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SUMMARY

Theneedto includethegenetic variationwithinapopulation intoa referencegenome
led to the concept of a genome sequence graph. Nodes of such a graph are labeled
withDNAsequences occurring in representedgenomes. Due to double-stranded na-
ture of DNA, each node may be oriented in one of two possible ways, resulting in
marking one end of the labeling sequence as in-side and the other as out-side. Edges
join pairs of sides and reflect adjacency between node sequences in genomes consti-
tuting the graph. Linearization of a sequence graph aims at orienting and ordering
graph nodes in a way that makes it more efficient for visualization and further anal-
ysis, e.g. access and traversal.Wepropose a new linearization algorithm, calledALIBI
– Algorithm for Linearization by Incremental graph BuIlding. The evaluation shows
that ALIBI is computationally very efficient and generates high-quality results.

INTRODUCTION

Reference genomes serve as most important genetic resources for particular populations. They provide co-

ordinate systems for gene annotations, targets for sequencing read mapping and downstream analysis,

including variant detection, open chromatin areas and protein binding sites identification, 3-dimensional

structure reconstruction, etc. Availability of thousands of individual genomes per species revealed some

imperfections of this concept. For example, there are genetic variants that cannot be easily described

with respect to the reference genome Horton et al. (2008). Moreover, when used as a target for read map-

ping, it introduces bias toward the reference alleles Brandt et al. (2015). To overcome these drawbacks, the

idea of common representation of a variety of genomes within a population has evolved, leading to the

concept of genome sequence graph.

Genome sequence graphs are bidirected graphs enhanced with additional structure that allows to repre-

sent the relationship within a set of similar genomic sequences (see Figures 1A and 1B). Each node of a

sequence graph is labeled with DNA sequence. Each edge is attached to either left or right side of each

incident node, representing the 50 or 30 end of the sequence, respectively. A directed path orients each

visited node in one of two possible ways, corresponding to two strands of the DNA fragment labeling

the node. Concatenating strand sequences from oriented consecutive nodes on a path yields sequence

represented by this path. A sequence graph with a collection of its directed paths covering all graph edges

represents the set of sequences determined by these paths. Additionally, each edge is assigned a weight

equal to the number of times it is traversed by paths corresponding to represented genomes.

Genome sequence graphs are an intuitive way to represent the genetic variation, in particular large-scale

structural variants (e.g. insertions, deletions, and translocations) in a collection of sufficiently diverse set of

genomes. They are applied in several fields, including pangenome modeling (The Computational Pan-Ge-

nomics Consortium 2018; Dziadkiewicz and Dojer 2020), improving the quality of read mapping and variant

calling (Novak et al., 2017), whole-genome alignment construction (Kehr et al., 2014), or haplotype deter-

mination (Paten et al., 2017).

Linearization of a sequence graph aims at reasonable ordering and orienting nodes (see Figure 1C). The

result may influence its usability in several aspects, including:

� visual analysis,

� convenience and interpretability of introduced common coordinate system identifying genetic loci

of all underlying genomes,

� efficiency of graph-based analysis: searching, simulation, genome comparison etc.
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Figure 1. From DNA sequences to linearized sequence graph

(A) Input DNA sequences ACGCGCGTAGAGAT , ACTATCGTCGAATC and ACTATGACGTAATC (each depicted with its

reverse complement), divided into fragments aligned with fragments of other sequences.

(B) Sequence graph: nodes represent blocks of aligned DNA fragments, edges join nodes labeled with fragments adjacent in

sequences. Paths constituted by green/purple/blue edges represent respective input sequences. For visibility, pairs of nodes

labeled with DNA fragments adjacent in multiple sequences are represented by separate edges rather than edge weights.

(C) The same graph after linearization. Nodes are ordered (from left to right) and oriented – the choice of the primary

strand results in denominating left sides as in-sides and right sides as out-sides. Consequently, edges are classified as

either forward arcs (solid), feedback arcs (dashed) or reversing joins (dotted). The presented linearization minimizes the

number of edges of the last two types.
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Generally, the more consistent the underlying genomes are with the orientation and ordering of graph no-

des, the easier to use the graph is. Ideally, the paths representing genomes should be made up of only for-

ward arcs, i.e. edges joining out-sides with in-sides such that the outside node precedes the inside node.

