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Abstract: The purpose of this research is to investigate the consequence of thermophoretic particle
deposition (TPD) on the movement of a TiO2/water-based micropolar nanoliquid surface in the
existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and
mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle
aggregation. The nonlinear partial differential equations are transformed into a system of ordinary
differential equations using appropriate similarity factors, and numerical research is carried out
using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show
that improved values of the porous constraint will decline the velocity profile. Improvement in
heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter,
bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection
profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate
of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile,
but shows a greater impact on temperature, concentration, and bioconvection profiles.

Keywords: micropolar nanofluid; nanoparticle aggregation; heat source/sink; thermophoretic
particle deposition; bioconvection
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1. Introduction

Non-Newtonian materials are frequently encountered in a plethora of technological
applications, including the production of crude soft elastic materials, the behavior of lubri-
cants, sludges, pigments, packaged foods, and the mobility of organic fluids. Rheological
fluids include blood, sauces, solvent cosmetics, colors, some lubricants, and rupturing mud.
The relationship between stress and strain within those fluids is nonlinear. These liquids are
substantially more complex to study than Newtonian fluids. As a result, various nonlinear
frameworks for non-Newtonian liquids have been proposed. Even Navier–Stokes formulas
are complex, containing a lot of restrictions, and the findings of resulting equalities are
more difficult to acquire [1]. Eringen [2] shows that the Navier–Stokes theory fails to pre-
cisely describe the properties of different liquids indicated by microscopic characteristics
arising from the micromotions and local structure of liquid constituents. These fluids are
used to investigate the properties of contaminated lubricants, oils, polymeric mixtures,
nanocrystals, animal blood containing rigid cells, and a variety of other biological solutions.
Based on the wide range of applications, many researchers are working on this fluid model
recently are addressed here [3–8].

Nanofluids have a wide range of roles in industry and engineering. The use of
nanoparticles in fluid flow analysis has shown several uses such as power generation,
microscale electronics, chemical processes, etc. Depending on the type of nanoparticles
used in the composition procedure, nanofluid is also known as nanomaterials. Improved
heat conductivity, which is the core and fundamental property of nanomaterials, is crucial.
The most often used base fluids in this regard are water, toluene, ethylene, and kerosene
oil, and several related research have recently been published to actually apply the concept
of nanofluids. Nanofluids have distinct properties that make them particularly useful in
a variety of thermal control activities. They have better thermal conductivity as well as a
better convective heat transfer coefficient than the base fluid. Bahiraei et al. [9,10] examined
the heat transport and entropy analysis in the presence of nanofluid. Khan et al. [11]
explored the unstable stagnation point motion of hybrid nanoparticles over a spinning disk.
The impacts of a magnetic dipole in the attendance of the KKL model to stimulate radiative
nano liquid flow across a stretched sheet via Kumar et al. [12] Alhadhrami et al. [13]
studied the effect of TPD on nanoliquid Glauert wall jet slip flow. In the existence of
chemically reactive activation energy, Madhukesh et al. [14] examined the Marangoni-Bio
convection movement of Casson nano liquid across a porous media. Muhammad and
Nadeem [15] discussed convective heat transfer in the presence of magnetic dipole by
using nickelzinc ferrite, manganese zinc ferrite, and magnetite ferrite with ethylene glycol.
Guo et al. [16] examined the heat transfer characteristics in a nanofluid containing γ-Fe2O3
nanoparticles. Xie et al. [17] studied thermal conductivity improvement in aluminum
nanoparticles suspended in a base fluid. They found that thermal conductivity is improved
with the suspension of nanoparticles. The researchers have always found it difficult to
model the thermophysical parameters in such a way that they are consistent with the
experimental findings. Using standard models, the gain in the thermal conductivity of
nanoliquids was grossly overestimated. The relative viscosity of aggregated nanoparticles
was modeled using the fractal approach [18]. Recently, Mackolil and Mahanthesh [19]
investigated the effects of nanoparticle aggregation and temperature-dependent surface
tension on Marangoni convection in TiO2–EG nanoliquid. Here are some of the most
important papers on nanoparticle aggregation [20–22].

