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Abstract: Early diagnosis of cancer is beneficial in the formulation of the best treatment plan; it can
improve the survival rate and the quality of patient life. However, imaging detection and needle
biopsy usually used not only find it difficult to effectively diagnose tumors at early stage, but also
do great harm to the human body. Since the changes in a patient’s health status will cause changes
in blood protein indexes, if cancer can be diagnosed by the changes in blood indexes in the early
stage of cancer, it can not only conveniently track and detect the treatment process of cancer, but
can also reduce the pain of patients and reduce the costs. In this paper, 39 serum protein markers
were taken as research objects. The difference of the entropies of serum protein marker sequences
in different types of patients was analyzed, and based on this, a cost-sensitive analysis model was
established for the purpose of improving the accuracy of cancer recognition. The results showed that
there were significant differences in entropy of different cancer patients, and the complexity of serum
protein markers in normal people was higher than that in cancer patients. Although the dataset was
rather imbalanced, containing 897 instances, including 799 normal instances, 44 liver cancer instances,
and 54 ovarian cancer instances, the accuracy of our model still reached 95.21%. Other evaluation
indicators were also stable and satisfactory; precision, recall, F1 and AUC reach 0.807, 0.833, 0.819 and
0.92, respectively. This study has certain theoretical and practical significance for cancer prediction
and clinical application and can also provide a research basis for the intelligent medical treatment.

Keywords: approximate entropy; sample entropy; KNN; cost-sensitive learning; imbalanced dataset;
cancer prediction

1. Introduction

As one of the most threatening diseases to human health, cancer can not only bring
great pain and psychological pressure to patients but can also bring heavy economic burden
to countless families and even the whole of society. Cancer is an immune disease caused
by the uncontrolled growth and division of abnormal cells in the body and the spread
to the whole body [1]. Early diagnosis (prediction) of cancer can help physicians decide
a treatment plan, which has important and positive significance for the adequate and
effective treatment of cancer. Therefore, accurate prediction of cancer is very critical in the
treatment of cancer. However, the early diagnosis of cancer is a very difficult task; once
the symptoms of cancer appear, it is usually in advanced stages and is difficult to treat. At
present, cancer recognition mainly depends on gene test or protein test, among which gene
tests are inherited and static, which are mostly used in the detection of congenital genetic
diseases, and cannot reflect the occurrence of diseases in the body in terms of autoimmunity
and metabolism; moreover, genetic tests are difficult to interpret and are also expensive.
Protein tests are dynamic and can directly reflect the occurrence and development of
diseases. They can detect the development of a variety of diseases, including genetic
diseases. Comparatively speaking, the practical space of protein test is wider.
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Blood protein is relatively easy to be obtained; furthermore, studies show that blood
protein test in the early stage can not only improve the prognosis, but also has the advan-
tages of being non-invasive and conferring no pain to the patients [2], so in recent years,
cancer diagnosis based on blood protein markers has become a research hotspot [3]. It is
even expected that, as soon as the predicting technology is mature, with just 1 to 2 mL of
blood, the protein-chip screen could know the risk of cancer one to three years in advance,
giving people more time in the fight against cancer.

Since there are many types of protein markers in blood, their levels in the blood
of patients for different cancers are different. Diagnostic results are limited if cancer is
identified only by a single marker, which is usually inaccurate and not comprehensive.
Multi-index comprehensive recognition based on protein markers should improve the
efficiency of cancer prediction to some extent [4]. With the increase in incidence and
mortality of cancer in recent years, there is an urgent need for convenient and effective
technology for cancer diagnosis and prediction.

Recently, machine learning methods have been widely designed in medical diagnosis
and prediction because of their powerful learning and prediction capabilities in dealing
with nonlinear problems [5,6]. There are many machine learning algorithms that have
been developed for cancer diagnosis [7–11], and a model with better predictive power can
benefit cancer patients going through the toxic side effects and extra medical expenses
related to unnecessary treatment. However, the predictive effect of a model largely depends
on the algorithm and the features for a given data set [12], and different results may be
yielded with different algorithms and different feature extractions.

Because traditional classification algorithms are based on the assumption of equal
misclassification costs, they ignore the sample particularity of the minority class, resulting
in the inadequate recognition ability of the algorithm in dealing with imbalanced datasets.
Cancer data are often uneven, which makes cancer prediction more difficult. Since the
imbalance of data is usually accompanied by the imbalanced cost of sample misclassifi-
cation. When dealing with the problem of imbalanced data, cost-sensitive learning often
gives a large misclassification cost to minority classes and a small misclassification cost to
the majority classes, so as to improve the attention to samples of the minority class and
improve the classification accuracy.