Therefore, the quality of linearization may be quantified using the following metrics (see Figure 1C):

� Weighted feedback arc (WFA) – the sum of weights of all feedback arcs, i.e. backward pointing

edges

� Weighted reversing join (WRJ) – the sum of weights of all reversing joins, i.e. edges joining two in- or

two out-sides.

Haussler et al. (2018) proposed an additional metric, called average cut width (ACW), i.e. mean number of

edges crossing graph cuts placed between any two consecutive nodes (see Figure 2).

A two-step approach to the linearization problem was proposed in the study by Haussler et al. (2018). In the

first step, sequence graph is transformed to a directed graph by orienting nodes and ignoring edges

joining two in- or two out-sides. In the second step, the nodes of the graph are ordered using either

one of well-known heuristics for the feedback arc set problem or an algorithm proposed by authors.

In the current paper, we develop research in this area. We propose a new approach to the linearization

problem, in which graph nodes are oriented and ordered jointly. Our algorithm is comprehensively evalu-

ated and compared to previous approaches.
Figure 2. Average cut width (ACW)

Purple vertical lines represent the cuts imposed by the linearization of a sequence graph. Consecutive cuts have width 2,

3, 2, 2, and 1 and the average cut width of this graph is 2.

2 iScience 24, 102755, July 23, 2021



Algorithm 1. Algorithm for Linearization by Incremental graph BuIlding

1. input genome sequence graph ðV ;EÞ
2. output linearized graph ðV 0;E0Þ
3. Set arbitrary orientation on each v˛V

4. ðV 0;E0Þ)ðV ;[Þ 8 initialize linearized graph

5. Sort E in descending order of weights

6. for e˛E do

7. if e joins nodes belonging to the same connected component then

8. if e joins two in- or two out-sides then

9. Add e to E0 as reversing join

10. else 8 e joins one in- and one out-side

11. if the out-side node precedes the in-side node then

12. Add e to E0 as forward arc

13. else if there is a forward arc path from in-side node to out-side node then

14. Add e to E0 as feedback arc

15. else

16. Reorder the component such that the out-side node precedes the in-side node

17. Add e to E0 as forward arc

18. else 8 e joins nodes belonging to two different connected components

19. if e joins two in- or two out-sides then

20. Reverse one of the connected components bridged by e

21. Merge component orders 8 out-side node component precedes in-side node component

22. Add edge e to E0 as forward arc

23. end for
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RESULTS

Overview of Algorithm for Linearization by Incremental graph BuIlding

Tha main idea of our algorithm is to build the linearized graph gradually by adding edges in a decreasing

order of weights. We try to establish as many as possible heavy forward arcs and this way reduce both WFA

and WRJ. The algorithm starts from the empty graph with arbitrarily oriented nodes and trivially ordered

singleton connected components. When a new edge joins two components, their orders are merged.

Therefore, at each step of the algorithm, every connected component is separately linearized and, conse-

quently, every edge is classified as reversing join, feedback arc, or forward arc. The pseudocode of Algo-

rithm for Linearization by Incremental graph BuIlding (ALIBI) is given in Algorithm 1.

The justification of our approach, as well as implementation details and complexity analysis, is given in the

Methods section. See also Figures 6–8.
Evaluated approaches

We compared ALIBI against two linearization algorithms implemented in vg tool (Garrison et al., 2018).

Both vg methods follow the two-step approach proposed by Haussler et al. (2018) and share the algorithm

that performs the node orienting step. The node ordering step in these methods are different: Eades is the

implementation of a well-known heuristic for the feedback arc set problem of Eades et al. (1993) and FP is

the flow procedure proposed in (Haussler et al., 2018) – this algorithm focuses on minimizing average cut

width.
iScience 24, 102755, July 23, 2021 3



Figure 3. Quality metrics on simulated data: WRJ (top left), WFA (top right) and ACW (bottom)
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Performance on simulated data

We prepared simulated data following the procedure of Haussler et al. (2018). Namely, we took a

37287bp-long fragment of human genome and applied to it a series of structural variations using the Bio-

conductor package RSVSim (Bartenhagen and Dugas 2013). Introduced variations included deletions,
Figure 4. Quality metrics on E. coli genomes: WRJ (top), WFA (middle) and ACW (bottom)

Plots present dependence on the size of the graph (left, all graphs are constructed from 4 genomes, GenBank: AP009048,

AP012306, CP000948, U00096) and on the number of genomes (right, see Table S1 for the list of genomes).
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Figure 5. Efficiency of algorithms on E. coli genomes: occupied memory (top) and computation time (bottom)

Plots present dependence on the size of the graph (left, all graphs are constructed from 4 genomes, GenBank: AP009048,

AP012306, CP000948, U00096) and on the number of genomes (right, see Table S1 for the list of genomes).
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insertions, inversions, and duplications of lengths 20, 20, 200, and 500, respectively. Each simulation gener-

ated the same number of variations of each type, varying from 5 to 11. For each of these numbers, 10 re-

arranged genomes were created and passed to themsga command of the vg, which generated a sequence

graph in .gfa format.

