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This Special Issue (SI) has collected the most recent publications on the mechanisms
that macrophages use to regulate homeostasis and their involvement in the pathogenesis
of various non-infectious diseases.

Among others, atherosclerosis can be considered as an inevitable disease, strongly
associated with age, and significantly contributing to the death rate of all countries.

The pathological thickening of the walls of large arteries can be seen as a macroscopic
manifestation of this disease, and when we increase the scale we can see that macrophages
contribute significantly by secreting pro-inflammatory cytokines leading to chronic in-
flammation, participating in the formation of atherosclerotic lesions in the form of foam
cells [1,2]. However, when it comes to the identification of the origins of atherosclerosis,
there is still no unity among researchers.

One promising hypothesis combining different observations related to atherosclero-
sis pathology is that mutations of mitochondrial DNA could modulate the inflammatory
response of macrophages to different pro-inflammatory stimuli, leading to chronic inflam-
mation and further development of the disease [3,4]. As a part of the innate immune
system, macrophages are capable of recognizing pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), and can trigger immune re-
sponse. Dysfunctional mitochondria (for example, due to mutations of mitochondrial DNA)
contribute to DAMPs formation. Atherogenic low-density lipoproteins (LDL), including
desialylated and oxidized ones [2,5], can also serve as a unique trigger of inflammation
independent of DAMPs and PAMPs. It should be noted that the principles described in
this hypothesis can also be applied to other diseases related to chronic inflammation. This
hypothesis is shown in Figure 1.

We shall briefly summarize below articles and reviews published in this Special Issue.
It was found that infection of anti-inflammatory M2-macrophages with rubella virus

was accompanied by a reduction in CD14 expression and the interferon β response [6].
Specific gene profiles were identified in heart macrophages in cases of early compen-

sated hypertrophy (genes related to lipid metabolism and genes of Na+ or K+ channels)
versus late dilated remodeling related to heart failure [7].

The influence of heat-killed Candida albicans cells on macrophages was studied with
the conclusion that these cells can induce foam cell formation, MMP-9 expression, and
inflammatory response via upregulated FABP4. Thus, FABP4 could be considered as a new
drug target to treat atherosclerosis induced by C. albicans [8].

The potential connection of high levels of lipid peroxidation with elevated ferritin was
investigated in case of adult-onset Still’s disease [9].
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Figure 1. The hypothesis of the induction of chronic inflammation due to the presence of mutations 
of mitochondrial DNA in macrophages. Macrophages can recognize damage-associated molecular 
patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), and atherogenic low-density 
lipoproteins (LDL), turn on a pro-inflammatory reaction, and secrete pro-inflammatory cytokines. 
In normal cases, a tolerance develops, and the macrophage stops releasing cytokines. However, in 
the presence of mitochondrial mutations, tolerance formation may be impaired, which could lead 
to continuous secretion of inflammatory cytokines and chronic inflammation development [3,4]. 

We shall briefly summarize below articles and reviews published in this Special 
Issue. 

It was found that infection of anti-inflammatory M2-macrophages with rubella virus 
was accompanied by a reduction in CD14 expression and the interferon β response [6]. 

Specific gene profiles were identified in heart macrophages in cases of early 
compensated hypertrophy (genes related to lipid metabolism and genes of Na+ or K+ 
channels) versus late dilated remodeling related to heart failure [7]. 

The influence of heat-killed Candida albicans cells on macrophages was studied with 
the conclusion that these cells can induce foam cell formation, MMP-9 expression, and 
inflammatory response via upregulated FABP4. Thus, FABP4 could be considered as a 
new drug target to treat atherosclerosis induced by C.albicans [8]. 

The potential connection of high levels of lipid peroxidation with elevated ferritin 
was investigated in case of adult-onset Still’s disease [9]. 

The influence of lobeglitazone on lipopolysaccharide-treated bone-marrow-derived 
macrophages was studied, with the conclusion that it has anti-inflammatory activity due 
to the suppression of expression of pro-inflammatory genes and reduced NO production 
[10]. 

Mice-originating tissue-resident macrophages specific for lungs were co-incubated 
with lung interstitial cells in order to study the microenvironment of the expression of 
specific markers for cell lines studied [11]. 

The expression of the MARCO gene (as well as some other markers) in macrophages 
originating from liver after a resection procedure was investigated, with a conclusion 
regarding the increase in MARCO in these cells upon regeneration of liver in a mouse 
model [12]. 