In the past two decades, in order to deal with the classification tasks with different
costs, many popular classification algorithms have been extended based on cost analysis,
including misclassification costs and other cost classification techniques, and have been
applied to the actual environment and obtained good classification results [13–16]. Among
them, the most popular are decision trees, Bayes and support vector machines [17–19]. As
one of the top ten mining algorithms, K-Nearest Neighbors (KNN) is one of the simplest
and most commonly used classification algorithms as it is easy to understand and also
easy to implement with no parameter needed to estimate, so it is particularly suitable
for multi-modal problems [20,21]. However, the studies on the extended KNN algorithm
and its related applications are relatively few, considering the imbalance of our dataset,
and encouraged by existing studies, a cost-sensitive learning technique of KNN that has a
sensitive cost matrix was developed here for cancer prediction.

At the same time, for different cancers, patients have different levels of protein markers
in their serum, and entropy, which is extended from the concept of thermodynamics, can
not only describe the disorder of a system, but also describe the degree of dispersion of a
certain index. In this paper, we attempted to take the patient’s serum protein composition
as a subsystem and analyzed different entropy values of this system to study its screening
values for cancer identification; moreover, entropies were also used as characteristics
components of each patient’s feature sequence to construct a predictive model of cancer.
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2. Materials and Methods
2.1. Cancer Dataset Description

Liver cancer is a disease with high clinical incidence, and it has inconspicuous disease
characteristics in the early stage of cancer, so it has great hidden dangers for the life safety of
patients. Half a million patients die of liver cancer every year [22]. For ovarian cancer, due
to the lack of early symptoms, even if there are symptoms, which are usually ambiguous,
and the role of screening is limited, so early diagnosis is difficult, 60% to 70% of patients
are in advanced stages of cancer when they are diagnosed, and the late treatment has a
poor curative effect. As a result, although the morbidity of ovarian cancer is lower than
that of cervical cancer and endometrial cancer, it ranks first among gynecological cancers
in terms of mortality, exceeding that of cervical cancer and endometrial cancer combined,
and it is a disease that poses the most serious threat to women’s health [23]. Therefore,
for patients with liver cancer and ovarian cancer, early accurate identification is of great
significance for the selection of appropriate treatment and effective intervention. The work
of this paper is devoted to identifying patients with liver cancer and ovarian cancer based
on serum protein marker data.

The dataset of this study is derived from the article of Cohen [3]. The dataset includes
897 instances, of which 799 are normal instances, 44 are liver cancer instances, and 54 are
ovarian cancer instances. This dataset is characterized by imbalanced data of different
categories. Additionally, each instance contains an index value of 39 serum protein markers
such as alpha-Fetoprotein (AFP), Tyrosine protein kinase receptor (AXL), carbohydrate
antigen 125 (CA-125) and carbohydrate antigen 15-3 (CA 15-3), etc.

2.2. Methods

Because the effect of the prediction model is mainly determined by feature extraction
and algorithm, our research was carried out from these two aspects. In feature extraction,
the information provided by the entropy value was considered, and in algorithm, cost-
sensitive learning technology was used to improve the original KNN algorithm.

2.2.1. Entropy

Several studies have suggested that non-linear approaches may provide some infor-
mation which is not easily obtained from traditional statistics [24]. Entropy analysis is a
non-linear approach that arose from the physical sciences. Its essence is the “degree of
internal chaos” of a system. In addition to information entropy (InfoEn), three entropies
such as approximate entropy (ApEn), sample entropy (SaEn), and fuzzy entropy (FuzzyEn)
are commonly used. In this paper, we used similar methods to analyze the entropy values
of serum protein sequences of patients and attempted to distinguish the complexity of
sequences and their differences by entropy analysis; then, the appropriate entropies were
chosen to predict and distinguish cancer.