Thermal transportation and dynamics of fluid flow research have scientific and practi-
cal applications in cable design, plastic sheet engineering, fiberglass structure, and thermal
spouting. The heat source/sink (HS/S) is another major factor that determines heat trans-
mission. When a heat source or heat sink is used, the heat dispersal throughout the entire
field changes. In this view, many researchers do significant works on HS/S. Recently,
Saleh et al. [23] probed the magnetic dipole and HS/S effects on Maxwell hybrid nanofluid
flow across a stretched sheet. Madhukesh et al. [24] inspected the behavior of water trans-
porting SWCNT nanoparticles and swimming microorganisms across a Riga plate with
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an HS/S. Micropolar liquid moving through a convectively hot surface, containing an
nth order chemical process and an HS/S, was studied by Sajid et al. [25]. Khan et al. [26]
investigated the mixed convection movement of pair stress nanofluid with HS/S effects
across an oscillating stretchable surface. Chu et al. [27] looked at mathematical simulations
of time-dependent micro-rotation blood circulation induced by a curved moving surface
via gold nanoparticle conduction with non-uniform HS/S.

When there is a temperature gradient, the suspended particle will tend to travel from
high to low-temperature areas. The force that causes this phenomenon is known as the
thermophoretic force. The phenomenon of thermophoresis is important in the mass transfer
mechanism of numerous devices that use microscopic micron-sized particles and huge
temperature differences in the fields. Many researchers have shown interest in this concept
over various geometries. Shehzad et al. [28] examined the forced convective Maxwell
fluid flow across a spinning disc while thermophoretic particles motion. Kumar et al. [29]
investigated the effects of thermophoretic particle’s deposition (TPD) on heat and mass
transfer in Casson fluid flow through a moving thin needle. Some of the works on the
notion of TPD can be found in [30–32].

Microbes are monocellular organisms that are significantly more productive than
plants at lessening the greenhouse gases and absorption of CO2 from the environment.
Monocellular organisms, on the other hand, can only be employed in a mixture of nanoflu-
ids. The fertility of the soil is improved by using microorganisms. Microbes, such as
shielded cells, are considered as gyrotactic microorganisms for moving to a liquid for
increasing density stratification based on the gradient thickness. Gyrotactic microorgan-
isms are added to nanofluids to promote nanoparticle preservation and mass propagation.
Ali et al. [33] investigated the influence of combined convection and magnetohydrodynamic
(MHD) flow on the dynamics of Casson nano liquid in the stagnation point of a revolving
sphere with finite element modelling. Alqarni et al. [34] evaluated the impact of bioconvec-
tion in 3D viscoelastic nanoliquid movement due to exponentially stretched surface with
nonlinear radiative heat transmission and variable thermal conductivity. Revised Fourier’s
and Fick’s Laws for duplicating mixed bioconvective motion of radiative-reactive Walters-
B liquid transmission of minute particles subject to Lorentz force on radiative-reactive
Walters-B fluids were investigated by Wakif et al. [35]. Farooq et al. [36] investigated
the thermally radioactive bioconvection current of Carreau nano liquid using modified
Cattaneo–Christov expressions and an exponential space-based heat source.

According to the previous section affordable literature study, no study on micropolar
nanoparticles flow across a stretched sheet in the existence of the porous media, HS/S,
TPD, and bioconvection has been done. The present paper is presented to study the
influence of nanoparticle aggregation and without aggregation on various parameters over
respective profiles. The governing equations are converted into a system of ODEs and
solved numerically. The influence of various parameters is studied in detail. The current
examination is conducted to obtain the answers to the following questions.

• What is the influence of nanoparticles with and without aggregation on porosity
parameter over a velocity profile?

• What is the impact of nanoparticles with and without aggregation over a thermal distribution?
• What is the effect of HS/S parameter, thermophoretic parameter, bioconvection Peclet

number and bioconvection Lewis number on respective profiles?

