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Abstract: The spread of pyrethroid resistance in malaria vectors is a major threat affecting the perfor-
mance of current control measures. However, there is still not enough information on the resistance
profile of mosquitoes to carbamates and organophosphates which could be used as alternatives. The
present study assessed the resistance profile of Anopheles gambiae s.l. to bendiocarb and malathion, at
the phenotypic and molecular levels, in different eco-epidemiological settings in Cameroon. Anopheles
gambiae s.l. mosquitoes were collected from four eco-epidemiological settings across the country and
their susceptibility level to bendiocarb and malathion was determined using WHO tubes bioassays.
The ace-1 target site G119S mutation was screened by PCR. Reverse Transcription quantitative PCR
3-plex TaqMan assays were used to quantify the level of expression of eight genes associated with
metabolic resistance. Resistance to malathion and/or bendiocarb was recorded in all study sites
except in mosquitoes collected in Kaélé and Njombé. The Ace-1 (G119S) mutation was detected in
high frequencies (>40%) in Kékem and Santchou. Both An. gambiae and An. coluzzii were detected
carrying this mutation. The cytochrome P450s gene Cyp6p3 associated with carbamate resistance
and the glutathione S-transferase gene Gste2 associated with organophosphate resistance were found
to be overexpressed. Genes associated with pyrethroid (Cyp6m2, Cyp9k1, Cyp6p3) and organochlorine
(Gste2, Cyp6z1, Cyp6m2) and cuticle resistance (Cyp4g16) were also overexpressed. The rapid spread of
resistance to organophosphates and carbamates could seriously compromise future control strategies
based on IRS. It is therefore becoming important to assess the magnitude of bendiocarb and malathion
resistance countrywide.

Keywords: An. gambiae; An. coluzzii; carbamates; organophosphate; resistance; ace-1 (G119S) muta-
tion; overexpression; Cameroon
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1. Background

Since their discovery, synthetic insecticides have been largely used for the prevention
of vector-borne diseases, due to their high efficacy and ease of use [1]. The fight against
malaria vectors in Africa mainly relies on the use of insecticide-based interventions, such
as indoor residual spraying (IRS) and insecticide-treated mosquito nets (ITNs).

Pyrethroids, due to their high efficacy against insects and low toxicity to mammals,
including humans, are the only insecticide recommended for bed net impregnation [2].
Over 3 billion impregnated bed nets have been distributed across the world since 2010 [3].
However, overreliance on pyrethroids in both public health and agriculture has exerted
intensive selective pressure on mosquitoes and has led to the emergence and expansion of
pyrethroid resistance in mosquito populations [4–7]. The increasing resistance of vector
species to pyrethroids is a major challenge for malaria control [8]. In several countries in
Africa, kdr target site mutations, associated with pyrethroid resistance, are close to fixation
and cytochrome P450 genes, encoding for pyrethroid metabolizers, are overexpressed in
mosquito populations [9]. The rapid spread of pyrethroid resistance could reverse progress
achieved so far in malaria control [10,11].

Carbamates and organophosphates are considered as possible alternatives for con-
trolling pyrethroid-resistant mosquitoes [12,13]. In order to manage insecticide resistance
and maintain the effectiveness of current control tools, the World Health Organization
(WHO) recommends the implementation of insecticide resistance management strategies,
including rotation strategies with the use of two or more insecticides with different mode
of action at different periods or the combination of different control interventions [14].
Since 2006, several African countries have started combining long-lasting insecticidal nets
(LLINs) and indoor residual spray (IRS) with carbamate or organophosphate for effective
control of malaria vector populations [8,15]. Although promising results had been initially
recorded, with improved control of vectors and malaria transmission [8], there is a growing
concern since carbamate and to some extent organophosphate resistance has begun to
be widely distributed in West Africa [16–18] and is currently also spreading in Central
Africa [19,20]. LLINs are the main tools used for malaria control in Cameroon, but the
country is considering complementing the use of LLINs by the addition of indoor residual
spraying with organophosphate in places experiencing a high malaria burden or high
seasonal transmission of the disease [8]. Carbamates and organophosphates are largely
used in agriculture but have never been used in public health in Cameroon and there is, so
far, not enough data on the resistance profile of mosquitoes to these insecticides. Resistance
to carbamates and organophosphates is associated with the presence of the G119S mutation
and the overexpression of detoxification genes [18,19,21,22]. Alarmingly, recent studies in
Cameroon have indicated the emergence of resistance to carbamate and organophosphates,
associated with increased frequency of the G119S mutation in An. gambiae s.l. [23,24]. Still,
there is not enough information on its geographical scale and intensity.

