
plants

Article

Efficient Micropropagation Protocol for the
Conservation of the Endangered Aloe peglerae, an
Ornamental and Medicinal Species

Nontobeko A. Hlatshwayo 1,2, Stephen O. Amoo 1,* , Joshua O. Olowoyo 2 and Karel Doležal 3

1 Agricultural Research Council—Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001,
South Africa; HlatswayoN@arc.agric.za

2 Department of Biology, Sefako Makgatho Health Sciences University, P. O. Box 139, Medunsa 0204,
South Africa; joshua.olowoyo@smu.ac.za

3 Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region
Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University & Institute of
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Abstract: A number of Aloe species are facing an extremely high risk of extinction due to habitat loss
and over-exploitation for medicinal and ornamental trade. The last global assessment of Aloe peglerae
Schönland (in 2003) ranked its global conservation status as ‘endangered’ with a decreasing population
trend. In the National Red List of South African Plants, the extremely rapid decline of this species has
resulted in its conservation status being elevated from ‘endangered’ to ‘critically endangered’ based
on recent or new field information. This dramatic decline necessitates the development of a simple,
rapid and efficient micropropagation protocol as a conservation measure. An in vitro propagation
protocol was therefore established with the regeneration of 12 shoots per shoot-tip explant within
8 weeks using Murashige and Skoog (MS) medium supplemented with 2.5 µM meta-topolin riboside
(an aromatic cytokinin). The rooting of the shoots with a 100% frequency on half-strength MS medium
without any plant growth resulted in additional six shoots produced per cultured shoot. The resultant
plantlets were successfully acclimatized with a 100% survival frequency after 6 weeks. Overall, the
developed protocol can result in the production of 3906 transplantable shoots that are ready for
rooting per annum from a single shoot-tip explant. It is simple and efficient for seedling production
in the ex situ cultivation and conservation of the endangered A. peglerae.
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1. Introduction

The succulent Aloe genus (Asphodelaceae) comprises of over 500 recognized species distributed
throughout the world in different growth forms, ranging from very small shrubs to large trees [1,2].
Majority of the species are distributed on the African continent [3], especially in the southern and eastern
regions, with high centers of diversity in South Africa (±155 Aloe species) and Madagascar (±145 Aloe
species) [4]. According to Raimondo et al. [5], there are about 125 Aloe species indigenous to South
Africa, many of which are known for their medicinal and/or ornamental values [2,6]. Medicinally, Aloe
species are traditionally used in the treatment of injuries, infections, digestive ailments, inflammation,
arthritis, insect bites and as a laxative, amongst others [1–3]. Thus, due to their increasing rarity and
trade demand amongst other factors, all Aloe species with the exception of Aloe vera are included at
least in Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna
and Flora [7] for their protection.
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Of the 125 indigenous South Africa Aloe species, Raimondo et al. [5] listed five species as ‘critically
endangered’ in the National Red List of South African Plants while four species were listed as
‘endangered’ and 15 species ranked as ‘vulnerable’, based on the International Union of Conservation
of Nature (IUCN) criteria. An updated National Red List of South African Plants however, indicated
that there are now seven species ranked as ‘critically endangered’, five species listed as ‘endangered’,
and 14 species considered to be ‘vulnerable’ based on the IUCN criteria [8]. Thus, it is very clear
that a number of Aloe species are facing an extremely high risk of extinction in the wild, with a
negative outlook. One of the species with a recent change in status in the National Red List of
South African Plants, from being ‘endangered’ to ‘critically endangered’ based on recent or new field
information is Aloe peglerae Schönland [8]. It is an endemic, ornamental and medicinal species used in
the treatment of infections, burns, wound healing and as a laxative [9–11]. Based on its last global
assessment in 2003, Aloe peglerae global conservation status is ranked as ‘endangered’, with a decreasing
population trend [12]. It is threatened by illegal collection of mature plants and habitat loss due to
urbanization [13,14]. Being a slow-growing species, its wild harvesting, even at very low levels, is
unsustainable [14]. The ability of the known populations to recover from the ongoing, rapid population
decline is hampered by high levels of seed harvesting for horticultural trade [13–15]. The extremely
rapid decline of this species necessitates the implementation of effective conservation measures to
ensure its survival and sustainable use. Its ex situ cultivation has been recommended as a conservation
measure [13]. Availability of sufficient propagules/seedlings for large-scale cultivation in order to
sustainably meet its growing demand is, however, another bottleneck. Amoo et al. [2] recommended
the use of biotechnological tools such as micropropagation techniques as a conservation strategy for
the sustainable use of threatened Aloe species or those in high demand. The aim of the current study
was therefore to develop a simple, rapid and efficient micropropagation protocol for Aloe peglerae.
To our knowledge, there was no such protocol prior to this report.

