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Over the last 20  years, a sizeable body of research has linked the microbiome and 
host diet to a remarkable diversity of diseases. Yet, unifying principles of microbiome 
assembly or function, at levels required to rationally manipulate a specific individual’s  
microbiome to their benefit, have not emerged. A key driver of both community compo-
sition and activity is the host diet, but diet–microbiome interactions cannot be charac-
terized without consideration of host–diet interactions such as appetite and digestion. 
This becomes even more complex if health outcomes are to be explored, as microbes 
engage in multiple interactions and feedback pathways with the host. Here, we review 
these interactions and set forth the need to build conceptual models of the diet– 
microbiome–host axes that draw out the key principles governing this system’s 
dynamics. We highlight how “units of response,” characterizations of similarly behaving 
microbes, do not correlate consistently with microbial sequence relatedness, raising a 
challenge for relating high-throughput data sets to conceptual models. Furthermore, 
they are question-specific; responses to resource environment may be captured at 
higher taxonomic levels, but capturing microbial products that depend on networks 
of different interacting populations, such as short-chain fatty acid production through 
anaerobic fermentation, can require consideration of the entire community. We posit 
that integrative approaches to teasing apart diet–microbe–host interactions will help 
bridge between experimental data sets and conceptual models and will be of value in 
formulating predictive models.

Keywords: gut microbiome, digestion, diet, metabolite, modeling, host feedback

iNtrODUctiON

Both diet and the gut microbiome are strongly implicated in the global epidemics of chronic diseases, 
including obesity and diabetes, cardiovascular disease, cancer, autoimmunity, allergies, and asthma 
(1–5). However, food-intake and microbial response vary over far shorter timescales than chronic 
disease development. Therefore, to rationally manipulate health through the diet–microbiome axis, 
we must understand the mechanisms underpinning long-term microbiome outcomes, and how this 
impacts immune and metabolic functions (6, 7).

Gut microbes influence the host through three broad categories of molecule: cellular structural 
components that elicit responses via signaling pathways [e.g., microbe-associated molecular pat-
terns (MAMPs)]; metabolites, constituting either signals or nutritional resources to the host; and 
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effectors that are biochemically active (e.g., toxins or enzymes) 
(8). MAMP types and quantities can be estimated from which 
species are present and the total population size (live, dormant, 
and dead cells). However, metabolite and effector production 
by active cells reflects environmental conditions such as sub-
strate presence. Thus, understanding microbiome impact on 
host health requires integration of microbial species traits and 
cell activity with community structure and diet context. Here, 
we use the term community state to refer collectively to those 
aspects of species composition and metabolic activity that 
persist over time.

Long-term diet patterns can drive persistent differences in 
microbial community composition, despite daily variation 
in food composition and intake rate. For example, in studies 
where food composition is constant and intake varies (9) and 
where food composition is systematically varied between groups 
(9–12), significant between-group microbiome associations 
are typically seen. Even animals maintained with constant 
food composition and net intake, but with different fasting 
and feeding cycles, can develop characteristic differences in 
their microbiome (13). However, such diet responses are not 
consistent between studies (14). Mechanistic explanation of this 
between-study variability is more complex and requires integra-
tion of factors beyond diet.

The most obvious mechanisms of food impact on the micro-
biome are short-term processes such as growth. Ingestion of a 
new food component or food removal (fasting) can both alter the 
community state within 24 h (12, 15). However these responses 
are transient; it is long-term processes that primarily contribute 
to chronic community state development. For example, in mice 
fed a high-fat diet, it typically takes >6 weeks for a community 
state characteristic of diet-induced obesity to appear (16, 17). 
Here the appearance of “inflammophilic pathobionts” follows 
development of an inflammatory state and increased intestinal 
permeability (17). The essential role of host processes was 
demonstrated through intra-peritoneal anti-inflammatories that 
reversed chronic microbial changes, despite mice continuing the 
high-fat diet (17).

Characteristic inter-individual microbiome differences reflect 
resilience in community structure (tendency to return to a 
“baseline” state), and long-term dietary shifts can trigger tipping 
points in this baseline. The emerging concept of multistability 
captures how factors such as inter-microbial interactions, host 
interactions, diet, microbe immigration, and anti-microbials 
can together drive a community to different stable states  
(7, 18, 19). Novel applications of machine learning have revealed 
that microbiome data contain signals enabling the prediction of 
human health outcomes (20, 21). However, understanding the 
origins of this signal and rationally manipulating a beneficial 
community state requires consideration of multiple dimensions. 
Nutritional geometry can map biological parameters and outcomes 
spanning multiple scales over nutritional intake space, by repre-
senting dietary dimensions (e.g., macronutrients) as orthogonal 
axes and plotting individuals based on their dietary intake (22–24). 
However, mechanistic understanding requires a conceptual 
framework encompassing key gut ecosystem dimensions.