2. Mathematical Formulation

The steady, laminar, incompressible boundary layer flow of a micropolar nanofluid
movement over a continuous stretching sheet in the presence of the porous medium, HS/S,
TPD and bioconvection is considered. The flow configuration of the model is schematically
revealed in Figure 1, where x and y represents the respective Cartesian coordinate axes.
The x− axis is taken along the stretching surface and y− axis is measured normal to it.
Therefore, the wall uniform stretching velocity of the sheet is specified by uw = ax, where
a is a positive constant. In addition, the constant temperature of the fluid at the wall and
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ambient scenario are represented via Tw and T∞, respectively. The constant concentration
and motile microorganism at the wall surface of the sheet is dignified via Cw and Nw,
respectively, while C∞ and N∞ denoted the respective uniform ambient concentration
and the motile microorganism. Under these requisite posited assumptions, the governing
equations for continuity, momentum, temperature, concentration and bioconvection in
terms of PDEs are stated as (see, e.g., in [37–39]).

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= − K1

ρn f

∂H
∂y
−

υn f

K∗
u +

∂2u
∂y2

((
K1 + µn f

) 1
ρn f

)
, (2)

u
∂H
∂x

+ v
∂H
∂y

=
∂2H
∂y2

(
Ω1

ρn f j

)
−
(

2H +
∂u
∂y

)
K1

ρn f j
, (3)

u
∂T
∂x

+ v
∂T
∂y

=
kn f(

ρCp
)

n f

∂2T
∂y2 +

Q1(
ρCp

)
n f

(T − T∞), (4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 −

∂

∂y
(VT(C− C∞)), (5)

u
∂N
∂x

+ v
∂N
∂y

= Dm
∂2N
∂y2 −

∂

∂y

(
bWc

Cw − C∞

(
N

∂C
∂y

))
, (6)

along with subject to the boundary conditions

u = uw, v = 0, N = Nw, H = −n1
∂u
∂y

, T = Tw, C = Cw at y = 0, (7)

u→ 0, T → T∞, N → N∞, H → 0, C → C∞ as y→ ∞. (8)

Figure 1. Physical model of the problem.

Furthermore, the spin gradient viscosity is given by Ω1 = µ f

(
µn f
µ f

+ α1
2

)
j→

(
µn f +

K1
2

)
j

(see, e.g., in [31]), the micropolar parameter is given as α1 = K1
µ f

and j =
υ f
a signifies the

reference length. The microrotation parameter is denoted by n1, where n1 ∈ [0, 1]. In the
absence of microrotation parameter, the microelements are highly concentrated and unable
to spin close to the wall surface.
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According to the work in [32], the thermophoretic velocity is demarcated as

VT = −
υ f K2

Tr

∂T
∂y

(9)

where K2 and Tr are the thermophoretic constant and reference temperature, respectively.
According to experimental and empirical investigations (see, e.g., in [19,40,41]), the

nanoparticle aggregation factor is important in the dynamics and heat transmission of
nanofluid flows. When the aggregation component was taken into consideration, the
measurement results of the nanomaterial agreed precisely. With the aggregation kinetic
factor, the nanoparticle volume fraction becomes

φa1 = φ

(
ra1

rp1

)3−D1

. (10)

The thermal conductivity is computed by combining the Bruggeman and modified
Maxwell models, as indicated in Table 1 (see [42]) and the appropriate expressions are
provided below (see, e.g., in [43–45]):

ka1

k f
= 0.25


kp1
k f
(3φi1 − 1) + (3(1− φi1)− 1)+[(

kp1
k f
(3φi1 − 1) + (3(1− φi1)− 1)

)2
+ 8

kp1
k f

]0.5

, (11)

φi1 =

(
ra1

rp1

)D1−3

, (12)

ρa1 = (1− φi1)ρ f + φi1ρs, (13)(
ρCp

)
a1 = (1− φi1)

(
ρCp

)
f + φi1

(
ρCp

)
s. (14)

Table 1. Thermophysical properties of nanomaterials.