2. Materials and Methods

2.1. In Vitro Seed Germination and Explant Bulking

Aloe peglerae seeds purchased from Silverhill Seeds (Cape Town, South Africa) were
surface-decontaminated using 70% ethanol for 60 s followed by the use of 3.5% sodium hypochlorite
solution containing a few drops of Tween® 20 [16] for 3 min. Following surface decontamination, the
seeds were cultured on one-tenth strength Murashige and Skoog (MS) medium [17]. Bulking up of plant
material for shoot proliferation experiments was achieved using in vitro raised shoot-tips cultured on
MS medium supplemented with 30 g L−1 sucrose, 0.1 g L−1 myo-inositol, 7.5 µM meta-topolin (mT) and
2.5 µM indole butyric acid (IBA) [16]. All the growth media used were adjusted to a pH of 5.7 using
NaOH or HCl. The media were solidified with 0.8% agar prior to autoclaving at 121 ◦C and 103 kPa
for 20 min. Cultures were incubated in a growth room illuminated by cool, white fluorescent tubes
(Osram® L 36 W/640, 47 µmol m−2 s−1 light intensity) at 25 ± 2 ◦C and alternating 16:8 h light/dark.

2.2. Effect of Cytokinin Types and Concentrations on Shoot Multiplication

After bulking sufficient shoot-tip explants (Figure 1), shoot proliferation experiments were
conducted. Four different cytokinins; Kinetin, 6-benzyladenine (BA), meta-topolin (mT) and meta-topolin
riboside (mTR), each at 2.5, 5.0, 7.5, 10.0 and 15.0 µM concentrations were evaluated for their shoot
multiplication potential. Both mT and mTR were obtained from the Laboratory of Growth Regulators,
Palacký University and Institute of Experimental Botany, Czech Republic. All other growth regulators
used were purchased from Sigma-Aldrich (Johannesburg, South Africa). The MS medium without any
plant growth regulator (PGR), which was the basal medium, was used as the control. The experiment
was set up in a completely randomized design. One explant was cultured on 40 mL of medium contained
in each jam jar. Each treatment had a total of 20 explants and the experiment was conducted twice.
Cultures were incubated under the previously stated growth conditions above. Shoot proliferation
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parameters such as the total number of shoots per explant, number of shoots less than 1.0 cm in length,
number of shoots greater than or equal to 1.0 cm in length, frequency of rooting, and shoot fresh weight
were recorded after eight weeks of culture.
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Figure 1. In vitro propagation of Aloe peglerae. (a) In vitro raised shoot-tip explants, (b) shoot
proliferation, (c) rooting, and (d) acclimatization of in vitro regenerated plants.

2.3. Effects of the Interaction of Auxin and Cytokinin on Shoot Proliferation

A completely randomized experiment involving four indole-butyric acid (IBA) concentrations
(0.0, 1.0, 2.0, and 5.0 µM) in combination with 2.5 µM mTR was conducted. The choice of cytokinin
type and concentration used at this stage was based on the results from the first shoot multiplication
experiment. Each treatment had a total of 20 explants with one explant cultured on 40 mL of medium
contained in each jam jar. The experiment was conducted twice. Culture incubation and data collection
after eight weeks of incubation were the same as stated above.