The present study aims to characterize the resistance status of Anopheles gambiae s.l. to
bendiocarb (carbamate) and malathion (organophosphate) in four epidemiological settings
in Cameroon and to explore the molecular basis of resistance.

2. Results
2.1. Bioassays Results

A total of 960 Anopheles specimens from laboratory strains (Kisumu and Ngousso)
and 2490 field specimens from Kékem (n = 160), Njombé (n = 200), Belabo (n = 200), Kaélé
(n = 400), Tibati (n = 400), Bertoua (n = 570) and Santchou (n = 560) were exposed to
determine their susceptibility profile against bendiocarb and malathion insecticide. The
two laboratory strains were all susceptible to bendiocarb and malathion with mortality rate
of 100%, demonstrating that the impregnated paper was good. The susceptibility profile
was year- and insecticide-dependent in each locality (Figure 1). During the year 2021, in
Santchou and Kekem, all tested mosquitoes were resistant to both insecticides (Figure 1). In
Belabo, Bertoua and Tibati mosquitoes were found to be resistant to bendiocarb (mortality
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rate: 80%; 77.77%; 76% respectively) and fully susceptible to malathion (mortality rate:
98%; 99%; 100% respectively). Mosquitoes from Kaélé and Njombé were fully susceptible
to both insecticides (mortality rate > 98%) (Figure 1).
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Figure 1. Mortality rate (%) of field collected and laboratory strains of Anopheles gambiae s.l. to
bendiocarb 0.01% (carbamate) (A) and malathion 5% (organophosphate) (B) over time. At least
20–25 mosquitoes in four replicates were exposed per insecticides per site and during each collection
period. Color represents the collection period (blue: August 2019; orange: August 2020 and grey:
November 2021). The line (90%) represents the threshold of susceptibility (resistant when the
mortality rate was <90% and susceptible when the mortality rate was >90%. The upper script (*)
p < 0.05, (**) p < 0.01; (NS) non-significant. The bars represent standard error.

In addition, the mortality rate of mosquitoes varied significantly with year, except
in Santchou, where no significant difference was found regarding Bendiocab (χ2 = 3.558,
p = 0.1687). Samples tested in 2020 in Bertoua and Tibati were found to be significantly
more susceptible to bendiocarb (mortality rate 95% to 100%) compared to those collected in
2019 and 2021 (mortality rate varying from 31% to 78%).

2.2. Molecular Identification of Species of the Anopheles gambiae Complex

The genotyping of 637 specimens for species identification showed the presence of
three members of the An. gambiae complex in the study sites, i.e., An. coluzzii, An. gambiae
and An. arabiensis. In Tibati only An. coluzzii was recorded, whereas in Kaélé, An. arabiensis,
An. gambiae and An. coluzzii were present with, however, a predominance of An. coluzzii.
In Santchou and Kékem An. gambiae was the only species recorded, while in Bertoua,
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Njombé and Belabo both An. gambiae and An. coluzzii were recorded. Anopheles gambiae
was the predominant species in Bertoua and Belabo, whereas An. coluzzii was slightly more
abundant than An. gambiae in Njombé (Table 1).

Table 1. Distribution of An. gambiae s.l. species at the different study sites.

Population/Sites Sites Characteristics Sample Size Species ID % Frequency

Kisumu
Susceptible strain

40 An. gambiae 100

Ngousso 40 An. coluzzii 100

Tibati Sahelo-Sudanese
(humid savannah) 80 An. coluzzii 100

Kaélé Sahelian zone
An. arabiensis 10.0

60 An. gambiae 4.0
An. coluzzii 86.0

Kékem
Highland grassfields

80 An. gambiae 100

Santchou 120 An. gambiae 100

Bertoua

Forest zone

79 An. gambiae 87.0
An. coluzzii 13.0

Njombé 54 An. gambiae 40.9
An. coluzzii 59.1

Belabo
84 An. gambiae 82.0

An. coluzzii 18.0

2.3. Screening of Target Site Mutations (Ace-1 G119S)

The (G119S) mutation was detected in all sites. In Njombé the G119S mutation was
detected mainly in bendiocarb and malathion survivors (75.5–100.0%) and at a very low
frequency (4.5%) in the unexposed population. In Kékem bendiocarb survivors showed
a frequency of 84.6% and unexposed mosquitoes a lower frequency (41.1%). The Bélabo
population presented a frequency of 54.1% and 72.3% in bendiocarb and malathion sur-
vivors, respectively; it was also detected in unexposed mosquitoes in a frequency of 10.25%.
In Tibati, a frequency of 81.3% was recorded in Bendiocarb survivors, whereas it was
not detected in unexposed mosquitoes. In Bertoua, bendiocarb and malathion survivors
showed frequencies of 71.0% and 77.1%, respectively; unexposed mosquitoes exhibited a
frequency of 36.1%. In the Santchou population, the mutation was found in frequencies
> 85.0% in bendiocarb and malathion survivors, as well as unexposed mosquitoes (Table 2).

