
Automatic NMR-Based Identification of Chemical
Reaction Types in Mixtures of Co-Occurring Reactions
Diogo A. R. S. Latino1,2*, João Aires-de-Sousa1*

1 CQFB, REQUIMTE, Departamento de Quı́mica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal, 2 CCMM, Departamento de Quı́mica

e Bioquı́mica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal

Abstract

The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the
resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of
applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An
application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded
mixtures of chemical reactions with the difference between the 1H NMR spectra of the products and the reactants. All the
signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture
of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of
chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From
this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning
methods were trained to classify the reactions occurring in a mixture from the 1H NMR-based descriptor of the mixture.
Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type,
and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to
the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the
same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study
demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical
reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is
performed without structure elucidation of the molecules in the mixtures.
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Introduction

As the chemical composition of complex mixtures change with

time, so do their NMR spectra. The interpretation of spectra

modifications in terms of chemical reactions taking place has the

potential to elucidate underlying chemical phenomena. Machine

learning can extract knowledge from complicated databases of

experimental observations, to recognize patterns in new situations.

Automatic reaction identification can be useful in many different

applications, e.g. to study chemical stabilities and aging of

consumer/industrial products, to monitor biotechnological pro-

cesses, or to assess the function of new enzymes in a pool of

possible substrates.

Patterns of NMR changes are expected to be associated with

types of reactions, because the atoms near the reaction center have

their environment modified – and their NMR properties altered –,

whereas the substructures of the reactants that are far from the

reaction center will be mostly unchanged. Additionally, NMR

spectra are sensitive to changes in the 3D environment of atoms,

which may be observed even in substructures topologically distant

from the reaction center and can be typical of certain reactions.

Machine learning techniques should be able to recognize types of

chemical reactions from NMR changes, even when more than one

reaction occur simultaneously.

The processing of NMR spectra with chemometric and

machine learning techniques is extensively used in the analysis of

complex mixtures [1], notably in metabonomics [2]. Examples

include the classification of lung carcinoma cell lines [3], the

classification of human saliva according to treatment with an oral

rinse formulation, or donor [4,5], the analysis of human plasma to

study metabolic changes caused by diet [6], the assessment of how

concentration patterns of hydrophilic and lipophilic tissue

metabolites describe different stages of breast tumor malignancy

[7], or the identification of lipoprotein subclasses in plasma

samples [8].

Other areas where NMR-based machine learning methods have

been applied are the authentication of products [9–10], monitor-

ing of enzymatic reactions [11], or assessment of drug toxicity

[12]. Alonso-Salces et. al. used pattern recognition techniques

(LDA, PLS-DA, SIMCA, and CART) for the geographical

characterization of virgin olive oils based on the 1H NMR

fingerprint of the unsaponifiable matter [9]. Aursand and co-

workers have reported the ability of Kohonen Self-Organizing

Maps (Kohonen SOMs) and generative topographic mapping to

discriminate 13C NMR spectra of different commercial fish oil-
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related health food products concerning the nature, composition,

refinement, and/or adulteration [10].

NMR techniques are well established for monitoring chemical

and enzymatic reactions, industrial processes, and for the

elucidation of reaction mechanisms. A few examples are

mentioned next that also illustrate the current development of

new instruments specifically designed for reaction analysis. Ballard

et al. [13] used quantitative NMR to measure the concentration of

carbamates over time, in order to study the chemical reaction of

CO2 with mixtures of amines. Shey et al. [14] monitored polymer-

supported reactions with conventional 1H NMR spectroscopy

during a liquid-phase combinatorial synthesis. Kalelkar and co-

workers applied SOMs to analyse NMR spectra from combina-

torial parallel synthesis [15]. Bernstein et al. [16] described an

apparatus consisting in a reactor coupled with an NMR flow cell;

more recently an NMR flow cell based on a standard 5 mm NMR

tube was presented that can be used for homogeneous and

heterogeneous reactions [17]. Gomez et al. [18] presented a

nanolitre NMR spectroscopy microfluidic chip hyphenated to a

continuous flow microlitre-microwave irradiation set-up, for on-

line monitoring. The method was also applied for rapid

optimization of reaction conditions. Mix et al. [19] developed a

double-chamber NMR tube – differently of others, this apparatus

provides the full control of the temperature over the range from 2

80 to 130uC. Foley et al. [20] developed the ReactNMR method

for reaction monitoring and in situ characterization of reaction

intermediates, assisting in mechanism elucidation and in the

characterization of complex reaction mixtures.

Our lab has previously shown that Kohonen Self-Organizing

Maps (Kohonen SOMs) and random forests can classify individual

reactions from the difference between the 1H NMR spectrum of

the products and the reactants [21]. The obtained models can then

be applied in new situations, even if the structures of the reactants

and products are unknown, but their 1H NMR spectra are

available.

Here we present an extension of this approach to mixtures of

reactions. As before, machine learning methods received as input

the difference between the 1H NMR spectra of the products and

the reactants – but now the products of two reactions of different

classes are taken together, as well as the reactants. This simulates a

situation in which two reactions occur simultaneously. The

SPINUS program [22–24] was used to estimate 1H NMR

chemical shifts from the molecular structure, and the chemical

shifts were fuzzified to tolerate small variations. Three machine

learning methods were explored that differ in the type of learning.

Kohonen SOMs are trained with unsupervised learning (compet-

itive learning), counter-propagation neural networks (CPNN) use

semi-supervised learning, and random forests (RF) use supervised

learning. A dataset of 181 photochemical cycloadditions manually

assigned into six types was used to simulate 12,421 mixtures of two

reactions. The machine learning algorithms were given the task of

predicting the types of reactions, in a simulated situation where

two reactions of different types occur simultaneously, from the

simulated 1H NMR spectra of the reactants and products.