2.4. Rooting and Acclimatization

Regenerated shoots greater than 1.0 cm in length were carefully separated and cultured on
half-strength MS medium supplemented with different concentrations (0.0, 1.0, 2.5 and 5.0 µM) of
IBA or naphthalene acetic acid (NAA) in order to determine the effect of auxins on in vitro rooting.
Cultures were incubated for six weeks under the same growth conditions stated previously. At the
end of the six weeks culturing period, the following parameters were recorded: the number of roots
per cultured shoot, rooting frequency, the length of the longest root, and number of additional shoots
produced. Agar was carefully washed off the rooted shoots and the shoots planted in pots containing a
1:2 (v:v) mixture of sand and soil for acclimatization in a glasshouse. The survival frequencies of the
acclimatized plantlets were recorded weekly for six weeks.

2.5. Extraction and Determination of Total Phenolic and Flavonoid Contents

Upon completion of each in vitro shoot proliferation experiment, the total phenolic and flavonoid
contents of the resultant shoots were quantified. The plant materials were oven-dried at 50 ◦C before
grinding to fine powders. Thereafter, the extraction method described by Makkar [18] was followed.
Ground plant materials (0.2 g) were extracted with 10 mL of 50% aqueous methanol in a sonication
bath for 20 min. Total phenolic content was quantified using the slightly modified Folin and Ciocalteu
method as outlined by Fawole et al. [19]. The calibration curve was plotted using gallic acid as a
standard and each determination done in triplicate. Total phenolic content was expressed in mg
gallic acid equivalents (GAE) per g dry weight (DW). The flavonoid content was determined using
the aluminum chloride colorimetric method described by Zhishen et al. [20]. Catechin was used as
a standard for plotting the calibration curve and each determination done in triplicate. Flavonoid
content was expressed in mg catechin equivalents (CE) per g DW.
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2.6. Data Analysis

The data obtained were subjected to analysis of variance (ANOVA) using SPSS statistical software
(version 16.0). Significant differences were established at p = 0.05 and the mean values were separated
using Duncan’s Multiple Range Test.

3. Results

3.1. Shoot Proliferation

The effect of different cytokinin types and concentrations on adventitious shoot production, total
phenolic and flavonoid contents are shown in Table 1. All the cytokinin types and concentrations, with
the exception of 15 µM BA, mT and mTR as well as 10 µM BA, significantly increased shoot production
when compared to the control (PGR-free) treatment. Shoot proliferation (Figure 1) decreased with
an increase in cytokinin concentration. Overall, the MS medium supplemented with 2.5 µM mTR
significantly gave the highest number of shoots per explant (12.17 shoots), which was six-fold of the
shoot number produced in the control treatment. Similarly, an increase in cytokinin concentration gave
a decrease in the number of shoots ≥ 1 cm in length. At the lowest cytokinin concentration, both mT
and mTR treatments provided significantly highest number of shoots ≥ 1 cm in length when compared
to all other treatments. The total phenolic and flavonoid contents of the regenerants varied significantly
with cytokinin concentrations. Specifically, the total phenolic contents of all regenerants from mT
(except 10 µM mT), mTR, and Kinetin treatments were significantly high when compared to the total
phenolic content of regenerated shoots from the control treatment. On the other hand, none of the
regenerants from BA treatments had significantly high total phenolic content, compared to the control
treatment. Similarly, the flavonoid content of the regenerants from Kinetin (5 to 15 µM), mT (5, 10 and
15 µM), and mTR (2.5 to 7.5 µM) were significantly high compared to that of the control, whereas almost
none of the regenerants obtained from BA treatments (except 2.5 µM) gave a significantly improved
flavonoid content. Table 2 shows the effect of combining auxin concentrations with the optimum
cytokinin concentration on shoot production, total phenolic and flavonoid contents. The inclusion
of different auxin concentrations did not significantly increase shoot production, total phenolic and
flavonoid contents.