(1) Approximate Entropy (ApEn) and Sample Entropy (SaEn)
Approximate Entropy (ApEn) was initially proposed by Pincus to calculate the com-

plexity of time series. It is defined as the conditional probability that the similarity of a
similar vector continues to be maintained when its dimension increases from m to m + 1. If
the approximate entropy of a sequence is larger, its complexity will be higher, and when
the dimension of the sequence changes, the probability of generating new patterns will be
greater [25]. The algorithm is described as follows:

(1) For a sequence {u(i), i = 1, 2 · · · n}, reconstruct the m-dimension vector:

Xi = {u(i), u(i + 1) · · · u(i + m− 1)}, i = 1, 2, · · · n−m + 1. (1)

(2) For i, the maximum distance between data points corresponding to two subse-
quence Xi and Xj(j = 1, 2, · · · n−m + 1) are computed:

dij = max|u(i + k)− u(j + k)|(k = 0, 1, 2 · · ·m− 1). (2)
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(3) Given a threshold r in the range 0.1 to 0.25, for each Xi, suppose SD is the standard
deviation of the sequence. When dij < r ∗ SD, these two subsequences corresponding to
the current distance are considered to be similar, count sequences similar to the current
sequence Xi, and obtain the number of dij(dij < r ∗ SD), then calculate the ratio Cm

i (r) of
similar sequences:

Cm
i (r) =

1
n−m + 1

num{dij < r∗SD}, i = 1, 2, · · · n−m + 1. (3)

(4) For all i, calculate the mean of ln Cm
i (r), denoted it as φm(r):

φm(r) =
1

n−m + 1

n−m+1

∑
i=1

ln Cm
i (r). (4)

(5) For m = m + 1, repeat these steps and obtain φm+1(r); then:

ApEn(n, m, r) = φm(r)− φm+1(r). (5)

In the above steps, parameters n, m and r, respectively, represent the length of the
sequence, the size of the sliding window and the similarity tolerance, and the larger the
value of m is, the better the effect is. Generally, m = 2 and r = 0.25. In our work, we also
applied these values.

Sample entropy was developed on the basis of approximate entropy [26]. It also
reflects the complexity of the sequence, and its value is proportional to the complexity.
Compared with approximate entropy, sample entropy has the following advantages: (1) it
does not depend on the length of the data; (2) it has better consistency [27]. The sample
entropy SaEn(n, m, r) can be represented as:

SaEn(n, m, r) = − ln
Cm+1(n, r)

Cm(n, r)
(6)

Here,

Cm
i (n, r) =

1
n−m

num{dij < r∗SD}, i = 1, 2, · · · n−m + 1. (7)

num{dij < r∗SD} is the same as that of approximate entropy.
(2) Fuzzy Entropy (FuzzyEn)
During occurrence and development of disease, the boundaries between different

categories are often blurred, so it is necessary to add fuzzy considerations in the process of
research [28]. Differently from approximate entropy and sample entropy, fuzzy entropy
(FuzzyEn) adds the concept of fuzziness and describes the fuzziness degree of fuzzy set. It
determines the final category of samples according to the membership degree of samples
belonging to different categories. Fuzzy entropy can also measure the probability of new
patterns. The larger the measure value is, the greater the probability of generating new
patterns is, and therefore, the greater the sequence complexity is [29]. The calculation steps
of fuzzy entropy are as follows:

(1) For a sequence {u(i), i = 1, 2 · · · n}, reconstruct m-dimension vectors

Xi = {u(i), u(i + 1) · · · u(i + m− 1)} − u(i), i = 1, 2, · · · n−m + 1. (8)

Here, u(i) =
1
m

m−1

∑
k=0

u(i + k). (9)

(2) Calculate the distance between Xi and Xj (j 6= i, j = 1, 2, · · · n−m + 1):

dm
ij = max|(u(i + k)− u(i))− (u(j + k)− u(j))| (k = 0, 1, · · ·m− 1). (10)



Entropy 2022, 24, 253 5 of 12

(3) Calculate fuzzy membership function:

Am
ij (n, r) = µ(dm

ij , n, r) = exp[−
(dm

ij )
n

r ∗ SD
]. (11)

Additionally, the average of all membership:

φm(n, r) =
1

n−m + 1

n−m+1

∑
i=1

(
1

n−m ∑
j 6=i

Am
ij (n, r)). (12)

(4) For m = m + 1, repeat the above steps and obtain φm+1(n, r), then:

FuzzyEn(n, m, r) = ln φm(n, r)− ln φm+1(n, r). (13)

2.2.2. Cost-Sensitive KNN Algorithm

K-nearest neighbor algorithm (KNN) is a nonparametric statistical learning method,
the advantages of the algorithm are its simple principle and few influencing factors [20].