Table 2. Ace-1 G119S mutation allelic frequencies in the different samples (mean ± SE).

PopulatioN Category Sample Size % G119S (Ace-1)

Kisumu Susceptible lab strain 40 0.0 ± 0.0
Ngousso Susceptible lab strain 40 0.0 ± 0.0

Njombé
Bendiocarb survivors 3 75.5
Malathion survivors 1 100.0

Unexposed 20 4.5 ± 2.5

Kékem
Bendiocarb survivors 20 84.6 ± 5.1

Unexposed 20 41.1 ± 18.3

Bélabo
Bendiocarb survivors 20 54.1 ± 9.6
Malathion survivors 4 72.3

Unexposed 20 10.25 ± 5.9

Tibati
Bendiocarb survivors 20 81.3 ± 18.7

Unexposed 20 0.0 ± 0.0
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Table 2. Cont.

PopulatioN Category Sample Size % G119S (Ace-1)

Bertoua
Bendiocarb survivors 18 71.0 ± 9.9
Malathion survivors 1 77.1

Unexposed 20 36.1 ± 9.4

Santchou
Bendiocarb survivors 20 87.3 ± 1.75
Malathion survivors 40 86.93 ± 8.0

Unexposed 20 87.9 ± 12.2

2.4. Expression Analysis of Detoxification Genes

The expression profile of different detoxification genes known to confer resistance was
analyzed. Cyp6p3, Cyp6m2, Cyp9k1, Cyp6p4, Cyp6z1, Gste2 and Cyp4g16 were among genes
that were significantly overexpressed in at least one study population. More precisely, in
the Njombé population (Figure 2A), Cyp9k1 and Cyp6z1 were significantly overexpressed
(>8.0 and >1.6 folds, respectively). In Kékem the Cyp6m2 and Cyp9k1 genes were both
overexpressed by >3.0 folds (Figure 2B). The Kaélé population (Figure 2C) showed a marked
overexpression of Cyp6p4 (>10 folds) and Gste2 (>5.0 folds). In Bélabo, Cyp6p3 and Cyp6p4
were overexpressed by >1.90 folds (Figure 2D). The Tibati population (Figure 2E) showed
an overexpression of only Cyp4g16 (>1.60 folds). In Bertoua, Cyp9k1 and Cyp6p4 were
significantly overexpressed (>3.0 and >2.0 folds, respectively). The Santchou population
showed a >1.6-fold overexpression of Cyp6z1 (Figure 2G).
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3. Discussion

The study’s objective was to assess the distribution of carbamate and organophosphate
resistance in An. gambiae s.l. populations from different epidemiological settings across
Cameroon. High resistance to both carbamates and organophosphates was detected and
was consistent with previous reports [23–25]. Resistance to bendiocarb was largely spread
and was detected in five out of the seven sites surveyed, whereas resistance to malathion
was detected in the sites of Kékem and Santchou situated in western Cameroon. These
sites are semi-rural settings where vast lands are used for the cultivation of vegetables,
maize, cocoa, plantains and tomatoes all year round with the intensive application of
pesticides [26]. It is possible that high resistance to bendiocarb and malathion detected in
these sites is driven by the frequent use of pesticides in agriculture rather than insecticides
used in public health. In Tibati, Bertoua and Belabo, mosquitoes were found resistant
to bendiocarb, while mosquitoes from Njombé and Kaélé were fully susceptible to ben-
diocarb and malathion. The heterogeneous pattern of carbamates and organophosphates
resistance in An. gambiae s.l. populations across the country could derive from different
selective pressure in each site and habitat segregation by the species of the An. gambiae
complex [27,28]. Similar geographical patterns of carbamate or organophosphate resistance
in members of the An. gambiae complex have been reported in other African countries [22].
Anopheles arabiensis, An. gambiae and An. coluzzii species were recorded in the study sites
and their presence followed an eco-epidemiological/site-dependent pattern. More precisely,
An. coluzzii was the predominant species in Kaélé, Tibati and Njombé, whereas An. gambiae
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was predominant in Santchou, Bertoua, Belabo and Kékem. An. arabiensis was detected in
low frequency in Kaelé and Tibati. The high frequency of An. coluzzii in the Sahelian and
Sudano-Sahelian region of the country (Kaélé and Tibati) is in line with previous studies
which indicated that this species is outpacing An. arabiensis and is gradually becoming the
predominant species in the Sudano-Sahelian savannah zone [29,30].