Methods

The experiments here described involve three main steps: a) the

generation of a reaction descriptor from the simulated 1H NMR

spectra of the products and reactants; b) the generation of the

simulated mixtures of two reactions from the NMR reaction

descriptors; c) the development of classification models for

mixtures of reactions taking as input 1H NMR data.

Figure 1. Types of photochemical reactions (from top): [3+2]
photocycloaddition of azirines to C = C, [2+2] photocycloaddi-
tion of C = C to C = O, [4+2] and [4+4] photocycloaddition of
olefins to carbon-only aromatic rings, [2+2] photocycloaddi-
tion of C = C to C = C, [3+2] photocycloaddition of s-triazolo[4,3-
b]pyridazine to C = C, and [2+2] photocycloaddition of C = C to
C = S.
doi:10.1371/journal.pone.0088499.g001

Table 1. Number of reactions by reaction type and partition to be used to generate training and test sets of Partition 2 of mixtures
of reactions.

Types of Reactions Number of Reactions For Partition 2*

[3+2] photocycloaddition of azirines to C = C 20 16/4

[2+2] photocycloaddition of C = C to C = O 31 23/8

[4+2] and [4+4] photocycloaddition of olefins to carbon-only aromatic rings 20 16/4

[2+2] photocycloaddition of C = C to C = C 73 56/17

[3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine to C = C 10 8/2

[2+2] photocycloaddition of C = C to C = S 27 21/6

Total 181 140/41

*Number of reactions in the training/test set to be used to generate Partition 2 of mixtures of reactions.
doi:10.1371/journal.pone.0088499.t001
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Data Sets of Reactions
A data set of 181 photochemical reactions, involving two

reactants and one product (bearing at least one hydrogen atom

covalently bonded to a carbon atom) was extracted from the

SPRESI database (InfoChem GmbH, Munich, Germany). The

reactions were manually assigned into six types (Figure 1): [3+2]

photocycloaddition of azirines to C = C (20 reactions), [2+2]

photocycloaddition of C = C to C = O (31 reactions), [4+2] and

[4+4] photocycloaddition of olefins to carbon-only aromatic rings

(20 reactions), [2+2] photocycloaddition of C = C to C = C (73

reactions), [3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine

to C = C (10 reactions), and [2+2] photocycloaddition of C = C to

C = S (27 reactions). [21]

We simulated all possible mixtures of two reactions (belonging

to different types) from the data set of 181 reactions. For example,

the 20 [3+2] photocycloaddition of azirines to C = C and the 31 [2+2]

photocycloaddition of C = C to C = O yield 620 mixtures of reactions of

class A. In the following combination the 20 [3+2] photocycloaddition

of azirines to C = C and the 20 [4+2] and [4+4] photocycloaddition of

olefins to carbon-only aromatic rings yield 400 mixtures of reactions of

class B, and so on until all possible combinations of reactions types

were simulated. The final data set of mixtures of reactions consists

in 12421 mixtures. From this data set, 8280 mixtures were

randomly selected to the training set and the remaining 4141 were

used as a test set, Partition 1. Figure 1 and Table 1 show the types

of reactions and the number of reactions by type. Table 2 indicates

the resulting number of mixtures.

Another more challenging partition of the data set was also used

in which the data set of 181 reactions was randomly partitioned

into subsets of 140 and 41 reactions, assuring that both sets cover

the whole range of reactions, (see Table 1 for training and test set

partition by reaction type) and the combinations were generated

within each data set. For example the 16 [3+2] photocycloaddition of

azirines to C = C and the 23 [2+2] photocycloaddition of C = C to C = O

yield 368 mixtures of reactions of class A for the training set then,

in the following combination, the 16 [3+2] photocycloaddition of

azirines to C = C and the 16 [4+2] and [4+4] photocycloaddition of olefins

to carbon-only aromatic rings yield 256 mixtures of reactions of class B

for the training set of Partition 2, and so on until all possible

combinations of reactions were simulated. The same was

performed for the test set. The larger subset (7578 mixtures) was

used as a training set and the smaller (593 mixtures) as a test set

consisting in Partition 2 (see Figure 1 and Table 1 for types of

reactions and number of reactions by type, and Table 2 for the

resulting number of mixtures). Table 2 shows the constitution of

each data set and the labels used in the experiments with Kohonen

SOMs. Mixture classes (A to O) correspond to combinations of

two reaction types. It is to emphasize that a 15-class classification

problem like this (15 different mixtures of reactions) is a

challenging modelling problem even using supervised learning

techniques.

11B1H NMR Spectra of Reactants and Products
1H NMR chemical shifts were predicted by the SPINUS

program (v2) [22–24] from the molecular structures of the

reactants and products. Only hydrogen atoms bonded to carbon

atoms were predicted. The predicted chemical shifts were fuzzified

with a triangular function and widths 0.1 ppm at each side of the

Table 2. Number of reaction mixtures in each mixture class (mixture of two reactions of different types) for the two partitions of
the data set.

Class of
mixture Reaction 1 Reaction 2 Partition 1* Partition 2*

A [3+2] photocycloaddition of azirines to C = C [2+2] photocycloaddition of C = C to C = O 413/207 368/32

B [3+2] photocycloaddition of azirines to C = C [4+2] and [4+4] photocycloaddition of olefins to
carbon-only aromatic rings

267/133 256/16

C [3+2] photocycloaddition of azirines to C = C [2+2] photocycloaddition of C = C to C = C 975/487 896/68

D [3+2] photocycloaddition of azirines to C = C [3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine
to C = C

132/67 128/8

E [3+2] photocycloaddition of azirines to C = C [2+2] photocycloaddition of C = C to C = S 360/180 352/20

F [2+2] photocycloaddition of C = C to C = O [4+2] and [4+4] photocycloaddition of olefins to
carbon-only aromatic rings

413/206 368/32

G [2+2] photocycloaddition of C = C to C = O [2+2] photocycloaddition of C = C to C = C 1510/754 1288/136

H [2+2] photocycloaddition of C = C to C = O [3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine
to C = C

