC genomic DNA was higher in XenoRA 
than in XenoIH (mean cirDNA modifications: XenoRA= 
86.5 ± 16.8 %, XenoIH= 42.1 ± 13.3 %; p=0.709) in 
concordance with plasma cirDNA results, though the 
evident differences did not reach statistical significance 
(Figure 5D). 

DISCUSSION

In this study, we combined the benefits of a murine 
xenograft model with sensitive detection using real-time 
PCR methods and epigenetic profiling using high-density 
microarrays to study cirDNA in tumors exposed to IH, a 
hallmark of OSA.

Although elevated amounts of plasma cirDNA have 
been widely reported in the majority of cancer types, 
their application as biomarkers has been questioned, 
primarily because of the high inter-patient variation 
within cases and controls [45, 46]. We found that the 
amount of cirDNA in plasma was significantly increased 
in xenografted mice when compared to those not bearing 
the tumors (Figure 2A). We observed some intra-group 
variation, even when our experimental setup enabled the 
control of phenotypic variables that can covariate with 
shedding of DNA to circulation (i.e. age, sex, genetic 
background, etc.) or technical variables for the cirDNA 
handling (i.e. time to cirDNA isolation and cirDNA 
isolation batches), which could not be readily controlled 
in many studies using clinical samples. When analyzing 
possible covariates, we only found significant correlation 
of plasma cirDNA concentration with tumor size, weight 
and invasiveness, but not with the weight of the animal 
bearing the tumor or technical parameters. Our findings 
suggest that inter-individual variation in cirDNA shedding 
might be rather related to biological features of the tumor 
upon IH exposures. In particular, we found that exposure 
to IH during sleep was associated to increased plasma 
cirDNA in both xenografted and control mice (Figure 
2A). These findings concur with reports elevated plasma 
cirDNA amount in OSA patients [41]. Furthermore, we 
have recently reported that two of the major components 
of OSA – sleep fragmentation and IH – promote more 
aggressive tumor biological characteristics [23, 24]. 
While the results of the present study consolidate these 
previous findings, further studies with clinical samples are 
warranted to investigate a putative biomarker application 
for cirDNA quantitation among cancer patients with 
and without concurrent sleep disorders, particularly 
considering the strong emerging epidemiological evidence 
linking adverse cancer outcomes in the presence of OSA 
[1, 2, 47].

Epigenetic DNA modifications (mainly, cytosine 
methylation and hydroxylmethylation), histone 
modifications and non-coding RNAs have been 
demonstrated as fundamental molecular mechanisms 
for the establishment of oncogenic phenotypes and 
tumor progression [42]. Furthermore, sensitive detection 
of epigenetic marks in cirDNA have been shown as 
potential biomarkers [44] and some of them are already 
being applied in clinical diagnostic assays (e.g., SEPT9 
DNA methylation for early detection and screening 
of colorectal cancer [48, 49]). Large-scale cirDNA 
modification analysis using high density microarrays or 
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deep-sequencing enables the evaluation of thousands 
of loci in parallel to generate molecular signatures for 
diagnostics [50], but also enables the evaluation of 
variation at the epigenomic level. Here, we identified 
more than 2,000 regions showing differential cirDNA 
modifications between xenografted tumors exposed to IH 
or RA conditions (Figure 3A and Table S3). These regions 
were associated with more than 1,400 annotated mRNA 
transcripts and over 100 ncRNAs, suggesting a major role 
of epigenetic processes in the modulation of the tumor 
phenotype by IH-exposure. 

We consequently applied system biology approaches 
to identify possible associations of these regions to 
major molecular mechanisms of genome regulation. 
Regions with higher cirDNA modification upon IH 
exposure were preferentially associated with regulatory 
elements proximal to TSS, while regions with decreased 
cirDNA modification were preferentially associated 
to distal regulatory elements (Figure 4C and Table 
1). Several molecular models have been proposed in 
which the interplay between DNA modification and the 
binding of transcription factors (TFs) at promoter and 
enhancer regions regulate the expression of the cognate 
genes (reviewed in [51]). Our findings support further 
investigation on the precise epigenetic regulation of 
TSS-associated and distal regulatory elements in sleep 
disorders. Gene ontology analysis revealed an enrichment 
of genes involved in glutamate metabolism and transport 
among genes associated to regions gaining cirDNA 
modification upon IH-exposure during sleep. Concordant 
with our findings, it has been shown that cells grown 
under hypoxia depend on the reductive carboxylation 
of glutamine-derived α-ketoglutarate for de novo 
lipogenesis and tumor growth [52]. Moreover, it has been 
demonstrated that the glutamate-transporter SLC1A5 is 
essential for cell growth in lung cancer [53] and that the 
intake of L-glutamine regulates mTOR signalling [54]. 