S. No Properties Expressions for Nanofluid

01 Viscosity µn f
µ f

=
(

1− φa1
φm1

)
−2.5φm1

02 Density ρn f
ρ f

= (1− φa1) + φa1
ρa1
ρ f

03 Heat capacity (ρcp)n f

(ρcp) f

= φa1

(
(ρcp)a1

(ρcp) f

)
+ (1− φa1)

04 Thermal conductivity kn f
k f

=
2k f +ka1+2φa1(ka1−k f )
2k f +ka1−φa1(ka1−k f )

From Equations (12)–(14), the subscript a1 denotes aggregates and p1 signifies nanopar-
ticles. Fractional index D1 = 1.8, ra1

rp1
= 3.34, φm1 = 0.605 reflect fast-moving flows and

about the mono disperse system are the commonly accepted values.
Furthermore, the similarity transformations for the considered requisite problem are

defined as  Ψ = x f (η)√aυ f , u = ∂Ψ
∂y , v = − ∂Ψ

∂x , H = ax
√

a
υ f

g(η),

η =
√

a
υ f

y, θ(η) = T−Tw
Tw−T∞

, ϕ(η) = N−Nw
Nw−N∞

, χ(η) = C−Cw
Cw−C∞

.
(15)

Implementing the Equation (15) into leading governing equations, we get the following
reduced form of similarity equations:

f ′′′
(

1
A1

+ α1

)
+ A2

(
f f ′′ − f ′2

)
+ α1g′ − β1

A1
f ′ = 0, (16)
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g′′
(

1
A1

+
α1

2

)
+ A2

(
f g′ − f ′g

)
− α1

(
2g + f ′′

)
= 0, (17)

khn f

k f
θ′′ + A3Pr f θ′ + PrHsθ = 0, (18)

χ′′

Sc
+ f χ′ − τ

(
θ′′χ + θ′χ′

)
= 0, (19)

ϕ′′ + Lb f ϕ′ − Pe
(
χ′ϕ′ + χ′′(σ + ϕ)

)
= 0, (20)

with subject transformed BCs:

f (0) = 0, g(0) = −n1 f ′′(0), θ(0) = χ(0) = ϕ(0) = f ′(0) = 1, at η = 0, (21)

f ′(η)→ 0, θ(η)→ 0, ϕ(η)→ 0, g(η)→ 0, χ(η)→ 0 as η → ∞. (22)

Similarly, Equations (16)–(22) comprised distinct controlling parameters which are
namely and symbolically given as follows:β = υ f /aK∗ signifies porous constraint,
Hs = Q1/a

(
ρCp

)
f signifies heat source/sink constraint, Pr = υ f /α f signifies Prandtl

number, Sc = υ f /DB signifies Schmidt number, τ = −K2(Tw − T∞)/Tr signifies ther-
mophoretic constraint, Lb = υ f /Dm signifies bioconvection Lewis number, Pe = bWc/Dm
signifies bioconvection Peclet number, σ = N∞/Nw − N∞ signifies concentration difference
parameter and the other thermophysical constants expressions are demarcated as

A1 =
(

1− φa1
φm1

)2.5 φm1
, A2 =

(
1− φa1 + φa1

ρa1
ρ f

)
and A3 =

(
1 + (ρCp)a1

(ρCp) f
φa1 − φa1

)
.

The important engineering factors like Skin friction, wall couple stress factor, Nusselt
number, Sherwood number and density number of motile microorganisms is given as

C f =
τw

ρ f u2
w

, Cs =
Mw

µ f uw
, Nux = xqw

k f (Tw−T∞)

Shx = xqm
DB(Cw−C∞)

, Nnx = xqn
Dm(Nw−N∞)

}
(23)

The terms τw, Mw, qw, qm, and qn defined as

τw =
(

µn f + K1

) ∂u
∂y

+ K1H
∣∣∣∣
y=0

(24)

Mw =
∂H
∂y

∣∣∣∣
y=0
×
(

µn f +
K1

2

)
j (25)

qw = − ∂T
∂y

∣∣∣∣
y=0
×
(

kn f

)
(26)

qm = − ∂C
∂y

∣∣∣∣
y=0
× (DB) (27)

qn = −Dm
∂N
∂y

∣∣∣∣
y=0

(28)

Using Equations (15) and (21) the above expressions reduced as follows:

C f =
(

1
A1 + α1(1− n1)

)
f ′′(0)√

Re
,

Cs =
(

1
A1 + α1

2

)
g′(0), Nux = − kn f

k f
θ′(0)

√
Re,

Shx = −
√

Reχ′(0), Nnx = −
√

Reϕ′(0).