206/104 184/16

I [2+2] photocycloaddition of C = C to C = O [2+2] photocycloaddition of C = C to C = S 558/279 506/40

J [4+2] and [4+4] photocycloaddition of olefins
to carbon-only aromatic rings

[2+2] photocycloaddition of C = C
to C = C

974/486 896/68

K [4+2] and [4+4] photocycloaddition of olefins
to carbon-only aromatic rings

[3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine
to C = C

133/67 127/8

L [4+2] and [4+4] photocycloaddition of olefins
to carbon-only aromatic rings

[2+2] photocycloaddition of C = C to C = S 360/180 353/20

M [2+2] photocycloaddition of C = C to C = C [3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine
to C = C

498/250 448/34

N [2+2] photocycloaddition of C = C to C = C [2+2] photocycloaddition of C = C to C = S 1302/651 1232/85

O [3+2] photocycloaddition of s-triazolo[4,3-
b]pyridazine to C = C

[2+2] photocycloaddition of C = C to C = S 180/90 176/10

*Number of reactions in the training/test sets.
doi:10.1371/journal.pone.0088499.t002
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chemical shift, which approximate the observed mean absolute

error of SPINUS predictions (0.2–0.3 ppm). [22]

1H NMR Spectra of Mixtures before and after the
Reactions

All the signals, integrating proportionally to the number of

protons, arising from all reactants of one reaction were taken

together (spectrum of the reactants). The spectrum of the reactants

was subtracted from the spectrum of the product. This is the

difference between the spectra after and before the reaction,

assuming full conversion.

The difference spectrum (‘‘reaction spectrum’’) was binned in

the range 0–12 ppm using 0.1 ppm wide intervals resulting in 120

variables (each variable integrating the intensities within an

interval of 0.1 ppm). Experiments concerning the optimization

of the binning procedure and integration of the intensities and

their relation with the mean absolute error was performed in a

previous publication [21].

For a mixture of two reactions, the reactions spectra are

summed. The result corresponds to the difference of the spectra

before (only reactants) and after (only products) the two reactions

occur. Simultaneousness of the two reactions is assumed. Unless

otherwise specified, the two reactions of each mixture were

simulated in a 1:1 ratio and with full conversion.

In this way, we generate an NMR reaction descriptor for each

reaction mixture of the data set, which is used as the input to the

machine learning techniques.

Machine Learning Methods
Kohonen Self-Organizing Maps (Kohonen SOMs)

[25,26]. Kohonen SOMs learn by unsupervised training,

distributing objects through a grid of so-called neurons, on the

basis of the objects’ features. This is an unsupervised method that

projects multidimensional objects into a 2D surface (a map). SOM

can reveal similarities between objects, mapped into the same or

neighbor neurons. Each neuron of the map contains as many

elements (weights) as the number of input variables (objects

features). Before the training starts, the weights take random

values. During the training, each individual object is mapped into

the neuron with the most similar weights compared to its features

(shortest Euclidean distance between weights and input). This

winning neuron is excited (or activated), and its weights are

Figure 2. Toroidal surface of a 49649 Kohonen SOM trained with 8280 mixtures of two photochemical reactions encoded by the 1H
NMR descriptor. After the training, each neuron was colored according to the reaction mixtures of the training set that are mapped onto it. The
colors correspond to the classes in Table 1. Black neurons correspond to conflicts.
doi:10.1371/journal.pone.0088499.g002
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corrected to make them even more similar to the object features.

The neurons in its neighborhood also have their weights adjusted.

The extent of adjustment depends on the topological distance to

the winning neuron – the closer a neuron is to the winning neuron

the more it is adjusted – and on the stage of training. The objects

of the training set are iteratively fed to the map, and the weights

corrected, until a pre-defined number of cycles is attained. A

trained Kohonen SOM reveals similarities between objects of a

data set in the sense that similar objects are mapped into the same

or closely adjacent neurons.

In the investigations described here, the input variables are the

120 NMR reaction descriptors derived from the spectra of the

reactants and products of two reactions. SOMs with toroidal

topology and dimension 49649 were trained and tested using the

two different partitions of the data set. The maximum size was

chosen such that the number of mixtures of reactions was at least

twice the number of neurons. The toroidal topology means that

neurons occupy the surface of a torus, so that all neurons have 8

neighbors – in the 2D representation of the map the neurons at the

left edge are neighbors of those at the right edge, and the same

happens for those at the top and bottom edges. After the training,

each neuron is labeled (colored) according to the classes of reaction

mixtures that activate it (see Table 1), which facilitates visualiza-

tion, and enables the classification of new reaction mixtures.

Training was performed by using a linear decreasing triangular

scaling function with an initial learning rate of 0.1. The weights

were initialized with random numbers that are calculated using the

mean and the standard deviation of each variable in the input data

set. For the selection of the winning neuron, the minimum

Euclidean distance between the input vector and neuron weights

was used. The training was performed over 50–100 cycles, with

the learning span and the learning rate linearly decreasing until

zero. These parameters appeared as a reasonable balance between

network stability and computation time. Kohonen SOM were

implemented with in-house-developed software based on JA-

TOON Java applets. [27] To overcome fluctuations induced by

the random factors influencing the training, five or ten indepen-

dent SOM were trained with the same objects, generating an

ensemble of SOM. Ensemble predictions were obtained for new

objects by majority vote of the individual SOMs.