In an effort to molecularly profile the evident carbamate and organophosphate pheno-
typic resistance we measured the frequencies of the Ace-1 G119S mutation, as well as the
expression levels of genes associated with metabolic and cuticle resistance.

The Ace-1 G119S mutation was detected at a very high frequency in almost all
sites. Studies conducted so far in Africa suggested that the presence of this mutation
is mainly associated with resistance to carbamates [17,18,22,31]. The Ace-1 G119S mutation
was detected in both An. gambiae and An. coluzzii with, however, a higher frequency in
An. gambiae. A similar distribution pattern has been reported in many countries across
West Africa [17,22]. The present findings are different from previous studies [23,25], which
reported the mutation only in An. gambiae. It is possible that the Ace-1 G119S mutation
in An. coluzzii may have emerged during recent years through introgression or indepen-
dently. Different frequencies of the G119S allele have been reported between An. gambiae
and An. coluzzii in areas of sympatry. It has been suggested that the difference in this
mutation frequency could result from discrepancies in the selection pressure mosquitoes
experienced in aquatic habitats [22]. Despite the fact that the study did not characterize
aquatic habitats, studies assessing breeding habitats influence in the cities of Yaoundé and
Douala in Cameroon suggested that mosquitoes deriving from agricultural cultivated areas
were more tolerant to different insecticides families, including pyrethroids and carbamates,
compared to those originating from unpolluted sites [19,32].

In addition to the Ace-1 mutation the expression profiles of genes implicated in
metabolic and cuticle resistance were assessed. Regarding carbamate resistance, Cyp6p3
was significantly overexpressed in the Bélabo population, where phenotypic resistance to
bendiocarb was also detected. This particular P450 gene has been previously shown to
metabolize bendiocarb [33,34]. Regarding organophosphate resistance, in Santchou, a site
with low mortality rates for malathion, the overexpression of Cyp6p4 was detected. Cyp6p4
has been previously shown to metabolize malathion, as well as other organophosphates
(pyrimiphos-mehtyl, fenitrothion); however, a link to resistance cannot be safely concluded,
and organophosphate metabolism by Cyp6p4 could lead either to the activation of more
toxic metabolites or detoxification, and the relative activation versus detoxification contribu-
tion is not clear. This is also the case for Cyp6p3 and Cyp6m2 with data for the latter pointing
towards activation rather than detoxification. The glutathione S-transferase gene gste2
was found to be markedly overexpressed in the Kaélé population. Since, gste2 has been
strongly linked with resistance to the organophosphate fenitrothion [34] this constitutes
an alarming factor. Our expression analysis revealed also the significant overexpression
of genes that are known pyrethroid (Cyp6m2, Cyp9k1, Cyp6p4) and organochlorine (gste2,
Cyp6z1, Cyp6m2) metabolizers [9]. Resistance to these insecticides is well documented in
Cameroon [35]. All the above show that cross-resistance and multi-resistance is in place
in the study’s populations. Regarding cuticle resistance, Cyp4g16, a functional oxidative
decarboxylase gene known to catalyze epicuticular lipid biosynthesis and contribute to
insecticide resistance via the enrichment of the CHC content, thus reducing insecticide
uptake was also found to be upregulated in one population (Tibati) [36].

4. Methods
4.1. Study Site

Mosquitoes were collected from seven localities in Cameroon: Kékem, Njombé, Belabo,
Kaélé, Tibati, Bertoua and Santchou (Figure 3). A detailed characteristic of each site is
provided in Table 3. Physical characteristics of sites with superscript (a) is published in
Kala-Chouakeu et al. [37].
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Table 3. Physical characteristics of the study sites.