The effect of KNN algorithm is related to the determination of distance and the
selection of K value. Of course, there are many means to calculate distance between
two samples, such as Euclidean distance, Manhattan distance, Chebyshev distance, etc.
Euclidean distance is usually used in KNN algorithm, and it was also used in our work.
The selection of K value is very important, and the same test sample may be judged into
different categories because of different K values. In our work, the optimal K value was
selected by the cross-validation method. For a fixed K, when the sample distribution
is imbalanced, KNN algorithm may be more inclined to judge the test samples into the
category with more samples, thus reducing the accuracy of classification.

Cost-sensitive learning is a method to improve machine learning performance for
imbalanced sample data. It is used to improve the classification effect by giving the cost of
misclassification. Cost-sensitive learning can increase the importance of certain categories
through the degree of punishment for misclassification [30]. In this paper, cost-sensitive
learning was designed into a KNN algorithm to improve the classification effect.

There are usually very big differences in costs of misclassification in the diagnosis of
disease; if a normal person is mistakenly diagnosed as a patient, it may only cause some
economic losses, while if a patient is mistakenly diagnosed as a normal person, this will
make the patient miss the best treatment time and will increase the difficulty and cost of
treatment, even leading to life risk. So, we designed a cost matrix in Table 1. Here C(i, j)
represents the cost of predicting class j as class i.

Table 1. Two-category Cost Matrix.

Actual Positive Actual Negative

Predict positive C(0,0) C(0,1)

Predict negative C(1,0) C(1,1)

According to the cost matrix, the expected cost of classifying sample x as class i can be
expressed as:

L(i|x) = ∑
j

p(j|x)C(i, j) (14)

Here, p(j|x) is the probability of identifying the sample x as the class j.
The cost matrix is crucial in cost-sensitive learning, and an inappropriate cost matrix

will damage the learning process [31]. If the cost of categories with few samples is too high,
the generalization ability of the rest of the categories will be lost, but if the cost is too low,
the adjustment of the classification boundary will malfunction. In our work, the cost matrix
was obtained according to the training data directly. If the minority class i is judged to be
the majority class j, C(j, i) = 1; if the majority class j is judged to be the minority class i,
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C(i, j) = R. Here, R is the sample number ratio of class j to class i; it is assumed that there
is no cost for correctly classifying.

In Formula (14), probability can be approximated as relative probability:

p(j|x) =
k j

k
(15)

Here, k j is the number of the samples belonging to class j in the k nearest neighbor
samples. Considering the situation that if the value of k is too small, then the estimated
probability is unstable, which may lead to overfitting or increasing the cost of misclassifica-
tion. In order to make the estimated probability more effective and reliable, we adopted
the similar method of m-estimation to modify the probability as:

p(j|x) = (
k

k + m
)

k j

k
+ (

m
k + m

)bj (16)

where bj is the prior probability of class j, which is the proportion of sample belonging to
class j in the training set; m is a probability correction parameter, it is a key parameter to
balance relative probability and prior probability. When the k value is small, the probability

estimation provided by probability
kj
k of the original KNN algorithm is unstable. However,

with m-estimation, k
k+m closes to 0 and m

k+m closes to 1, so that the probability closes
towards prior probability bj. So, when using the KNN method to classify imbalanced data,
this method works particularly well.

Generally, the value of m is determined by the prior probability. In our work, the range
of m is from 0.01 to 100.

2.2.3. Performance Evaluations

In this paper, four indicators were used to measure the prediction performance of our
methods, including precision, Recall, overall accuracy (Acc), and F1 score (F1). Among the
four indicators, Acc and F1 are relatively more important: the former reflects the overall
accuracy of the predictor, while the latter is the harmonic mean of precision and recall; it
reflects the stability of the predictor. These indicators are defined as follows:

Acc =
1
N

N

∑
i=1

Acci (17)

precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 =
2Recall × precision
Recall + precision

(20)

where TP, TN, FP and FN are the number of true positives, true negatives, false positives
and false negatives in the jackknife test or the independent dataset test. Acci is the accuracy
of class i, while N is the total number of categories.

In addition, if only considering each sample as the positive or the negative, the multi-
classification problem can be transformed into a dichotomous problem, and the ROC curve
was also used to judge the quality of the model in this paper.

3. Results and Discussion

In order to excavate more useful information from blood protein index and effectively
predict cancer, four kinds of entropy values of cancer protein sequence were analyzed
firstly, and the improved algorithm and model were applied to predict cancer.
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3.1. Entropy Analysis Based on Serum Proteins

Considering each sample as a sequence, the average entropies of each type of sample
were calculated.