We detected clusters of variation of microarray 
signals in the XenoIH group in chromosomes 7, 13, 14 and 
X (Figures 2B and 2C). In the microarray-based method, 
decrease of signals in large regions may be due to a loss of 
cirDNA modification, but also to genome loss by deletions 
of chromosome re-arrangements [50]. Partial losses in 
chromosomes 7 and 14 have been reported in mouse 
lung adenocarcinoma cell lines [55]. By analyzing signal 
clustering in chromosomal bands, we identified regions of 
significant loss of signal at 7qB3 and XqF5 loci. Although 
there is no information available on chromosomal 
rearrangements in murine lung tumor cell lines, synteny 
analysis revealed orthologous regions in human (15q15.3 
and Xp22.2 for 7qB3 and XqF5, respectively), which 
are associated to malignant phenotypes in the lung. For 
example, loss of heterozygosity (LOH) at 15q15 has been 
reported in lung carcinomas [56]. In turn, the Xq22 region 
harbors several putative tumors suppressor genes which 
are inactivated by mutations in lung cancer cell lines and 

primary tumors (i.e. GRPR [57], VEGFD [58],and MID1 
[59]).

Analysis at single loci using quantitative approaches 
revealed high heterogeneity in cirDNA modification 
levels among plasma samples belonging to the same 
group (Figure 5). This is a common trend in epigenetic 
studies using cirDNA, which may hinder the transfer of 
basic research findings to clinical applications [60-62]. 
There are two main factors that may explain the observed 
heterogeneity. First, plasma cirDNA has a complex origin 
[35, 63, 64], since not only tumor cells, but also epithelial 
cells and circulating cells in blood can shed their DNA 
into circulation. Second, different cellular types and 
cells at different degree of differentiation have different 
epigenetic profiles, even when they belong to the same 
tissular structure (i.e. organ or tumor) [65]. The use of 
the xenografted model enabled the verification in tissue 
as well as blood samples from the same animal to further 
investigate the origin of the variation. Two loci showing 
significant differences in plasma cirDNA modifications 
illustrate the complexity of the plasma cirDNA profiles. 
Differences in the Rarb3a locus were also detected in 
tissue samples, but the difference was not present in PBC 
samples (Figure 5C), suggesting that the cirDNA profile 
of this locus represents that found in the tumor and DNA 
modification profiles in blood cells will not mask the 
results. On the contrary, differences in the Ttl locus did 
not represent those in the tissue, but rather reflected those 
found in the blood samples (Figure 5D). 

In summary, we have shown that exposures to IH 
during sleep mimicking those routinely encountered in 
moderately severe OSA patients are accompanied by 
increases in the shedding of cirDNA into circulation, 
in both tumor and non-tumor-injected mice, with the 
presence of tumor further increasing cirDNA. Futhermore, 
our large-scale profiling approach revealed that cirDNA 
carries epigenetic modifications that may characterize 
specific cell populations. Furthermore, the intrinsic 
high variability of cirDNA methylation within the 
tumor suggests that some tumor cell populations may 
preferentially release their DNA upon IH exposures.

METHODS

Animals, hypoxic exposures, and epithelial lung 
tumor model

C57BL/6J male mice (7-week old) were acquired 
from Jackson Laboratories (Bar Harbor, ME). IH 
exposures and tumor characterization were performed as 
previously described [23]. In brief, mice were subjected 
to IH with alternating cycles of 90 seconds (6% FIO2 
followed by 21% FIO2, 20 cycles/hour) for 12 hours/day 
during daylight followed by 21% FIO2 for the remaining 
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12 hours. The control group was exposed to continuous 
circulating 21% FIO2 (RA). Mice were pre-exposed during 
2 weeks to either RA or IH, and half of the mice were 
then randomly selected and injected with 1 x 105 TC1 
murine lung tumor cells in the left flank. Every 3 days, 
tumor volume was estimated. After 4 weeks from tumor 
injection, mice were sacrificed and tumors excised and 
weighed. All experimental procedures were approved by 
The Institutional Animal Care and Use Committee of the 
University of Chicago.

Plasma cirDNA and genomic DNA isolation

Blood and tissue samples were collected after 
sacrifice and immediately processed. The plasma fraction 
was separated by centrifugation and cirDNA was isolated 
using the QIAmp Nucleic Acid isolation kit (Qiagen, 
Valencia, CA). Blood and tissue samples were lysed using 
Proteinase K digestion and genomic DNA isolated using 
standard phenol/chloroform extraction. 

cirDNA quantification

cirDNA amount in each plasma sample was 
quantified using SYBR-green based quantitative PCR 
(qPCR) [38]. A 150 bp assay was designed located in the 
intron 2 of the Kras gene. The qPCR reaction consisted 
of 10 uL plasma cirDNA, 1× ABI master mix containing 
Taq polymerase, dNTPs, SYBR green dye and ROX as 
passive dye (Life Technologies,Carlsbad, CA, USA) and 
200 nM of specific primers (Table S5). Amplification and 
analyses were performed using the 7500 System (Applied 
Biosystems, Foster City, CA). cirDNA quantity was 
calculated by CT extrapolation to a calibration curve built 
with murine DNA.