Counter-Propagation Neural Networks (CPNNs) [26]. A

Counter-Propagation Neural Networks incorporate a Kohonen

SOM linked to a second layer of neurons (output layer) that acts as

a look-up table and stores output data (the classification of the

mixture of reactions). The CPNN method is considered a semi-

supervised technique. During the training, the winning neuron is

determined exclusively on the basis of the Kohonen layer (input

layer), but the weights of the corresponding output neuron are

adjusted to become closer to the output values of the object – semi-

supervised learning. After the training, the CPNN can produce an

output for an object – the winning neuron is chosen and the

Figure 3. The same map of Figure 2, with two different filters
applied: top – only colored neurons belonging to mixtures of
classes A, B, C, D, and E; bottom – only colored neurons
belonging to mixtures of classes C, G, J, M, and N. The colors
correspond to the classes in Table 1. Black neurons correspond to
conflicts between these classes and white neurons correspond to
empty neurons or neurons belonging to other classes.
doi:10.1371/journal.pone.0088499.g003

Table 3. Classification of mixtures of reactions (mixtures of
two reactions) by Kohonen SOMs and Counter-Propagation
Neural Networks of dimension 49649.

Data sets* % Correct predictions

Best ind. Ensemble of five Ensemble of ten

SOM CPNN SOM CPNN SOM CPNN

Partition Training 80.6 61.3 86.7 73.0 89.0 75.6

1 Test 71.1 57.7 77.4 69.1 79.6 71.8

Partition Training 82.9 68.4 89.4 77.4 91.4 78.6

2 Test 52.6 47.2 59.4 57.2 62.6 57.5

*Partition 1–8280 and 4141 mixtures of reactions in training and test set,
respectively; Partition 2–7578 and 593 mixtures of reactions in training and test
set, respectively.
doi:10.1371/journal.pone.0088499.t003
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corresponding weights in the output layer are taken as the

prediction.

In this work, the types of the mixture reactions were encoded

into a vector (output) with dimension six (the number of reaction

types). The two components of the vector corresponding to the

types of the reactions present in the mixture take the value one, the

others take the value zero. After the training, when working in

prediction mode, CPNN produce a six-values output for a reaction

mixture, which is interpreted as a prediction of the two types

obtaining the highest values.

Software and training settings were the same as in the

experiments with Kohonen SOMs. Ensembles of five or ten

independent CPNN were trained, and predictions were obtained

by majority vote of the individual maps.

Random Forests (RF) [28,29]. A random forest is an

ensemble of unpruned classification trees created by using

bootstrap samples of the training data and random subsets of

variables to define the best split at each node. It is a high-

dimensional nonparametric method that works well on large

numbers of variables. The predictions are made by majority voting

Figure 4. Representation of the six output layers of a 49649 CPNN trained with 7578 mixtures of two reactions. High values of the
weights in each output layer are represented by blue, and low values by red. Output layers corresponding to the following reaction types, from left to
right: First row – [3+2] photocycloaddition of azirines to C = C and [2+2] photocycloaddition of C = C to C = O reaction types. Second row – [4+2] and
[4+4] photocycloaddition of olefins to carbon-only aromatic rings, and [2+2] photocycloaddition of C = C to C = C reaction types. Third row – [3+2]
photocycloaddition of s-triazolo[4,3-b]pyridazine to C = C and [2+2] photocycloaddition of C = C to C = S reaction types.
doi:10.1371/journal.pone.0088499.g004
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of the individual trees. The performance is internally assessed with

the prediction error for the objects left out in the bootstrap

procedure (out-of-bag estimation, OOB). Here, RFs were grown

with the R program version 2.0.1, [30] using the randomForest

library, [31] and were used to classify the reactions present in a

mixture of reactions on the basis of NMR reaction descriptors.

The models were built to classify objects (mixtures of reactions)

according to the 15 classes of mixtures (classes A to O, Table 1).

The number of trees in the forest was set to 1000, and the number

of variables tested for each split was set to default (square root of

the number of variables). The voting system of a RF allows the

association of a probability to each prediction that reflects the

percentage of votes obtained by the winning class. This probability

was investigated as a measure of reliability.

Results and Discussion

Previous to this work, the chemical shifts predicted by SPINUS

had been validated for a subset of reactants and products in our

data set of reactions, for which experimental chemical shifts were

available [21]. A mean absolute error (MAE) of 0.24 ppm was

obtained for the 349 chemical shifts of the subset, which was

similar to earlier tests [23].

The following subsections present results concerning the ability

of various machine learning methods (including unsupervised and

supervised learning) to recognize patterns of changes in the 1H

NMR spectra corresponding to types of reactions, when two

reactions occur simultaneously. Experiments were performed with

two different partitions of the data set.

Mapping of Mixtures of Reactions on a Kohonen SOM
Kohonen SOMs of size 49649 were trained using the NMR

reaction descriptors for mixtures in the training set. In the learning

procedure, the network made no use of the information related to

mixture classes. After the training, each neuron of the surface was

assigned to a mixture class (one of the 15 possible combinations of

two reactions from six types). Figure 2 shows a Kohonen SOM of

size 49649 trained with 8280 mixtures corresponding to the

training set of partition 1.

The results show a trend for some classes of mixtures to cluster,

namely class B, class C, class J, class L, class M and class N (see

Table 1 for detailed information concerning the types of reactions

in each class of mixtures). The 15 classes of mixtures correspond to

combinations of two reactions from six different types. In fact,

classes of mixtures sharing one type of reaction tend to be mapped

on the same region of the map. This is illustrated in Figure 3,

which results from applying two different filters to Figure 2. In the

first map, only neurons were colored that correspond to mixture

classes A, B, C, D, or E (in all these mixtures is present a reaction

of type [3+2] photocycloaddition of azirines to C = C). These

mixtures concentrate on certain regions of the map and are not

well separated from each other (the exception is class B). The

second map only shows colored neurons of mixture classes C, G, J,

M, or N (these are the classes sharing a reaction of type [2+2]

photocycloaddition of C = C to C = C). These mixtures are much

spread through the map (because of the large number of reactions)

and are well distinguished from each other. The two images

illustrate how the overlap of mixture classes on the map

corresponds to the overlap of types of reactions in the mixtures.

An individual SOM was able to consistently classify 80.6% of

the reaction mixtures in the training set, and to correctly predict

71.1% of the test set (Table 3). Improvement in accuracy was

Table 4. Classification of mixtures of reactions (mixtures of
two reactions) by Random Forests.