Figure 3 presents the WRJ, WFA, and ACW results of the algorithms on the simulated data sets. The total

weight of reversing joins in ALIBI is approximately half the size of FP and Eades algorithms (both have iden-

tical WRJ because they share the algorithm that performs the node orienting step). In terms of feedback

arcs, ALIBI is slightly better than FP, while Eades algorithm is surprisingly the weakest. As expected, FP out-

performs all other methods in terms of ACW.
Performance on Escherichia coli genomes

We also prepared two series of graphs build from real genomes of Escherichia coli K-12 strain. In the first series,

we took 4 genomes and created graphs using vgmsgawith the parameter -m restricting the length of sequence

labeling nodes set to 32, 64, 128, 256, and 512. In this way, weobtained a series of graphs with similar complexity

but varying numbers of nodes and edges. In the second series we build graphs with default parameters of vg

msga and the number of E. coli genomes varying from 10 to 150 (see Table S1 for the full list of genomes).
A

B

Figure 6. Adding edges joining an out-side with an in-side of nodes from different connected components

(A) The purple edge joins the out-side of the node labeled with ‘‘ggt’’ sequence and the in-side of the node labeled with

‘‘cat’’ sequence.

(B) The edge is added to the graph without any change in node orientations. The nodes from the left component precede

the nodes from the right component.

iScience 24, 102755, July 23, 2021 5
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Figure 7. Adding edges joining out-sides of nodes from different connected components

(A) The purple edge joins the out-side of the node labeled with ‘‘ggt/acc’’ sequence and the out-side of the node labeled

with ‘‘cat/atg’’ sequence.

(B) After changing the order and orientations of the nodes from the right-hand side connected component (i.e. in-side

becomes out-side, out-side becomes in-side, and node sequence changes to its reverse complement), the purple edge

joins the out-side of the node labeled with ‘‘ggt/acc’’ sequence and the in-side of the node labeled with ‘‘atg/cat’’

sequence. The purple edge can now be added to the graph.
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Figure 4 presents results obtained on Escherichia coli data sets. Similarly to simulated data results, FP has

the lowest ACW, while ALIBI outperforms the competitors in bothWRJ andWFA. However, the differences

in WFA are surprisingly extreme here – in some cases, Eades or FP algorithms have WFA over 500 times

larger than ALIBI (note the logarithmic scale on the Y axis). Moreover, the relationship between the metrics

and the number of genomes is not clear, probably due to highly varying complexity of genome graphs.

Figure 5 summarizes computational efficiency of the algorithms. ALIBI performs best in both experimental

settings and with respect to both time and memory resources. All algorithms scale roughly linearly with

respect to both number of edges and number of genomes. However, some irregularities are visible in

the plots presenting the dependence with respect to the number of genomes, which suggests that the

graph complexity significantly affects the computation cost.

DISCUSSION

In the current paper, we proposed ALIBI, a novel linearization algorithm that jointly orients and orders

graph nodes. We compared our method with two state of the art algorithms presented in the study by

Haussler et al. (2018).
A

B

C

Figure 8. Adding an edge inconsistent with the order on a connected component using Pearce-Kelly algorithm

(A) The purple edge connects the in-side of the node labeled with ‘‘ac’’ sequence and the out-side of the node labeled with

‘‘gat’’ sequence. There is no path from node ‘‘ac’’ to node ‘‘gat.’’ Reordering will affect the region between these nodes.

(B) Identification of the nodes from the affected region that are either reachable from node ‘‘ac’’ (light blue nodes) or from

which node ‘‘gat’’ is reachable (light purple nodes). The gaps denoted by dots may contain other nodes.