3.2. Rooting and Acclimatization

Culturing regenerated shoots on half-strength MS growth medium containing no auxin gave
the highest, desirable rooting frequency (Table 3). This same treatment resulted in a high number of
roots per shoot, length of longest root, and number of additional shoots produced. On the other hand,
the treatments with NAA gave low rooting frequency (Table 3). The number of roots produced per
shoot, the length of the longest root and the number of additional shoots produced with all the NAA
treatments were significantly low when compared to the control and some IBA treatments (Table 3).
Increasing the concentration of IBA resulted in an increase in the number of roots per shoot and
additional shoot production. However, none of the IBA treatments significantly improved rooting and
additional shoot production when compared to the control.

Following the acclimatization of the rooted plants (Figure 1), Table 4 shows their survival
frequencies up to the sixth week. Only plants rooted in half-strength MS medium without auxin
supplementation consistently gave a 100% survival frequency throughout the six weeks. All plantlets
rooted with NAA treatments died after the first week while the survival frequencies of plantlets rooted
with IBA treatments declined over the six weeks.
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Table 1. Effects of cytokinin types and concentrations on adventitious shoot production and secondary metabolite production of Aloe peglerae after 8 weeks of culture.

Cytokinin
Concentration

(µM)
No. of Shoots Per

Explant (n)

No. of Shoots Individual
Regenerated Shoot
Fresh Weight (mg)

Rooting
Frequency

Total Phenolic
Concentration (mg

GAE/g DW)

Flavonoid
Concentration
(mg CE/g DW)<1 cm in Length ≥1 cm in Length

Control 0.0 2.00 ± 0.23 I 1 0.35 ± 0.15 h 1.65 ± 0.19 cd 943.01 ± 96.64 abcd 88.24% 13.41 ± 0.57 gh 0.97 ± 0.12 hij
BA 2.5 4.50 ± 0.70 efgh 2.85 ± 0.53 bcdef 1.65 ± 0.33 cd 850.71 ± 133.52 bcd 0% 13.98 ± 0.23 g 1.56 ± 0.27 ef

5.0 4.79 ± 0.69 cdefg 3.16 ± 0.5 bcdef 1.63 ± 0.38 cd 702.93 ± 140.85 bcdef 5.26% 12.06 ± 0.06 i 1.07 ± 0.34 hij
7.5 4.58 ± 0.53 defgh 2.84 ± 0.37 bcdef 1.74 ± 0.29 bcd 1243.70 ± 162.55 a 0% 11.93 ± 0.19 i 0.76 ± 0.11 j
10.0 3.50 ± 0.44 fghi 2.00 ± 0.33 efg 1.50 ± 0.27 d 858.72 ± 115.07 bcd 0% 12.22 ± 0.33 i 0.90 ± 0.05 hij
15.0 2.39 ± 0.40 hi 1.06 ± 0.26 gh 1.33 ± 0.20 d 1272.60 ± 183.11 a 0% 12.79 ± 0.19 hi 1.18 ± 0.21 fghi

Kinetin 2.5 6.84 ± 0.55 cd 3.58 ± 0.38 bcd 3.26 ± 0.44 b 309.79 ± 44.30 f 78.95% 22.51 ± 0.15 a 1.29 ± 0.05 fgh
5.0 6.40 ± 0.72 cde 3.30 ± 0.49 bcdef 3.10 ± 0.56 bc 401.86 ± 92.13 f 55% 22.55 ± 0.34 a 1.51 ± 0.01 fg
7.5 5.55 ± 0.77 cdef 3.00 ± 0.41 bcdef 2.55 ± 0.52 bcd 549.98 ± 98.62 def 40% 20.24 ± 0.51 bc 2.55 ± 0.03 bc