Using a mouse model, a line of human macrophages, and an agonist of the glucose-
dependent insulinotropic polypeptide (GIP) receptor, a reduction in foam cell formation 
was shown upon the activation of the GIP receptor, which correlated with a reduction in 
expression of CD36 and CDK5 [13]. 

Macrophages were purified from different regions of lungs based on density of cells, 
with the finding that high-density and low-density macrophages had differences not only 

Figure 1. The hypothesis of the induction of chronic inflammation due to the presence of mutations
of mitochondrial DNA in macrophages. Macrophages can recognize damage-associated molecular
patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), and atherogenic low-density
lipoproteins (LDL), turn on a pro-inflammatory reaction, and secrete pro-inflammatory cytokines.
In normal cases, a tolerance develops, and the macrophage stops releasing cytokines. However, in
the presence of mitochondrial mutations, tolerance formation may be impaired, which could lead to
continuous secretion of inflammatory cytokines and chronic inflammation development [3,4].

The influence of lobeglitazone on lipopolysaccharide-treated bone-marrow-derived
macrophages was studied, with the conclusion that it has anti-inflammatory activity due to
the suppression of expression of pro-inflammatory genes and reduced NO production [10].

Mice-originating tissue-resident macrophages specific for lungs were co-incubated
with lung interstitial cells in order to study the microenvironment of the expression of
specific markers for cell lines studied [11].

The expression of the MARCO gene (as well as some other markers) in macrophages
originating from liver after a resection procedure was investigated, with a conclusion
regarding the increase in MARCO in these cells upon regeneration of liver in a mouse
model [12].

Using a mouse model, a line of human macrophages, and an agonist of the glucose-
dependent insulinotropic polypeptide (GIP) receptor, a reduction in foam cell formation
was shown upon the activation of the GIP receptor, which correlated with a reduction in
expression of CD36 and CDK5 [13].

Macrophages were purified from different regions of lungs based on density of cells,
with the finding that high-density and low-density macrophages had differences not only
in density but also in the expression of certain gene markers and inflammatory response
upon the addition of lipopolysaccharide [14].

Co-incubation of mesenchymal stem cells with M2 macrophages in a 3D environment
containing polyethylene particles with lipopolysaccharides resulted in an elevated produc-
tion of markers of osteogenesis. This suggests a potential role of the immune response in
modulation of bone reparation [15].

It was found that incubation of macrophages with carnosine led to a reduction in
oxidative stress caused by Aβ1-42 oligomers and thus protected cells from death and
apoptosis. This points in the direction of potential therapeutic application of this peptide in
the treatment of Alzheimer’s disease [16].

There was increased production of interleukin-8 and prostaglandin E2 in THP-1-
derived macrophages after palmitate treatment, and insulin enhanced these effects, sug-
gesting the role of palmitate in the progression of inflammation in adipose tissues [17].
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The pathological role of macrophages in development and progression of erectile
dysfunction (ED), and Peyronie’s disease as an example of ED, was reviewed and discussed,
including current therapeutic approaches [18].

The complex subject of training and tolerance of macrophages was discussed with
special focus on the role of macrophages in the development of diseases in humans [19].

Questions related to metabolism of iron in macrophages, considering their role in
degradation of red blood cells, were carefully reviewed [20].

The influence of activation of microglia on pathological development of neurodegen-
erative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease
and epilepsy was discussed, with mention of potential therapy approaches [21].

Current methods related to the identification of macrophages in situ were systematized
and discussed, including in situ hybridization, immunolabeling and other approaches [22].

The interaction between macrophages, mesenchymal stem cells and fibroblasts in the
tumor microenvironment was analyzed, with a focus on cell–cell interaction and secreted
mediators, in order to find explanations for pro/anti-tumor phenotypes of macrophages
and their response to treatment with oncolytic viruses [23].

The role of macrophages in foam cell formation in atherosclerosis, mechanisms in-
volved in this process, as well as their potential as targets for anti-atherosclerotic therapy,
were reviewed [24].

The effect of Roux-en-Y gastric bypass on different pathways involving energy home-
ostasis in leukocytes was studied, with the finding of increased levels of AMPK, au-
tophagy/mitophagy markers, a reduction in ATF6 and CHOP (ER stress markers), and
decreased mitochondrial membrane potential [25].

The influence of microbeam radiation therapy on accumulation of macrophages was
studied in different tissues, and accumulation of macrophages in normal liver and lung
tissue and lung carcinoma was found in comparison to in normal skin tissue [26].

We hope that the next SI will continue the traditions of high-quality publications
established in this and previous SIs.
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