cirDNA modification profiling

Several biochemical modifications have been 
reported at cytosine residues, namely methylation (5-
mC), hydroxymethylation (5-hmC), formylation (5-fmC) 
and carboxylation (5-cmC) [66], with 5-mC being the 
most widely studied, and commonly referred as “DNA 
methylation”. Although multiple methods of epigenetic 
analysis have been developed in the last decades (reviewed 
in [67]), not all approaches are suitable for cirDNA 
epigenetic analysis due to the small amount of starting 
material. Whereas antibody-based detection methods (i.e., 
MeDIP and hMeDIP) are specific for 5-mC or 5-hmC, 
they require relatively large starting DNA amounts, and 
are therefore unfeasible for plasma cirDNA analysis. 
Therefore, we used a bisulfite-based and methylation-
sensitive enzymatic restriction approach that recognizes 
modified Cs, but does not differentiate between 5-mC 

and 5-hmC [68]. To maintain a precise terminology, we 
will therefore apply the term ‘DNA modification’ in the 
description of the experiments. 

Large-scale cirDNA epigenetic modification 
profiles were assessed in plasma cirDNA samples from 
xenografted mice exposed to IH (XenoIH group, n=3) or 
to RA (XenoRA, n=3) conditions, according to previously 
described methods [50]. Briefly, universal DNA adaptors 
were ligated to the ends of cirDNA fragments, followed 
by digestion with DNA modification-sensitive enzymes 
(HpaII, HinP1 and HpyCH4IV). cirDNA fragments that 
survived enzymatic hydrolysis were amplified by adaptor-
mediated PCR. The enriched differentially cirDNA 
modified fraction was fragmented, biotin-labeled, and 
hybridized on Affymetrix GeneChip Mouse Promoter 
Array 1.0R (Affymetrix, Santa Clara, CA) and scanned, 
according to manufacturer’s protocol. The array consisted 
of over 4.6 million probes tiled to interrogate over 28,000 
mouse promoter regions. 

Microarray data analysis

GCOS 1.3 software (Affymetrix) was used to 
produce .cel files. Microarray raw data were deposited 
in NCBI’s Gene Expression Omnibus (GEO) database 
(accession number: GSE61070). Data quality control 
was performed using the STARR package [69] in the R 
statistical environment (version 3.0.2) [70]. Data were 
analyzed using the Partek Genomic Suite Software 
(PGS) (St. Louis, MO). Signals were adjusted according 
to probe sequence and background corrected using 
the Robust Microarray method (RMA) [71]. One-way 
ANOVA was used to detect probes showing differential 
cirDNA modification between the groups. The significance 
level was set on p<0.05 and fold changes higher than 2 
(Figure 3). Model-based analysis of tiling-arrays (MAT) 
[72] was used to identify regions of differential cirDNA 
modification by combining adjacent probes showing 
significant differences between the groups. A sliding 
window of 500 bp was set, according to the average size of 
the fragments produced in the amplicon preparation step 
[50]. Data were visualized by importing it to the UCSC 
Genome Browser (http://genome.ucsc.edu, NCBI36/
mm8 assembly, which corresponded to the building of 
the microarray). Transcript association and chromosomal 
distribution were determined using the LiftOver tool to 
the latest available mouse genome annotation (GRCm38/
mm10 assembly; last accessed August 2014). Genomic 
motifs were identified using the Multiple Em for Motif 
Elicitation tool (MEME) [73] and compared them against 
databases of DNA binding factors using the TOMTOM 
motif comparison tool [74]. Gene ontology analysis 
was performed using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) version 
6.7 [75].
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Single locus cirDNA epigenetic analysis by DNA 
modification-sensitive restriction quantitative 
PCR (qMSRE-PCR)

Fifteen nanograms of purified amplicon were 
subjected to real-time PCR, using specific primers (Table 
S5) and the same SYBR-green conditions used for cirDNA 
quantification. Adaptor-mediated PCR products from the 
undigested samples were used as reference to calculate 
the enrichment (ΔCttarget). A fragment within the Gapdh 
locus, which did not contain any CG position, was used 
as calibrator (ΔCtcalibrator). Fold change (FC) enrichment 
was calculated using the equation: FC=(2^(ΔCttarget 
-ΔCtcalibrator)).

Single locus cirDNA epigenetic analysis by 
quantitative Methylation Specific PCR analysis 
(qMSP)

 cirDNA and genomic DNA samples were bisulfite-
treated using the Epitect kit (Qiagen) and amplified using 
the whole bisulfitome amplification kit (Qiagen). Bisulfite 
treated and amplified cirDNA (10 ng) was subjected to 
locus-specific amplification using qMSP primers [76] 
(Table S5) and the same SYBR-green conditions used for 
cirDNA quantification. Fragment surrounding each qMSP 
assay in which primers did not contain any CG site were 
used as reference (ΔCtsample). Sssi methylated DNA was 
used as a calibrator (ΔCtmethylated). Percentage of methylation 
was calculated using the equation: %Me=(2^(ΔCtsample-
ΔCtmethylated))*100).
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