Data sets*
% Correct
predictions

Partition Training 99.2

1 Test 99.1

Partition Training 99.6

2 Test 80.3

*Partition 1–8280 and 4141 mixtures of reactions in training and test set,
respectively; Partition 2–7578 and 593 mixtures of reactions in training and test
set, respectively.
doi:10.1371/journal.pone.0088499.t004

Table 5. Confusion matrix for the classification of mixtures obtained by RF for the test set of partition 2.

A B C D E F G H I J K L M N O %

A 25 – 5 – – – 2 – – – – – – – – 78.1

B – 15 – – – – – – – 1 – – – – – 93.8

C 5 – 60 – – – 3 – – – – – – – – 88.2

D – – – 8 – – – – – – – – – – – 100.0

E 1 – 7 – 10 – – – – – – – – 2 – 50.0

F – – – – – 28 1 – – 3 – – – – – 87.5

G – – 1 – – – 135 – – – – – – – – 99.3

H – – – – – – – 16 – – – – – – – 100.0

I – – – – – – 16 – 21 – – – – 3 – 52.5

J – – – – – 8 1 – – 59 – – – – – 86.8

K – – – – – – – – – – 8 – – – – 100.0

L – – – – – 2 – – – 7 – 11 – – – 55.0

M – – – – – – – – – – – – 34 – – 100

N – – 3 – – – 34 – 7 – – – – 41 – 48.2

O – – – – – – – – – – – – 5 – 5 50.0

doi:10.1371/journal.pone.0088499.t005
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achieved with ensembles of five and ten SOMs. Correct

predictions were obtained for 86.7% and 89% of the training

set, and 77.4% and 79.6% of the test set using ensembles of five

and ten SOMs, respectively.

Then, experiments were performed using partition 2, with lower

similarities between training and test sets. With partition 1, all

mixtures are different, but the same reaction is often present in a

mixture of the training and in a mixture of the test set (combined

with another reaction). Differently, with partition 2 no reaction in

Table 6. Relationship between the prediction accuracy and the probability associated to each prediction by RFs for test set of
partition 2.

Classesa Probability

No Selection $0.5 $0.6 $0.8

N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc

A (32) 31 25 (80.7) 12 11 (91.7) 4 4 (100.0) 2 2 (100.0)

B (16) 15 15 (100.0) 7 7 (100.0) 4 4 (100.0) 1 1 (100.0)

C (68) 76 60 (79.0) 52 50 (96.1) 41 41 (100.0) 14 14 (100.0)

D (8) 8 8 (100) 6 6 (100.0) 4 4 (100.0) 2 2 (100.0)

E (20) 10 10 (100) 3 3 (100.0) 3 3 (100.0) – –

F (32) 38 28 (73.7) 24 21 (87.5) 17 16 (94.1) 6 6 (100.0)

G (136) 192 135 (87.5) 130 115 (94.1) 91 88 (96.7) 37 37 (100.0)

H (16) 16 16 (100.0) 14 14 (100.0) 14 14 (100.0) 5 5 (100.0)

I (40) 28 21 (75.0) 17 15 (88.2) 10 8 (80.0) – –

J (68) 70 59 (84.3) 43 41 (95.4) 27 26 (96.3) 11 10 (90.9)

K (8) 8 8 (100.0) 8 8 (100.0) 7 7 (100.0) 6 6 (100.0)

L (20) 11 11 (100.0) 7 7 (100.0) 5 5 (100.0) 1 1 (100.0)

M (34) 39 34 (87.2) 30 30 (100.0) 28 28 (100.0) 14 14 (100.0)

N (85) 46 41 (89.1) 25 25 (100.0) 13 13 (100.0) 6 6 (100.0)

O (10) 5 5 (100.0) 5 5 (100.0) 3 3 (100.0) 2 2 (100.0)

Total 593 476 (80.3) 383 358 (93.5) 271 264 (97.4) 107 106 (99.1)

aClass labels and number of reactions in each class.
bNumber of mixtures predicted to belong to each class.
cNumber of true positives for each class and (in parenthesis) its percentage among the number of mixtures predicted to belong to that class.
doi:10.1371/journal.pone.0088499.t006

Table 7. Confusion matrix for the classification of mixtures with probability higher than 0.5 obtained by RF for the test set of
partition 2.

A B C D E F G H I J K L M N O %

A 11 – – – – – – – – – – – – – – 100.0

B – 7 – – – – – – – – – – – – – 100.0

C 1 – 50 – – – – – – – – – – – – 98.0

D – – – 6 – – – – – – – – – – – 100.0

E – – 2 – 3 – – – – – – – – – – 60.0

F – – – – – 21 – – – 1 – – – – – 95.5

G – – – – – – 115 – – – – – – – – 100.0

H – – – – – – – 14 – – – – – – – 100.0

I – – – – – – – – 15 – – – – – – 60.0

J – – – – – 3 – – – 41 – – – – – 93.2

K – – – – – – – – – – 8 – – – – 100.0

L – – – – – – – – – 1 – 7 – – – 87.5

M – – – – – – – – – – – – 30 – – 100.0

N – – – – – – 5 – 2 – – – – 25 – 78.1

O – – – – – – – – – – – – – – 5 100.0

doi:10.1371/journal.pone.0088499.t007
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mixtures of the test set was present in a mixture of the training set.

Not surprisingly, the prediction accuracy decreased considerably –

an ensemble of ten SOMs was able to correctly classify 62.3% of

the mixtures in the test set.

Mapping of Mixtures of Reactions on a CPNN
CPNN process input data similarly to Kohonen SOM, but uses

a different mechanism for producing classifications. A reaction

type is identified in the mixture of the reactions if the activated

neuron exhibits a high value for the output weight corresponding

to that reaction type. Based on the six-values output, a mixture

class is predicted if two and only two of the output values are

higher than 0.5 (the mixture class corresponding to the combina-

tion of those two reaction types). Otherwise, the mixture is

classified as undecided.