From Table 2, we can see that there is almost no difference between the fuzzy entropies
and information entropies of different types of sample, the difference of their fuzzy en-
tropies is less than 0.002, and the difference of their information entropies is less than 0.003.
However, for approximate entropy and sample entropy, their differences are relatively
bigger, which means that these two types of entropy can help distinguish between differ-
ent types of patients. Among the average entropies of three types of samples, those of a
normal person are the biggest, and those of liver cancer patients are the smallest, which
indicates that different cancer patients have different levels of serum protein complexity,
approximate entropy and sample entropy can reflect the complexity of different serum
protein sequence, and the complexity of serum protein in normal people is obviously higher
than that in cancer patients, which means that cancer cells may reduce the complexity of
serum proteins.

Table 2. The average entropies.

Normal Liver Ovary

ApEn 0.510 0.285 0.403

SaEn 0.575 0.237 0.365

FuzzyEn 0.018 0.017 0.019

InfoEn 5.281 5.284 5.284

Because there is an inconspicuous difference between fuzzy entropy and information
entropy in three types of samples, we only focused on their approximate entropy and
sample entropy. If approximate entropy is taken as the X-axis and sample entropy is
taken as the Y-axis, forty samples were randomly selected from three types of samples,
respectively, and the entropy vectors of these 120 samples were presented in the form of a
scatter plot, which is shown in Figure 1:

Figure 1. Entropy scatter plots of different types.

In Figure 1, the green dots represent the normal samples, the yellow dots represent
the liver cancer samples, and the purple dots represent the ovarian cancer samples. The
scatter plot shows that the entropy vectors are roughly dispersed in three different regions,
although there are overlapping parts among three regions, but we can also clearly distin-
guish the centers of three regions are different, which provides meaningful information
for our research, namely taking approximate entropy and sample entropy as classification
characteristics of cancer has certain feasibility.
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3.2. Results Analysis

Due to the imbalance of our dataset, the number of normal samples is much larger
than that of liver cancer samples and ovarian cancer samples. When k neighbor samples
are selected, the probability of the normal samples being selected is greater than those of
other cancer samples, which leads to the trend of leaning toward the majority in judgement.
In order to improve this situation, a cost-sensitive KNN algorithm was proposed in this
paper, which improved the impact caused by the imbalance of the dataset by increasing
the misclassification cost of minority classes. The main difficulty of the cost-sensitive KNN
algorithm is how to determine the appropriate cost matrix. Here, we assumed that the
correctly classified samples have no error cost, namely C(i, i) = 0, (i = 0, 1, 2). In this
paper, 0 means normal, 1 means liver cancer, and 2 means ovarian cancer. C(i, j)(i 6= j)
was determined according to the proportion of data, and the final cost matrix obtained is
shown in Table 3:

Table 3. The cost matrix.

Real Category
Predicted Category

0 1 2

0 0 1 1

1 9 0 1.3

2 7 1 0

In addition, in order to reduce the errors caused by the different values of k j, the
method of m-estimation was adopted to make the model more effective here.

Because the selection of k value in KNN is of vital importance to the classification
results. It should not be too large or too small; if the k value is too small, it will cause
model too complex; if the k value is too large, it will result in fuzzy classification. In
the experiment, we selected parameter k value through 10-fold cross-validation. Under
different k values (k = 1, 2, . . . , 30), we calculated the average prediction accuracy and the
variance of accuracy, and finally selected the appropriate k value by compromise according
to the principle of maximum accuracy and minimum variance.

Each sample has 39 serum protein marker indexes. First, we standardized these
indexes and took these indexes as the eigenvectors of the sample to establish the feature
space. Then, we used the jackknife test; the results of KNN algorithm and our improved
algorithm (CS-KNN) are shown in Table 4 and Figure 2.

Table 4. Evaluation of classification results of blood protein index.

KNN CS-KNN

accuracy 0.948 0.952

precision 0.902 0.828

Recall 0.691 0.806

F1_score 0.766 0.814

From the results in Table 4, compared with KNN algorithm, the accuracy, recall
and F1_score of our cost-sensitive KNN algorithm are all improved, the extent of the
improvements is 0.422%, 16.64% and 6.26%, and the Auc reaches 0.9 in Figure 2. The overall
effect of the model is relatively stability and satisfactory.

In fact, in order to further verify the validity of our cost-sensitive KNN algorithm,
we selected three different imbalanced datasets from the UCI database: Breast Cancer
Wisconsin, Heart Disease and Speaker Accent Recognition, and the properties of these
datasets are shown in Table 5.
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Figure 2. Roc curve of blood protein index.