 (29)

3. Numerical Process and Authentication of Code

The RKF-45 scheme and the procedure of shooting are exercised to tackle the set of
Equations (16)–(20) and BCs (21) and (22). Because the resultant equations are of higher
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order and have two points. We must first convert this to an initial value concern in order to
solve it. Let us consider the new variables:

f = h11, f ′ = h12, f ′′ = h13, f ′′′ = h1′3,
g = h14, g′ = h15, g′′ = h1′5,
θ = h16, θ′ = h17, θ′′ = h1′7,
χ = h18, χ′ = h19, χ′′ = h1′9,
ϕ = h110, ϕ′ = h111, ϕ′′ = h1′11.

h′3 = −
(

A2

(
h11h13 − (h12)

2
)
+ α1h15 −

β

A1
h12

)
/
(

1
A1

+ α1

)
(30)

h′5 = −(A2(h11h15 − h12h14)− α1(2h14 + h13))/
(

1
A1

+
α1

2

)
(31)

h′7 = −(A3h11h17 + Hsh16)/

(
kn f

k f Pr

)
(32)

h′9 = −Sc
(
h11h19 − τ

(
h1′7h18 + h17h19

))
(33)

h′11 = −
(

Lbh11h111 − Pe
(
h19h111 + h1′9(σ + h110)

))
. (34)

with
h11(0) = 0, h12(0) = 1, h13(0)= −h14(0)/n1,
h14(0) = −n1h13(0), h15(0) = γ1,
h16(0) = 1, h17(0) = γ2,
h18(0) = 1, h19(0) = γ3,
h110(0) = 1, h111(0) = γ4.

 (35)

The transformed initial value problem Equations (30)–(35)are numerically solved by
using the thermo-physical characteristics of nanofluid provided in Table 1 (see [42]) and
thermophysical properties of nanomaterial and base fluid given in Table 2 (see [38]) by
varying the parameter values, α1 = 0.1, β = 0.1, Hs = 0.5, Sc = 0.8, τ = 0.1, Lb = Pe = 1,
σ = 0.1, and n1 = 1 quantitatively solved by estimating the unknowns using the shooting
approach. With a step size of 0.1 and an acceptance inaccuracy of approximately 10−8.
The numerical results of the present study have been compared with results of previous
literature [46–48] and found to be the better match (see Table 3).

Table 2. Thermo-physical properties of nanomaterial and base fluid.

Properties Titanium Dioxide Water

ρ
(
kg/m3) 4250 997.1

Cp(J kgK) 686.2 4179
k(W/ mK) 8.9538 0.613

Pr - 6.2

Table 3. Assessment of
√

Re C f with published results for sundry values of α1 and n1 in the neglecting
of A1, A2 and β.

n1 α1 Present Study

0.0 0.0 −1.0000
- 1.0 −1.3678
- 2.0 −1.6211
- 4.0 −2.0040

0.5 0.0 −1.0000
- 1.0 −1.2246
- 2.0 −1.4140
- 4.0 −1.7319
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4. Analysis of Results

This section outlines that how the numerous regulating factors determine velocity
and temperature profiles, concentration, motile microorganism profiles, and engineering
coefficients are examined in greater details. The analysis is conducted in two modes namely,
(1) with aggregation φi1 6= 1, and (2) without aggregation over a porous, micro- polar
constraint, heat sink/source constraint, thermophoretic constraint, bio-convection Lewis
number and bio-convection Peclet number.