10.0 5.40 ± 0.53 cdefg 3.35 ± 0.36 bcdef 2.05 ± 0.37 bcd 425.94 ± 96.18 ef 60% 20.14 ± 0.58 c 2.18 ± 0.02 cd
15.0 4.85 ± 0.51 cdefg 2.90 ± 0.50 bcdef 1.95 ± 0.35 bcd 442.42 ± 80.88 ef 15% 22.11 ± 0.28 a 2.18 ± 0.00 cd

mT 2.5 9.20 ± 1.10 b 3.75 ± 0.45 bc 5.45 ± 0.99 a 630.68 ± 85.61 cdef 15% 21.15 ± 0.36 b 0.91 ± 0.06 hij
5.0 5.67 ± 0.78 cdef 3.50 ± 0.52 bcde 2.17 ± 0.41 bcd 911.37 ± 168.46 abcd 0% 16.29 ± 0.33 f 2.96 ± 0.07 a
7.5 4.45 ± 0.63 efgh 2.60 ± 0.34 cdef 1.85 ± 0.41 bcd 816.85 ± 92.44 bcde 0% 19.23 ± 0.31 cd 1.05 ± 0.04 hij

10.0 4.35 ± 0.42 efgh 2.55 ± 0.32 cdef 1.80 ± 0.27 bcd 997.63 ± 211.50 abc 0% 10.22 ± 0.07 j 2.25 ± 0.06 cd
15.0 3.24 ± 0.48 ghi 1.88 ± 0.36 fg 1.35 ± 0.24 d 1036.50 ± 107.56 ab 0% 18.67 ± 0.23 d 1.98 ± 0.04 d

mTR 2.5 12.17 ± 1.27 a 7.44 ± 0.91 a 4.72 ± 0.84 a 328.11 ± 32.53 f 16.67% 18.95 ± 0.16 d 1.93 ± 0.06 de
5.0 6.90 ± 0.64 c 4.15 ± 0.55 b 2.75 ± 0.43 bcd 562.80 ± 106.12 def 20% 19.40 ± 0.42 cd 2.70 ± 0.11 ab
7.5 5.74 ± 0.67 cdef 3.63 ± 0.53 bc 2.10 ± 0.36 bcd 705.71 ± 117.17 bcdef 15.79% 16.18 ± 0.42 f 1.92 ± 0.06 de

10.0 6.25 ± 0.89 cde 3.40 ± 0.39 bcdef 2.85 ± 0.58 bcd 582.63 ± 81.51 def 0% 19.46 ± 0.40 cd 1.13 ± 0.19 ghij
15.0 3.85 ± 0.51 fghi 2.10 ± 0.29 defg 1.75 ± 0.35 bcd 659.72 ± 84.88 bcdef 10% 17.69 ± 0.16 e 0.77 ± 0.02 ij
1 Mean values within the same column followed by different letter(s) are significantly different (p ≤ 0.05) based on Duncan Multiple Range Test.

Table 2. Effects of combining auxin concentrations with optimum cytokinin concentration on shoot production and secondary metabolite production of Aloe peglerae
after 8 weeks of culture.

Treatment No. of Shoots Per
Explant (n)

No. of Shoots Individual
Regenerated Shoot
Fresh Weight (mg)

Total Phenolic
Concentration

(mg GAE/g DW)

Flavonoid
Concentration
(mg CE/g DW)<1 cm in Length ≥1 cm in Length

2.5 µM mTR + 0.0 µM IBA 13.82 ± 1.63 ab 1 8.94 ± 1.14 a 4.88 ± 1.21 a 390.94 ± 61.57 a 11.83 ± 0.27 a 2.57 ± 0.07 ab
2.5 µM mTR + 1.0 µM IBA 10.69 ± 1.24 b 7.38 ± 1.27 a 3.31 ± 0.90 a 561.99 ± 222.40 a 13.39 ± 1.69 a 2.73 ± 0.08 a
2.5 µM mTR + 2.0 µM IBA 16.71 ± 2.67 a 9.78 ± 2.03 a 6.92 ± 2.22 a 429.92 ± 103.04 a 12.17 ± 0.74 a 2.27 ± 0.09 c
2.5 µM mTR + 5.0 µM IBA 14.94 ± 1.93 ab 7.56 ± 1.14 a 7.38 ± 1.31 a 537.52 ± 131.05 a 14.70 ± 0.48 a 2.35 ± 0.10 bc