Study sites Kékem Njombé Belabo Kaélé a Tibati a Santchou a Bertoua a

Administrative
region West Littoral East Far North Adamawa West East

Coordinates 5◦10′ N,
10◦02′ E

4◦64′ N,
9◦67′ E

4◦56′ N,
13◦18′ E

10◦50′ N,
14◦56′ E

12◦37′ N,
12◦37′ E

5◦58′ N,
9◦58′ E

4◦34′ N,
13◦41′ E

Domain Highland
Grassfields Forest zone Forest zone Sahelian

zone
Sahelo

soudanese
Highland

Grassfields Forest zone

Climate Equatorial Equatorial Subtropical Sahelian Tropical
humid Equatorial Subtropical

Seasons

Dry season
(November
to March),

rainy season
(April to
October)

Dry season
(December to

February),
rainy season

(March to
November)

Dry season
(December to

March and
July), rainy

season
(March to
June and
August to

November)

Dry season
(October to
May), rainy
season (June

to
September)

Dry season
(November

to April),
rainy season

(May to
October)

Dry season
(November
to March),

rainy season
(April to
October),

Dry season
(December to

March and
July), rainy

season
(March to
June and
August to

November)

Vegetation Grassland Grassland
Evergreen
degraded

forest

Wooded
Savanah

Grassy
Savanah Grassland

Evergreen
degraded

forest
a Physical characteristics of sites published in Kala-Chouakeu et al. [37].
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4.2. Collection of Mosquito Larvae, Rearing, and Conservation

The field sampling of anopheline larvae and processing was conducted during the
long rainy season in all the sites. It was carried out once yearly in August 2019, August
2020 and November 2021 in Bertoua and Santchou, whereas in the remaining sites the
sampling and processing of mosquitoes was performed once or twice (Kékem, Njombé,
Belabo, Kaélé, Tibati) because of the unavailability of funds (Figure 3). Larval collections
were undertaken in different habitats including temporary water collections, puddles, and
semi-permanent sites. In each study site, collected samples from different breeding habitats
were pooled per site and reared into adults in the insectary created in the field. Larvae were
fed with TetraMin®fish food until pupae. Pupae were collected in a cardboard cup and
placed in netting cages for adult emergence. After emergence, adults were offered sugar
solution until processing. A subset of 30–40 unexposed, non-blood fed, 3–5-day-old female
An. gambiae s.l. from different sites and susceptible strains (the An. gambiae Kisumu strain
and the An. coluzzii Ngousso strain) were preserved in RNAlater™ for the characterization
of the molecular mechanisms of insecticide resistance. The same sample was also used for
species identification. Another subset of about 120–150 mosquitoes per population was
used for insecticide bioassays; survivors after exposure to insecticide were preserved in
70% alcohol and used for the confirmation of molecular species identification and detection
of G119S.

4.3. Insecticide Bioassay

Adult female An. gambiae s.l. reared from larval collections in different sites were tested
alongside the susceptible laboratory strains Kisumu and Ngousso against two insecticides
(bendiocarb 0.01% and malathion 5%) following WHO guidelines [38]. An. gambiae s.l.
females aged 3–5 days reared from larvae collected on the field were placed in batches
of 20 to 25 mosquitoes per tube and left for observation for one hour. After this period,
mosquitoes were transferred to four different tubes with insecticide-impregnated papers
and exposed for 1 h. The susceptible laboratory strains (An. gambiae (Kisumu strain) and
An. coluzzii (Ngousso strain)) were used as control to assess the quality of the impregnated
papers. The number of mosquitoes knocked down by the insecticide was recorded after
1h of exposure; then, mosquitoes were fed with a 10% sugar solution and the number of
dead mosquitoes was recorded 24 h post-exposure. Mosquitoes were considered resistant
when the mortality rate was <90% and susceptible when the mortality rate was ≥98%, and
resistance status needed further scrutiny when the mortality rate was <98% and >90% [39].

4.4. Mosquito Processing
4.4.1. Total RNA and DNA Extraction from Mosquito Pools

Using a magnetic beads-based approach with the MagSi kit (MagnaMedics Diagnostics
B.V., Geleen, Netherlands), total genomic material (RNA and DNA) was extracted from
687 mosquitoes (N = 90 from Kékem, N = 64 from Njombé, N = 94 from Belabo, N = 70
from Kaélé, N = 90 from Tibati, N = 130 from Santchou and N = 89 from Bertoua, N = 30
from Kisumu and N = 30 from Ngousso, susceptible strains). Mosquitoes were pooled for
extractions (up to N = 10 mosquitoes per pool). The quantity and purity of DNA and total
RNA were assessed spectrophotometrically via Nanodrop measurements. The average
NA concentration was 58.96 ± 5.4 ng/µL and the average A260/A280 ratio, indicative of
sample purity, was 2.3 ± 0.05. The quality of RNA was assessed by 1.0% w/v agarose gel
electrophoresis. Representative samples are shown in Supplementary Figure S1.