Figure 4 shows the six output layers (corresponding to the six

possible types of reactions in the mixtures) of a 49649 CPNN

trained with 7578 mixtures (partition 2). High values of the weights

at each output layer are represented by blue, and low values by

red. It can be seen that mixtures including reactions from certain

types cluster in typical regions while other types are more spread

on the map and not so dominant in mixtures. The inspection of

the six output layers reveals some correlation between the number

of blue neurons in a layer, and the number of reactions of that

type. For example, the most populated type of reaction in the data

set is the [2+2] photocycloaddition of C = C to C = C with 73

reactions – it corresponds to output layer 4 with large regions of

blue neurons. In fact, 4766 out of the 7578 mixtures in the training

set (,63%) include this type of reaction. In the opposite side,

output layer 5 is mostly red and the corresponding reaction type

([3+2] photocycloaddition of s-triazolo[4,3-b]pyridazine to C = C)

is the least populated reaction type with only 10 reactions, present

in 1063 mixtures (,14% of the training set).

CPNN did not yield superior predictions to Kohonen SOMs

(Table 3). For partition 1 an ensemble of ten CPNNs were only

able to correctly classify 75.6% and 71.8% of the mixtures of

the training and test set respectively. The prediction accuracy

for the test set decreased in partition 2 to 57.5%. It is important

to point out that in CPNNs, with six output layers, a class is

only assigned to a mixture when two and only two of the

output values are higher than 0.5 (the mixture class corre-

sponding to the combination of those two reaction types). If

such an assignment is not possible, the mixture is predicted as

Table 8. Impact of the ratio of the two reactions in the
mixture and the integration normalization on the % of correct
predictions.a

RATIO Ai/Bi
% Correct Predictions

NORM = 1 0.2#NORM#1

1 (Table 3) 99.1 –

2 96.2 75.3

5 82.7 70.6

aThe same mixtures of the test set of partition 1 were used, but with different
ratios between the two reactions, and different normalization factors in the
spectra integration.
doi:10.1371/journal.pone.0088499.t008

Table 9. Relationship between the prediction accuracy and the probability associated to each prediction by RFs for the test set of
partition 1 simulated with simultaneous random variation of the three parameters – yields (range 50–100%), NORM (range 0.2–1.0)
and RATIO (range 1–4).

Classesa Probability

No Selection $0.5 $0.6 $0.8

N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc N.of Mixturesb N. of Correctc

A (414) 179 178 (99.4) 141 141 (100) 95 95 (100) 17 17 (100)

B (266) 79 75 (94.9) 25 25 (100) 8 8 (100) 2 2 (100)

C (974) 1108 751 (67.8) 863 642 (74.4) 693 556 (80.2) 322 291 (90.4)

D (134) 62 61 (98.4) 44 44 (100) 36 36 (100) 9 9 (100)

E (360) 163 146 (89.6) 96 94 (97.9) 57 57 (100) 6 6 (100)

F (412) 116 106 (91.4) 68 66 (97.1) 48 48 (100) 11 11 (100)

G (1510) 3327 1476(44.4) 2600 1367(52.6) 2208 1269(57.5) 1250 895 (71.6)

H (206) 89 89 (100) 74 74 (100) 61 61 (100) 36 36 (100)

I (558) 224 221 (98.7) 153 153 (100) 96 96 (100) 21 21 (100)

J (972) 670 477 (71.2) 417 325 (77.9) 313 256 (81.8) 121 108 (89.3)

K ()134 36 26 (72.2) 29 22 (75.9) 23 21 (91.3) 9 9 (100)

L (360) 122 115 (94.3) 64 64 (100) 37 37 (100) 7 7 (100)

M (488) 449 288 (64.1) 352 243 (69) 283 200 (70.7) 196 155 (79.1)

N (1314) 1586 1046 (66) 1230 880 (71.5) 964 730 (75.7) 434 353 (81.3)

O (180) 72 67 (93.1) 52 51 (98.1) 33 33 (100) 11 11 (100)

Total 8282 5122(61.8) 6208 4191(67.5) 4955 3503(70.7) 2452 1931(78.8)

aClass labels and number of reactions in each class.
bNumber of mixtures predicted to belong to each class.
cNumber of true positives for each class and (in parenthesis) its percentage among the number of mixtures predicted to belong to that class.
doi:10.1371/journal.pone.0088499.t009
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undecided. This strict condition gives rise to a large number of

mixtures with no class assigned. For example, the best

individual CPNN does not assign ,26% of the mixtures in

the test set of partition 1. If only assigned mixtures are

considered, the true classifications are 78%.

Kohonen SOM is an unsupervised learning method, and

CPNN is semi-supervised. Both present the advantage of an

easy visualization of the objects in a map, and reveal

relationships between similarities of descriptors and classes.

However, they are based on global comparisons of the

descriptor profile, and are not expected to learn associations

between classes and reduced numbers of specific descriptors.

Such associations may well occur in the studied data set – some

regions of the spectrum are likely to be more relevant than

others. Therefore, experiments were next performed with a

supervised learning method.

Assignment of Reaction Types in Mixtures of Reactions
by RFs

The results obtained with Random Forests are displayed in

Table 4 for the two partitions. Predictions for training sets were

from the internal cross validation obtained by out-of-bag (OOB)

estimation. The accuracies of the predictions for partition 1

reached 99% both for OOB estimation of the training set and for

the test set. A 10-fold cross-validation experiment was also

performed with the training set of Partition 2. The obtained

accuracy was similar to the OOB estimation and reached 99.5% of

correct predictions. With a totally independent test set (partition 2)

the accuracy of the predictions was 80%. RFs performed clearly

better than the self-organizing maps. Table 5 shows the confusion

matrix obtained for the test set of partition 2.