1 Mean values within the same column followed by different letter(s) are significantly different (p ≤ 0.05) based on Duncan Multiple Range Test.
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Table 3. Effects of auxin concentrations on rooting of regenerated Aloe peglerae shoots after 6 weeks of culture.

Auxin Concentration (µM) No. of RootsPer Shoot Length of Longest Root
(cm)

No. of Additional Shoots Produced
Per Cultured Shoot

Rooting
Frequency (%)

Control 0.0 µM 9.00 ± 1.12 a 1 2.46 ± 0.22 a 6.00 ± 0.76 a 100

IBA
1.0 µM 6.60 ± 1.35 a 1.90 ± 0.33 ab 3.85 ± 0.87 b 70
2.5 µM 7.55 ± 1.67 a 1.97 ± 0.39 ab 3.35 ± 0.77 bc 60
5.0 µM 10.05 ± 2.71 a 1.45 ± 0.28 bc 4.75 ± 1.06 ab 75

NAA
1.0 µM 1.75 ± 0.66 b 0.85 ± 0.27 cd 1.25 ± 0.34 d 40
2.5 µM 0.90 ± 0.28 b 0.73 ± 0.23 cd 1.70 ± 0.41 cd 40
5.0 µM 0.37 ± 0.21 b 0.30 ± 0.17 d 0.21 ± 0.12 d 15

1 Mean values within the same column followed by different letter(s) are significantly different (p ≤ 0.05) based on Duncan Multiple Range Test.
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Table 4. Survival frequency of regenerated Aloe peglerae plantlets rooted with different auxin
concentrations and acclimatized (n = 20) in a glasshouse.

Auxin Type Used
for Rooting

Concentration
(µM)

Survival Frequency (%)

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Control 0.0 µM 100 100 100 100 100 100

IBA
1.0 µM 100 100 92 92 92 85
2.5 µM 100 100 83 75 67 67
5.0 µM 100 93 93 87 87 80

NAA
1.0 µM 100 0 0 0 0 0
2.5 µM 100 0 0 0 0 0
5.0 µM 100 0 0 0 0 0

4. Discussion

A simple, efficient in vitro propagation protocol was developed in this study using shoot-tip
explants from in vitro raised seedling. The use of in vitro raised explants is advantageous for culture
initiation as it reduces the common micropropagation challenge relating to culture contamination.
Following culture initiation, the choice of cytokinin type and concentration is often a critical success
factor in establishing an efficient micropropagation protocol for any plant species. Thus, we
evaluated the effect of different concentrations of two commonly used cytokinins in plant tissue
culture techniques (BA and Kinetin) and two naturally occurring hydroxylated derivatives of BA
(mT and mTR). Many researchers have demonstrated several advantages associated with the use of
meta-topolins in developing efficient propagation protocols for different plant species including Aloe
arborescens Mill., Aloe ferox Mill. and Aloe polyphylla Pillans [16,21–26]. In the current study, both mT
and mTR at the lowest concentration proved to be more efficient for in vitro shoot proliferation of
A. peglerae. At equimolar optimal concentration (2.5 µM), the order of cytokinin efficiency for shoot
proliferation in this study can be ranked as mTR > mT > Kinetin > BA (Table 1).