4.4.2. Species Identification

Mosquitoes used for species identification included those exposed to insecticide (sur-
vivors, dead) and some not exposed to insecticides. Mosquitoes from different years were
analyzed. Species identification at the molecular level was performed using the TaqMan
assays described in the Innovative Vector Control Consortium (IVCC) Vector Population
Monitoring Tool (VPMT) [39] with modifications described in Wipf et al. [40] for the
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detection of An. coluzzii and An. gambiae species (Primers: S200_X6.1_F: TCGCCTTAGAC-
CTTGCGTTA, S200_X6.1_R: CGCTTCAAGAATTCGAGATAC, Probes:Pcoluzzii: HEX-
ACCGCGCCGCCATACGTAGGA-BHQ1 and Pgambiae: FAM-ATGTCTAATAGTCTCAAT
AGT-MGB).

4.5. Genotyping of G119S Mutation

The G119S mutation was analyzed using the TaqMan assay (Primers: F: GGCCGTCAT-
GCTGTGGAT and R: GCGGTGCCGGAGTAGA; Probes: Pwt: HEX-TTCGGCGGCGGCT-
MGB and Pmut: FAM-TTCGGCGGCAGCT-MGB), as described in VPMT [39]. The per-
centage of allele frequency for the previously mentioned traits in mosquito pools was
calculated with regression models using the protocol described in Mavridis et al., 2018 [41].
Briefly, a standard curve for G119S using plasmid sequences with known % frequencies was
constructed. It was then used for the calculation of % G119S frequencies for the unknown
populations by transforming the dCt (CtFAM-CtHEX values) to allelic frequencies via the
equation of the standard curve’s regression model (Supplementary Figure S2).

4.6. Resistance Gene Expression Analyses

The reverse transcription quantitative PCR (qRT-PCR) 3-plex TaqMan®assays de-
scribed in Mavridis et al., 2019 [42] were used for the quantification of seven detoxification
genes (Cyp6p3, Cyp6m2, Cyp9k1, Cyp6p4, Cyp6z1, Gste2, Cyp6p1) that have been strongly
associated with metabolic resistance and one oxidative decarboxylase (Cyp4g16) that is
implicated in cuticle resistance [42]. The list of primers and probes that were used are listed
in Supplementary Table S1. Reactions were performed in the Viia7 Real-Time PCR system
(Applied Biosystems) using the following thermal cycle parameters: 50 ◦C for 15 min, 95 ◦C
for 3 min and 40 cycles of 95 ◦C for 3 s and 60 ◦C for 30 s. The QuantStudioTM Real-Time
PCR system v1.3 (Applied Biosystems) software was used for the calculation of Ct values
for each reaction.

4.7. Statistical Analysis

Using the method developed by Pfaff [43], fold-changes, 95% CIs and statistical
significance were calculated, while graphs were constructed with the SigmaPlot software
(v12.0). The mortality rate was expressed as the ratio between the number of mosquitoes
that were found dead or not capable of standing on their legs and exposed ones. Confidence
intervals were computed using Medcalc. The comparison of mortality rate and fold change
was performed using chi square and Student’s t-test, respectively.

5. Conclusions

This study indicates the heterogeneous distribution of carbamate and organophos-
phate resistance in An. gambiae s.l. populations across Cameroon. Both Ace-1 G119S
mutation and the overexpression of genes associated with carbamate/organophosphate
resistance were detected. The current expansion of carbamates and organophosphate
resistance could seriously compromise future malaria control measures based on the use of
organophosphates and carbamates in IRS. Addressing gaps affecting malaria control by
improving surveillance activities on the vector is becoming crucial to ensure the success of
malaria elimination efforts in Cameroon.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pathogens11080824/s1; Figure S1: Agarose gel (1.0% w/v) electrophoresis
for total RNA of representative samples (N = 6). The presence of distinct ribosomal bands (28S, 18S,
5S from top to bottom) and the absence of degradation products shows that total RNA was intact,
suitable for downstream analyses.; Figure S2: Standard curve for G119S using plasmid sequences
with known % frequencies (A) and calculation of % G119S for an unknown population of the study
as an example (B); Table S1: List of primers and probes used for the multiplex resistance gene
expression analyses.
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