The confusion matrix shows a high prediction accuracy not

only for the most populated classes like class C, G and J, but

also for some less populated like classes D, H and K with 100%

of correct classifications. The mixtures of classes E, I, L, N and

O are the most difficult to classify. For them, true positives are

only ca. 50% of the number of mixtures for these classes (last

column of Table 5), although the counts of false positives are

relatively low (inspection of Table 5 by columns). Classes E, I,

L. N and O result from the combination of [2+2] photo-

cycloadditions of C = C to C = S with the remaining five types

of reactions, which indicates that the patterns of this reaction

type, encoded in our ‘‘reaction spectrum’’, is from all types of

reactions the most difficult to learn – a consequence of a lack of

hydrogen atoms bonded to the atoms of the reaction center in

our data set. The difficulty to learn this type of reaction was

also found in our previous studies [21] for the classification of

reactions outside of mixtures. This approach cannot properly

encode mixtures of reactions where the reactants and products

have no hydrogen atoms bonded to the atoms of the reaction

center. The prediction ability increase from 80% to 93% if the

mentioned classes are not considered.

RF associate a probability to each prediction reflecting the

proportion of votes obtained by the winning class. Table 6 presents

the relationship between the prediction accuracy and the

probability of the predictions.

The results support the use of the probability of each prediction

as a measure of reliability of the class assignment. For the test set of

the second partition, 383 mixtures out of 593 (65%) were predicted

with probability higher than 0.5 and, from these, 358 (94%) were

correctly classified. If we consider only mixtures predicted with

probability higher than 0.6, the number of predicted mixtures

decreases to 271 (46%) but the percentage of correctly classified

mixtures (among these) increases to 97%. With a probability

higher than 0.8, almost all mixtures of reactions were correctly

classified (106 out of 107).

Filtering predictions by the RF probability also improves the

results for the more problematic mixture classes E, I, L N, and O

(Table 7). The percentage of true positive predictions among the

mixtures of each class predicted with probability above 0.5

increased to 60%, 60%, 88%, 78%, and 100% respectively –

Tables 5 and 6.

The best RF model developed with partition 1 was further

validated using the y-randomization technique. The model was

retrained using a modified training set where the Y-column values

– the column corresponding to the classification of the mixtures -

was scrambled and the descriptor matrix was kept unchanged.

Scrambling was performed 5 times. Each randomized model was

used to make predictions for the test set. A considerable decrease

in the % of correct predictions in comparison with the non-

randomized model was observed for the five random models (% of

correct predictions: 14.5–15.7%) which supports the reliability and

robustness of the original model.

To check the impact of the random partition in training and

test sets, five random alternative partitions to partition 1, with

the same sizes of the training and test sets, were used to train

RF models. The results, both for training sets (OOB estimation)

and test sets were similar to those of Table 4 for partition 1

(99.1% for the original test set partition and a range of 99.2–

99.5% of correct predictions for the new five randomly selected

partitions).

In order to better simulate realistic situations and possible

experimental conditions, the RF model trained with partition 1

was further validated using more challenging test sets, generated

with partial conversion of the reactants into products and different

ratios of the two reactions in the mixture. The accuracy of the

predictions for the test set of partition 1 with 70%, 80% and 90%

simulated reaction yields (for both reactions of the mixture) was

81.7%, 96.4% and 98.8% respectively. These compare with

99.1% of correct predictions for the test set with full conversion

(Table 4).

The test set of partition 1 was also re-used to simulate different

ratios of the two reactions in a mixture and different normaliza-

tions of the spectra integration. A MIXTURE i was generated by

the formula MIXTUREi = NORM*(RATIO * Ai+Bi), where Ai

and Bi are the reactions of the mixture, RATIO took values 2 and

5, and NORM took random values between 0.2 and 1.0. Table 8

shows how the RF model developed with the training set of

partition 1 (where NORM and RATIO were always 1) predicted

the new test set (consisting of 8,282 mixtures).

Finally, the test set was simulated with simultaneous random

variation of the three parameters – yields, NORM (range 0.2–1.0)

and RATIO (range 1–4). The percentage of correct predictions for

test sets with reaction yields ranges of 50–100%, 60–100% and

70–100% were 62, 65 and 68% respectively.

A relationship between the probability of the RF predictions

and the prediction accuracy was observed again, for the most

challenging test set – yields (range 50%2100%), NORM (range

0.2–1.0) and RATIO (range 1–4) – Table 9.

In this test set, 6208 mixtures out of 8282 (75%) were predicted

with probability higher than 0.5 and, from these, 4191 (68%) were

correctly classified. If we consider only mixtures predicted with

probability higher than 0.8, the number of predicted reactions

decreases to 2452 (30%) but the percentage of correctly classified

mixtures (among these) increases to 79%. It is to point out the

results for the more difficult class G. From the 3327 mixtures

classified as G, only 1476 (44%) were correctly classified, but the
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percentage increases to 72% among mixtures predicted with

probability higher than 0.8.

The results clearly show that the model learns the key patterns

of NMR signals corresponding to classes of reactions in the

mixtures and are reasonably capable of classifying new cases

involving partial conversion of reactants, different ratios between

reactions and different normalization of integrations, even without

any re-parameterization of the initial model.

Clearly, if these more demanding situations are included in the

training set, the ability to predict the test set are improved. For

example, in an experiment where both training and test sets are

simulated with simultaneous random variation of the three

parameters – yields (range 25%–100%), NORM (range 0.2–1.0)

and RATIO (range 1–7) – a RF correctly predicted 96% of the

mixtures, which reinforces the conclusion that the model learns the

classes of reactions by the presence of key patterns of NMR signals.

Conclusions
This study demonstrates the possibility of applying machine

learning methods to automatically identify types of co-occurring

chemical reactions from the differences between the 1H NMR

spectra of reactants and products. These results also illustrate the

usefulness of SPINUS predictions of NMR data in that context, for

the generation of training sets.