(C) Light purple and light blue nodes are permuted such that all the light purple nodes precede all the light blue nodes and the

originalorderwithin lightpurplenodes ispreserved,aswell aswithin lightbluenodes.Positionsofall othernodes remainunaffected.
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The evaluation shows that ALIBI substantially outperforms its competitors in two out of three quality met-

rics: weighted reversing join and weighted feedback arc, while flow procedure of the study by Haussler

et al. (2018) achieves best results in terms of average cut widths. Moreover, ALIBI is the fastest and has

the lowest memory requirements.

Limitations of the study

The required computational resources of ALIBI and other linearization algorithms depend on the structure

of the input graph rather than on the number and size of the underlying genome sequences. Consequently,

the computational cost of linearization of graphs build from the same genome data set using different tools

may substantially differ.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

vg v1.10.0 Garrison et al. (2018) https://github.com/vgteam/vg

RSVSim 1.20.0 Bartenhagen and Dugas (2013) http://www.bioconductor.org/packages/

release/bioc/html/RSVSim.html

ALIBI This paper https://github.com/anialisiecka/alibi
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Norbert Dojer (dojer@mimuw.edu.pl).
Materials availability

This study did not generate new unique reagents.
Data and code availability

All original code has been deposited at https://github.com/anialisiecka/alibi and is publicly available. Any

additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.
METHOD DETAILS

Bidirected graphs and genome sequence graphs

The notion of bidirected graph was introduced by Edmonds and Johnson (1970). In a bidirected graph

every node has two sides, called left and right and each edge endpoint is incident with one side of a partic-

ular node. Formally, each edge in a bidirected graph ðV ;EÞ is a tuple ðv; s;v 0; s0Þ, where v; v 0˛V and s; s0˛
fleft; rightg indicate the incident sides of v and v0, respectively. This is conceptually similar to directed

graphs, where edges are incident with in- or out-sides of nodes, but in bidirected graphs the sides of

edge endpoints are independent (i.e. edges may have one left and one right side, as well as both left or

both right sides). Thus we can consider directed graphs as a special case of bidirected graphs.

A path in a bidirected graph G is a sequence e1;e2;.;ek of edges such for each pair of consecutive edges

ei = ðvi; si; vi 0; si 0Þ and ei + 1 = ðvi + 1; si + 1; vi + 1
0; si + 1

0Þ we have vi
0 = vi + 1. Path is directed if additionally si

0s si + 1,

i.e. if each node is exited on the other side it is entered. A connected component of a bidirected graph is a

maximal set of nodes such that each pair of nodes is connected by a (not necessarily directed) path.
Linearization of a bidirected graph

LetG = (V, E) be a bidirected graph and let V 04V . A linearization of V0 is given by a pair of functions (a, ord),

where:

� nodes orienting functiona : V 0/f�1; 1g establishes labeling of node sides as in- or out-sides in the

following way:
– if aðvÞ = 1, then left side of v is labeled as in-side and right side as out-side,

– if aðvÞ = � 1, then left side of v is labeled as out-side and right side as in-side.

� nodes ordering functionord : V 0/f1;.; jV jg is a bijection establishing the linear order on V0 (i.e.
node v precedes node v0 iff ord(v) < ord(v0)).

The linearization implies the following classification of edges joining V0-nodes (see Figure 2 (left)):
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� reversing joins are edges incompatible with node orientations, i.e. joining two in-sides or two out-

sides,

� feedback arcs are compatible with node orientations but incompatible with their order, i.e. they join

out-side of a node v with in-side of a node v0 satisfying ordðvÞRordðv 0Þ,
� forward arcs are compatible with both orientations and order, i.e. they join out-side of a node v with

in-side of a node v0 satisfying ord(v) < ord(v0).

If the linearized graph has no reversing joins, it is actually a directed graph with sorted nodes. If, addition-

ally, it has no feedback arcs, it is topologically sorted directed acyclic graph.
Adding edges to the graph

The following two theorems give the conditions, under which a new edge may be classified as forward arc.

Theorem 1. LetG1 andG2 be two different linearized connected components with sets of nodes V1 and V2,

respectively. Assume that a new edge e joining a V1-node with a V2-node is added to the graph. Then there

exists a linearization of V1WV2 in which e is classified as forward arc and the classification of all edges in both

G1 and G2 does not change.