Figure 2 illustrates the effect of porous parameter β on a dimensionless velocity profile
f ′. Inclination in the values of β will declines f ′. This is because that the drag force faces
the profiles of velocity movement in the existence of porous space, causing the speed to
decline. Moreover, the diagram illustrates that in the absence of nanoparticle aggregation,
the fluid velocity is lower than in the presence of nanoparticle aggregation.

Figure 2. Sway of f ′ for different values of β.

Figure 3 demonstrations the influence of micropolar constraint α1 over a velocity f ′

and micro rotation velocity fields g. Further, noted from the figure that when the micropolar
constraint α1 is small, the viscous impact is limited to a very thin layer close to the wall,
and the thickness of the boundary layer is equivalent to α1 and inversely relative to micro
rotation velocity g. Upgrading in the values of α1 will declines the velocity profile but
escalates the micro rotation velocity form. It is also observed that velocity is more in the
presence of aggregation than absence of aggregation in f ′ but, reverse trend is seen in g.

The discrepancy of HS/S constraint over a temperature profile is illustrated in the
Figure 4. Where heat dispersion is a major critical factor in engineering, this profile plays a
vital role. Up gradation in the HS/S parameter will enhance the thermal dispersal in the
given system. The heat sink will behave like a functional as a confine changer, transferring
the heat created by the body into the nanoliquid. Consequently, in a given circumstance
of a HS, the thermal dispersion is diffident, but in the occasion of a heat source, the heat
is created by the body surface. In the occurrence of a heat source, higher thermal act is
seen than in the absence of a heat sink. The graphic clearly shows that heat dispersion in
nanoparticles with aggregation is greater than in nanoparticles without aggregation.
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Figure 3. Sway of f ′&g for different values of α1.

Figure 4. Sway of θ for different values of Hs.

Figure 5 shows the discrepancy of thermophoretic constraint over a concentration
profile. Escalating values of will diminishes the concentration. The motion of the nanopar-
ticles enhances as the temperature gradient rises, ensuing in a lower concentration. The
figure also shows that nanoparticles with aggregation have a lower concentration than
nanoparticles without aggregation.
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Figure 5. Sway of χ for different values of τ.

Figure 6 illustrates the variation of bioconvection Peclet number Pe and bioconvection
Lewis number Lb over bioconvection profile ϕ. Rise in the values in Pe and Lb will decreases
the ϕ. The percentage of thermal diffusivity with mass diffusivity is known as the Lewis
number. It is sometimes stated as a ratio between the Schmidt number and the Prandtl
number. Pe and Lb results in decrease in microorganism dispersion, while density and BLT
for motile microorganisms are decreasing. The figure also shows that nanoparticles with
aggregation have a lower bioconvection profile than nanoparticles without aggregation.

Figure 6. Sway of ϕ for different values of Pe&Lb.

Figures 7–11 show the effect of several dimensionless constraints on important primary
engineering coefficients. Figure 7 depicts the effect of micropolar constraint on surface drag
force for various porosity constraint values. It is detected from the figure that surface drag
force is less in case of nanoparticles without aggregation than with aggregation. This is
because the existence of a porous parameter causes drag on the fluid flow, and an increase in
the micropolar constraint increases the boundary layer thickness. As a result, surface drag
force declines. Figure 8 exhibit the influence of micro-rotation parameter on wall couple
stress factor for various values of micropolar constraint. It is seen from the figure that the
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rise in the values of micro-rotation parameter and micropolar constraint will enhances the
wall couple stress in the system. This is due to enhancement in the vortex viscosity factor.

Figure 7. Nature of Skin friction (−C f ) over Micropolar parameter (α1) for numerous values of
porous parameter (β).

Figure 8. Nature of wall couple stress factor (−Cs) over Micropolar parameter (α1) for numerous
values ofmicrorotation parameter (n1).

Figure 9. Nature of Nusselt number (Nux) over solid volume fraction (φ) for numerous values of
heat source/sink parameter (Hs).
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Figure 10. Nature of Sherwood number (Shx) over solid volume fraction (φ) for numerous values of
thermophoretic parameter (τ).

Figure 11. Nature of density number of motile microorganisms (Nnx) over bioconvection Peclet
number Pe for numerous values of bioconvection Lewis number Lb.