In the micropropagation of Artemisia amygdalina Decne., a medicinally important species,
Rasool et al. [27] reported a synergistic effect of auxins and cytokinins on shoot multiplication.
Furthermore, Amoo and van Staden [28] indicated the potential amplifying effect of auxins on shoot
proliferation when combined with the meta-topolins. Thus, we evaluated the effect of combining
IBA concentrations with 2.5 µM mTR, being the optimum cytokinin concentration for multiple shoot
production. Although there were increases in shoot proliferation with some auxin concentrations,
these increases were not statistically significant (Table 2). Thus, our results indicated that further
medium supplementation with IBA did not significantly improve shoot proliferation. Similarly, the
combination of IBA or NAA with Zeatin or BA did not significantly improve shoot proliferation in
Aloe polyphylla [29].

Culturing regenerated shoots on half-strength MS medium is an acclimatization step during the
rooting phase. IBA treatments significantly enhanced rooting in comparison to the NAA treatments.
(Table 3). IBA is known to be capable of slowly releasing indole-3-acetic acid (IAA), a more easily
metabolized auxin whereas the stability and persistence of NAA in plant tissues can result in root
growth inhibition [30]. This stability and persistence of NAA in the plant tissues might also alter or
tilt the auxin:cytokinin ratio in the plant tissue to such a point that the ratio becomes less favorable
for additional shoot production as observed with the NAA treatments. On the other hand, the use of
half-strength medium alone was more favorable for rooting as it gave high rooting frequency, number
of roots, number of additional shoots produced during rooting, and the longest root (Table 3). Similarly,
Chukwujekwu et al. [29] reported best rooting results when regenerated Aloe polyphylla shoots were
cultured on PGR-free MS medium. Root production without exogenous auxin application may be
due to a sufficiently balanced production of endogenous auxin in the shoot apex, which is basipetally
transported to the cut surface [31], favoring root growth and additional shoot production.

The survival rate of in vitro produced plantlets under field conditions is one of the critical success
factors in the development of an efficient micropropagation protocol [32]. The results from the
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current study indicate that in vitro rooting treatments can have an impact on the survival frequency
of regenerated plants. The highest survival frequency was recorded with plants rooted in PGR-free
medium whereas those rooted in medium containing NAA did not survive beyond the first week
of acclimatization. Thus, rooting in PGR-free medium is cost-saving and efficient for high survival
frequency of regenerated plantlets.

As with other Aloe species, the bioactive secondary metabolites in A. peglerae are present mainly
in the leaves [33–35]. Studies have shown that bioactive secondary metabolites can be influenced or
altered by plant growth regulators applied during in vitro propagation stages [28,36,37]. In the current
study, the choice of cytokinin and their concentrations significantly affected secondary metabolite
production in A. peglerae leaf tissue, whereas the inclusion of auxin (IBA) concentrations did not
markedly influence the secondary metabolite content of the regenerants. It is particularly noteworthy
that the cytokinin treatment (2.5 µM mTR), which gave the best overall shoot production, also resulted
in the regenerated shoots having higher secondary metabolite production when compared to the control
treatment. Moreover, no morphological variation or abnormality was observed with the regenerated
plants as the shoots were regenerated directly from the shoot-tips without an intervening callus phase
and several subculture cycles that often predispose in vitro cultures to genetic variations [38–40].

5. Conclusions

Overall, this study established a simple, cost-effective, and highly efficient micropropagation
protocol for the endangered Aloe peglerae. The superiority of aromatic cytokinins (mT and mTR)
over the commonly used BA in adventitious shoot production was also demonstrated. High shoot
multiplication rates were obtained at low cytokinin concentrations. Using a geometric progression
that is based on the production of five transplantable shoots (shoots ≥ 1 cm in length) on medium
containing 2.5 µM mTR and six possible multiplication cycles per annum, the developed multiplication
protocol can result in the production of 3906 transplantable shoots that are ready for rooting per annum
from a single shoot-tip explant. The rooting of these shoots using the developed protocol in this study
can further result in the production of additional 19,530 shoots. Rooted plantlets were acclimatized
with a high survival frequency, making this protocol efficient for seedling production in the ex situ
cultivation and conservation of the endangered A. peglerae.
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