Proof. Let ða1;ord1Þ and ða2;ord2Þ be the given linearizations of V1 and V2, respectively. We consider two

cases:

1. Edge e joins one out- and one in-side. Without loss of generality we may assume that e joins an out-

side of a node v1˛V1 with an in-side of a node v2˛V2. Then the linearization (a, ord) of V1WV2 given by

formulas

aðvÞ=
�
a1ðvÞ if v˛V1

a2ðvÞ if v˛V2
ordðvÞ=

�
ord1ðvÞ if v˛V1

j V1j+ord2ðvÞ if v˛V2

satisfies the requirements of the theorem (see Figure 6).

2. Edge e joins two out- or two in-sides. In order to make e a forward arc we have to reverse the order

and orientation of nodes in either component (note that reversing doesn’t affect the classification of

its inner edges). If e joins out-sides of v1˛V1 and v2˛V2, the following linearization (a, ord) of V1WV2

does the job (see Figure 7):

aðvÞ=
�

a1ðvÞ if v˛V1

�a2ðvÞ if v˛V2
ordðvÞ=

�
ord1ðvÞ if v˛V1

jV1j+ jV2j � ord2ðvÞ+ 1 if v˛V2

The case with two in-sides can be handled analogously.

Consider a linearized graph G = (V, E) and two nodes v1;v2˛V . We say that v2 is forward-accessible from v1
(denoted v1,v2) iff there is a directed path from v1 to v2 consisting of forward arcs only.

Theorem 2. Let (ac, ordc) be a linearization on a connected component Gc = ðVc ;EcÞ. Assume that a new

edge e joining nodes v1; v2˛Vc such that ordcðv1Þ%ordcðv2Þ is added to the graph in the way that doesn’t

affect the classification of Ec-edges. Then:

1. If e joins two out- or two in-sides, e must be classified as reversing join.

2. If e joins out-side of v2 with in-side of v1 and v1,v2, e must be classified as feedback arc.

3. Otherwise e may be classified as forward arc.

Proof. We will separately prove the three statements from the theorem.
10 iScience 24, 102755, July 23, 2021
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1. Since Gc is a connected component, reversing orientation of one node in Vc without violating edge

classification implies reversing orientation of all the other Vc-nodes. Consequently, there is no line-

arization onGc that reverses the orientation of only one of the nodes v1; v2 and saves the classification

of all the Ec-edges.

2. Appending e to the path from the assumption results in a cycle, which cannot consist of forward arcs

only. Thus e cannot be classified as forward arc without disturbing the classification of the edges on

the path from v1 to v2.

3. Since the assumption of the statement 1 is not fulfilled, e joins one in- and one out-side. Since the

assumptions of the statement 2 are not fulfilled, v2sv1 and, consequently, ordcðv1Þ<ordcðv2Þ. If e
joins out-side of v1 with in-side of v2, linearization (ac, ordc) classifies e as forward arc. Otherwise

the nodes must be reordered such that v2 precedes v1. This can be done using the approach applied

by Pearce and Kelly (2007) in their dynamic algorithm for topologically sorting directed acyclic

graphs. The method consists of:

d Identifying two sets of nodes:

VF = fv˛Vc j v1,v^ordcðvÞ%ordcðv2Þ g

VB = fv˛Vc j v,v2^ordcðv1Þ%ordcðvÞ g

Note that VF and VB are disjoint, because otherwise we would have v1,v2.

d Updating the positions of nodes in VFWVB such that all VB-nodes precede all VF-nodes and the original

order within both VF and VB is preserved (see Figure 8).

The above theorems justify updating the graph with new edges according to the following rules:

1. Edges joining nodes belonging to different connected components are always classified as forward

arcs. There are two cases:
(a) If the edge joins one in- and one out-side, node orientations remain unchanged. Orders on

joined components are merged in the way that all the nodes from the component connected

with the edge in an out-side precede all the nodes from the other component (see Figure 6).

(b) If the edge joins two in- or two out-sides, the order and orientations of nodes from one of the

connected components are reversed (see Figure 7). After this step, the orders on both compo-

nents are merged as in the previous case.

2. Edges joining nodes belonging to the same connected component may be classified as forward arcs,

feedback arcs or reversing joins. There are three cases:

(a) If the edge joins two in- or two out-sides then it must be a reversing join. Order and orientations

remain unchanged.

(b) If the edge joins one in- and one out-side and the out-side node precedes the in-side node, the

edge is classified as forward arc and no reordering nor reorientation is needed.