Figure 9 displays the consequence of solid volume fraction φ over a temperature
distribution rate for numerous values of heat source/sink constraint Hs. Escalating in the
values of Hs and φ will upraises rate of thermal circulation. Augmentation in the precise
values of φ will improves the BLT and increased Hs will improves the heat propagation.
As a result, rate thermal distribution improves.

Figure 10 depicts the nature of φ over a mass transfer rate for numerous values
of thermophoretic constraint τ. An increase in φ and τ will decrease the rate of mass
transmission. As the values of thermophoretic constraint increases, temperature difference
gradient also increases, as a result, the particle motion in the system increases. Oppositely,
enhancement in the solid volume fraction will enhances the BLT. Due to presence of
thermophoretic constraint, the rate of mass transfer diminishes. Figure 11 illustrates the
consequence bioconvection Lewis number Lb on density number of motile microorganisms
for various values of bioconvection Peclet number Pe. It is observed that, increased values
of Pe will enhance the density number of motile microorganisms.

5. Concluding Remarks

In the present investigation micropolar nanoliquid flow past a continuous stretching
sheet subject to porous medium, HS/S, TPD, and bioconvection is examined. Here, the
analysis is made in the presence and absence of nanoparticle aggregation. The system of
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equations that represents governing equations are transformed into ODEs with utilizing
suitable similarity variables and those equations are solved numerically with the aid of
computing software. The influence of various dimensionless parameters is studied with
respective profiles. The major outcomes of the present investigation are as follows:

• Enhancement in the porous parameter will diminishes the velocity profile due to
presence of porous medium which drags the fluid motion.

• For escalating values of α1 velocity is more in the presence of aggregation than absence
of aggregation in f ′ but, reverse trend is seen in g.

• Improvement in the values of Hs will improve the profiles of temperature and heat
transfer rate. Heat transfer gradually increases from heat sink to source.

• Nanoparticles with aggregation have a lower concentration than nanoparticles without
aggregation in the presence of thermophoretic parameter.

• Density number of motile microorganisms will be decreased by improved values of Pe.
• Nanoparticle with aggregation is lesser impact in velocity profile but shows more

impact in temperature, concentration and bioconvection profiles.
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Nomenclature

a Stretching Constant n1 Microrotation Parameter
C Concentration Nw The density of motile

microorganisms at the wall
Cw&C∞ Wall and ambient concentration N∞ The ambient density of motile

microorganisms
Cp Specific heat Nnx Density number of motile

microorganisms
C f Skin friction Nux Nusselt number
Cs Wall couple stress factor Pe Bioconvection Peclet number
D Diffusivity Pr Prandtl number
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D1 Fractal index ra1 Radii of aggregates
f (η) Dimensionless velocity profile rp1 Radii of nanoparticle
g(η) Dimensionless microrotation Re local Reynolds number

velocity profile
Hs Heat source/sink constraint Sc Schmidt number
j Microinertia density Shx Sherwood number
k Thermal conductivity T Temperature
ka1 Thermal aggregation conductivity Tr Reference temperature
K1 Coefficient of vortex viscosity Tw&T∞ Wall and ambient temperature
K2 Thermophoretic constant uw Uniform velocity
K∗ Permeability of porous media VT Thermophoretic velocity
Lb Bioconvection Lewis number u&v Velocity components
N The density of motile x&y Coordinate axis

microorganism
Greek symbols
Ω1 Spin gradient viscosity α1 Micropolar parameter
β Porous parameter τ Thermophoretic parameter
ν Kinematic viscosity σ Concentration difference parameter
µ Dynamic viscosity ρ Density
φm1 Extreme volume fraction φa1 Effective volume fraction of aggregates
η Similarity variable Ψ Stream function
θ(η) Dimensionless temperature profile ϕ(η) Dimensionless bioconvection profile
χ(η) Dimensionless concentration profile φ Solid volume fraction
Subscripts
a1 aggregates p1 Nanoparticle
f Fluid n f Nanofluid
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