Table 5. Properties of dataset for validation.

Dataset Property Number Class Number Sample Number in
Each Category

Heart Disease 10 3 179/35/26

Breast Cancer
Wisconsin 9 2 444/239

Speaker Accent
Recognition 12 3 165/45/30

Because these datasets in the UCI database were only selected to further illustrate the
effect and general applicability of our algorithm, here, we only used the method of 10-fold
cross-validation to discuss the effect of our algorithm; the results are listed in Table 6.

Table 6. Average accuracy and F1 of two KNN algorithms.

Dataset
KNN CS-KNN

Average
Accuracy SD F1 SD k Average

Accuracy SD F1 SD k

Heart Disease 0.746 0.391 0.715 0.436 14 0.746 0.383 0.720 0.424 6

Breast Cancer
Wisconsin 0.969 0.026 0.979 0.025 5 0.977 0.017 0.986 0.010 8

Speaker Accent
Recognition 0.738 0.229 0.796 0.204 5 0.746 0.231 0.796 0.220 5

From Table 6, for the cost-sensitive KNN algorithm, it can be seen that its average
accuracy and F1 both are improved in the Breast Cancer Wisconsin dataset, and the average
accuracy in Speaker Accent Recognition dataset and F1 in Heart Disease dataset are im-
proved, respectively. No matter the average accuracy or F1, the effect of the cost-sensitive
KNN algorithm on the three datasets is no less than those of KNN algorithm; moreover,
their variances are lower than those of the KNN algorithm. By comprehensive analysis of
evaluation indicator values of different datasets, our improved KNN algorithm is more
effective than the original KNN algorithm on imbalanced datasets, and the stability of our
algorithm is obviously better than that of the original KNN algorithm, which shows that
the cost-sensitive matrix designed by us is reasonable, and cost-sensitive learning based on
this sensitive matrix can improve the impact of imbalanced data. Our algorithm based on
cost-sensitive learning is suitable for the analysis of imbalanced data.

In order to further enhance the effect of cancer prediction and make full use of the
information contained by the data, in this paper we attempted to regard sample entropy
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and approximate entropy as characteristic attributes of samples; then, the two-dimensional
dataset composed of approximate entropy and sample entropy of the samples, and the 41
dimensional dataset with approximate entropy and sample entropy added on the original
39 features were used for cancer prediction. The results are shown in Table 7 and Figure 3.

Table 7. Evaluation results of cost-sensitive KNN.

Original Index Entropy Index Original Index and
Entropy Index

accuracy 0.952 0.705 0.952

precision 0.828 0.438 0.807

Recall 0.806 0.568 0.833

F1_score 0.814 0.451 0.819

Figure 3. Roc curve of cost-sensitive KNN.

Table 7 and Figure 3 shows that under the three characteristic indexes, the prediction
effect of cost-sensitive KNN combining serum protein marker indexes and entropy values
as a feature vector is superior to the other two characteristic indexes. Compared with the
indexes only considering serum protein indexes, recall and F1 have been further improved;
they are enhanced by 3.39% and 6.14%, respectively, and the AUC has reached 0.92, an
increase of 2.2%. Compared with the model of KNN and original indexes, recall and F1
have been greatly improved and the rates of increase have achieved 20.55% and 6.92%,
respectively. These results indicate that the prediction effects can indeed be improved by
adding entropy information, and the results also indicate that the model proposed in this
paper, namely the cost-sensitive KNN model based on serum protein markers and their
entropy values, is suitable for cancer prediction research.

4. Conclusions

The results of this study show that there are significant differences in approximate
entropy and sample entropy of serum protein indexes among normal people, patients with
liver cancer and patients with ovarian cancer. The entropy values of normal people are
higher than those of cancer patients, which indicates that the serum protein composition of
normal people is more complex than that of cancer patients, and cancer cells are suspected
to affect the dense structure of human serum protein.

Taking approximate entropy and sample entropy as the attributes of the feature vector
is helpful to improve the accuracy of cancer recognition to some extent. For imbalanced
datasets, cost-sensitive learning by the method of constructing a misjudgment cost matrix
can improve the performance of the original KNN algorithm. The experiment results
demonstrate that our improved method can improve the influence of data imbalance.
Synthesizing five evaluation indexes, the model of the cost-sensitive KNN algorithm
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based on serum protein indexes and entropies has the best effect, which is suitable for the
classification and prediction of cancer. The work of this paper can provide a research basis
for the intelligence of medical treatment in the future.
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