The fact that a supervised learning method yielded significantly

better predictions suggests that changes in very specific ranges of

the 1H NMR spectra are markers of reaction types. The extremely

high percentages of correct predictions for the test set of partition 1

with supervised learning, and for the random forest OOB

estimation within training sets of both partitions, indicate that

the same should happen for individual reactions.

In most practical situations, a reaction is accompanied by side

reactions, and can proceed to different yields, which would require

that the NMR interpretation system is able to identify reaction types

even in the presence of a complex mixture of reactions with different

conversions. Experiments simulating mixtures of reactions with a

diversity of product yields, different proportions of reactions, and

different normalization of integrations corroborated this possibility.

This study relies on 1H NMR spectra, and is therefore limited by

the availability of hydrogen atoms in the neighborhood of the reaction

center and by the sensitivity of their chemical shifts to the changes

resulting from the reactions. But, in principle, the method can be used

with other types of spectra, e.g., 13C NMR or IR. It must be

emphasized that this approach does not require structural information

on the reactions participants – it performs ‘‘reaction elucidation’’

without structure elucidation of the molecules in the mixtures.
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9. Alonso-Salces RM, Héerger K, Holland MV, Moreno-Rojas JM, Mariani C, et

al. (2010) Multivariate analysis of NMR fingerprint of the unsaponifiable fraction
of virgin olive oils for authentication purposes, Food Chem 118: 956–965.

10. Aursand M, Standal IB, Axelson DE (2007) High-Resolution 13C Nuclear
Magnetic Resonance Spectroscopy Pattern Recognition of Fish Oil Capsules, J

Agric Food Chem 55: 38–47.

11. Vallikivi I, Järving I, Pehk T, Samel N, Tõugu V, et al. (2004) NMR monitoring
of lipase-catalyzed reactions of prostaglandins: preliminary estimation of reaction

velocities. J Mol Catal B: Enzym 32: 15–19.
12. Ebbels TMD, Keun HC, Beckonert OP, Bollard ME, Lindon JC, et al. (2007)

Prediction and Classification of Drug Toxicity Using Probabilistic Modeling of
Temporal Metabolic Data: The Consortium on Metabonomic Toxicology

Screening Approach. J Proteome Res 6: 4407–4422.

13. Ballard M, Bown M, James S, Yang Q (2011) NMR studies of mixed amines.
Energy Procedia 4: 291–298.

14. Shey J-Y, Sun C-M (2002) Liquid-phase combinatorial reaction monitoring by
conventional 1H NMR spectroscopy. Tetrahedron Lett 43: 1725–1729.

15. Kalelkar S, Dow ER, Grimes J, Clapham M, Hu H (2002) Automated Analysis

of Proton NMR Spectra from Combinatorial Rapid Parallel Synthesis Using

Self-Organizing Maps. J Comb Chem 4: 622–629.
16. Bernstein MA, Stefinovic M, Sleigh CJ (2007) Optimising reaction performance

in the pharmaceutical industry by monitoring with NMR. Magn Reson Chem
45: 564–571.

17. Khajeh M, Bernstein MA, Morris GA (2010) A simple flowcell for reaction
monitoring by NMR. Magn Reson Chem 48: 516–522.

18. Gomez MV, Verputten HHJ, Dı́az-Ortı́z A, Moreno A, de la Hoz A et al. (2010)

On-line monitoring of a microwave-assisted chemical reaction by nanolitre
NMR-spectroscopy. Chem Commun 46: 4514–4516.

19. Mix A, Jutzi P, Rummel B, Hagedorn K (2010) A Simple Double-Chamber
NMR Tube for the Monitoring of Chemical Reactions by NMR Spectroscopy.

Organometallics 29: 442–447.

20. Foley DA, Doecke CW, Buser JY, Merritt JM, Murphy L, et al. (2011)
ReactNMR and ReactIR as Reaction Monitoring and Mechanistic Elucidation

Tools: The NCS Mediated Cascade Reaction of a-Thioamides to a-Thio-b-
chloroacrylamides. J Org Chem 76: 963029640.

21. Latino DARSL, Aires-de-Sousa J (2007) Linking databases of chemical reactions
to NMR data: An exploration of 1H NMR-based reaction classification. Anal

Chem 79: 854–862.

22. Binev Y, Aires-de-Sousa J (2004) Structure-based predictions of 1H NMR chemical
shifts using feed-forward neural networks. J Chem Inf Comput Sci 44: 940–945.

23. Binev Y, Corvo M, Aires-de-Sousa J (2004) The impact of available
experimental data on the prediction of 1H NMR chemical shifts by neural

networks. J Chem Inf Comput Sci 44: 946–949.

24. SPINUS website. Available: http://joao.airesdesousa.com/spinus. Acessed 2013
November 27.

25. Kohonen T (1988) Self-Organization and Associative Memory. Berlin:Springer.
26. Zupan J, Gasteiger J (1999) Neural Networks in Chemistry and Drug Design.

Weinheim:Wiley-VCH.

27. Aires-de-Sousa J (2002) JATOON: Java tools for neural networks. Chemom
Intell Lab Syst 61: 167–173.

28. Breiman L (2001) Random forests. Machine Learn 45: 5–32.
29. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, et al. (2003) Random

forest: A classification and regression tool for compound classification and
QSAR modeling. J Chem Inf Comput Sci 43: 1947–1958.

30. R. D. C. Team (2004) R: A Language and Environment for Statistical

Computing. Vienna. URL http://www.R-project. Org.
31. Fortran original by Leo Breiman and Adele Cutler, R port by Andy Liaw and

Mathew Wiener. Leo Breiman website. Available: http://www.stat.berkeley.
edu/users/breiman/. Acessed 2013 November 27.

Automatic NMR-Based Analysis of Reaction Mixtures

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e88499

http://joao.airesdesousa.com/spinus
http://www.R-roject
http://www.stat.berkeley.edu/users/breiman/
http://www.stat.berkeley.edu/users/breiman/