(c) If the edge joins one in- and one out-side and the in-side node precedes the out-side node, the

algorithm checks whether there exists a forward arc path from the in-side node to the out-side

node. The existence of the path forces the in-side node to precede the out-side node, so the

edge is classified as a feedback arc. Otherwise reordering allowing classifying the edge as for-

ward arc is computed using an adapted Pearce-Kelly algorithm (see Figure 8).
Data structure and time complexity

For the purpose of our algorithm we designed a data structure that provides a dynamic representation of

node orientations, connected components and orders within components. It is based on the classical

disjoint-set data structure of Hopcroft and Ullman (1973), which provides operations:

� FIND-SET(x) – return the representative of the set containing x,

� UNION(x,y) – merge sets containing x and y into a new one.
iScience 24, 102755, July 23, 2021 11
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Implementation using disjoint-set forest with union by rank and path compression yields for both opera-

tions amortized cost OðaðnÞÞ, where n is the total number of set elements and a is the inverse of the Acker-

mann function (Cormen et al., 2009).

Connected components are represented by the sets of nodes. The above operations support checking

whether the added edge joins nodes from the same or different components and, in the second case,

merging components. In order to represent orientations and order we have to augment the disjoint-set

structure. Current orientation of a node is encoded as either 1 (same as initial) or�1 (opposite, i.e. implying

swapping in- and out-side and reverse complementing the labeling sequence). In order to encode the or-

der within the component, nodes are bijectively assigned integers from some interval fi; i + 1;.; jg, called
positions.

Adding to each node attributes directly representing its orientation and position within the current compo-

nent would waste the efficiency of UNION operation, because every node of one of merged components

would require at least updating the position attribute. Therefore we introduced attributes that represent

these features locally, i.e. with respect to nodes’ parents in the component tree. Namely, each node has

the following attributes:

� orient – orientation relative to the parent, either 1 (the same) or �1 (opposite),

� shift – preliminary position relative to the parent and orientation, inherited by descendants,

� reorder_shift – final position relative to the preliminary position, non-inherited by descendants.

Actual orientation of a node is the product of orient attributes of this node and its ancestors in the tree.

Actual position of the node is the sum of

� all shift attributes of node’s ancestors multiplied by their actual orientation and

� the sum of node’s shift and reorder_shift attributes multiplied by its actual orientation.

The attributes are updated during the path compression procedure of the disjoint-set structure. Since up-

dating require constant time per node in the path, the asymptotic cost of the path compression is not

affected. Moreover, every calculation of node’s orientation or position calls the path compression proced-

ure, so its amortized cost is OðaðnÞÞ; where n is the number of nodes in the graph.

When a new edge is added to the graph, determining the respective case from subsection Adding edges to

the graph requires calculating component representatives, orientations and positions of the ends of the

edge. The subsequent steps modify the structure in the following way:

� In case 1 operation UNION is performed, followed bymodifying attributes shift and (only in case 1.b.)

orient in the root node of one component.

� In cases 2.a and 2.b the structure remains unchanged.

� In case 2.c attributes reorder_shift are modified in affected nodes when repositioning is required,

otherwise the structure remains unaffected.

Consequently, in all cases except 2.c, the total amortized cost of adding the edge to the graph is OðaðnÞÞ:
Processing case 2.c consists of the following steps:

� Identifying the set VF of nodes from the affected region that are reachable from the in-side node (i.e.

the set of green nodes in Figure 8). To this aim, an adapted depth-first search algorithm is called,

which uses only forward arcs that don’t exit the affected region. Therefore, for each edge outgoing

from each visited node, the algorithm needs to calculate the position of the target node. Conse-

quently, the amortized cost of this step isOðjEF j ,aðnÞÞ, where EF denotes the set of edges outgoing

VF nodes.
12 iScience 24, 102755, July 23, 2021
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� Identifying the set VB of nodes from the affected region, from which the out-side node is reachable

(i.e. the set of blue nodes in Figure 8). Similarly, the amortized cost of this step isOðjEBj ,aðnÞÞ, where
EB denotes the set of edges leading to VB nodes.

� Updating positions of the nodes in VFWVB. This step is dominated by sorting VF and VB nodes ac-

cording to their original positions, which has cost OðjVF jlogjVF j + jVBjlogjVBjÞ.

Therefore, the total cost of processing new edge in this case isOððjEF j + jEBjÞ ,aðnÞ + jVF jlogjVF j + jVBjlogjVBjÞ
and substantially depends on the size of the affected region and graph structure.
iScience 24, 102755, July 23, 2021 13
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