NUtrieNt DiMeNsiONs tHAt 
iNFLUeNce MicrOBiAL  
cOMMUNitY stAte
For symbiosis involving a microbial community within an ani-
mal nutrition is a highly multifactorial concept. A fundamental 
driver of each species’ ecological niche within a community is 
the relative availability of its nutrient requirements over time. 
But each community member responds differently to how nutri-
ents enter the ecosystem owing to their different requirements. 
Autotrophs (e.g., plants and many bacteria) have “complete” 
biosynthetic capability, and their nutrient requirements are 
expressible as inorganic compounds. Given their more limited 
biosynthetic ability, animal nutrient requirements must be 
expressed in terms of foods containing pre-formed organic com-
pounds. Consequently, human nutrition is typically described 
in terms of sources and quantities of macromolecules that are 
major sources of energy, essential amino acids, and essential fats. 
However, the diversity of microbial metabolic strategies requires 
“microbiome nutrition” to be described more extensively at the 
chemical level.

To extract nutrients from a macromolecule, all organisms 
must possess: (1) mechanisms to solubilize (digest) the source 
compound; (2) uptake systems to internalize the released/
solubilized molecules; and (3) the biochemical capacity to 
metabolize the molecule. Humans show little variation in these 
capabilities, but microbial species differ considerably in all three. 
Consequently, the physical structure and chemical composition 
of food, together with host nutrient absorption, determine the 
dietary portion reaching ileal and colonic microbes (Figure 1). 
For instance, studies of ileostomy patients found that only 17% 
of dietary protein, 2% of digestible dietary starch, and <5% of 
dietary fat reaches the colon (25). Food processing/preparation 
also modulates host access to dietary nutrients. A total of 1% 
of milled-, yet 16% of flaked-dietary barley was recovered from 
ileostomy patients (25), and cooking reduces the α-amylase 
digestion-resistant portion of banana starch from 54 to 0% (26). 
Finally, small intestinal starch absorption capacity increases with 
slower transit times (27).

As such, the digesta entering the large intestines lacks easily 
absorbable organic compounds (e.g., sugars, central metabolites). 
Rather, it is enriched in digestion-resistant carbohydrate (fiber), 
predominantly non-starch polysaccharides, the microbiome’s 
dominant carbon, and energy source. The importance of microbe 
accessible carbohydrates (MACs) as niche dimensions driving 
microbial life history is seen by the diversity of carbohydrate-
active enzymes that microbes possess (28–31). Nevertheless, MAC 
profile is not the only diet factor that strongly drives microbial 
community state. The colonic digesta is also depleted of electron 
acceptors (such as oxygen) to support respiratory metabolism, 
and pre-formed metabolic intermediates, especially nitrogenous 
compounds (e.g., amino acids, purine, pyrimidines). The low 
redox potential environment means that utilization of MAC is via 
the relatively energetically inefficient fermentative metabolism. 
Together with organic nitrogen compound depletion, this drives 
diverse strategies for meeting nitrogen requirements. Organisms 
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FiGUre 1 | Nutrient dimensions and host processes together shape microbial nutrient profile, and thus microbial growth and metabolic dynamics, 
which subsequently impact on the host system. Blue and red areas represent host and microbial processes, respectively. The activity of the microbiome is 
supported by dietary nutrients that bypass host absorption and by host secretions. Temporal patterns result from differences in meal intervals and gastrointestinal 
motility. Many microbes are dependent on co-operative metabolic interactions to completely meet their nutrient requirements (indicated by black arrows). 
Metabolites that are the product of growth-related metabolism of dietary nutrients can be produced at high levels and may show positive feedback to diet. 
Metabolites that are produced by non-growth transformations of dietary components are produced at low levels if relevant microbes are present. Abbreviations: GIT, 
gastrointestinal tract; sIgA, soluble immunoglobulin A; MAC, microbe accessible carbohydrate; LPS, lipopolysaccharide; SCFA, short-chain fatty acid; BCFA, branch 
chain fatty acid; TMA, trimethylamine.
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can compete for limited organic nitrogen sources, adopt costly 
biosynthesis from inorganic nitrogen, or engage in co-operative 
cross-feeding interactions. Thus, MAC is typically highly available  

from a large number of sources, whereas nitrogen has low avail-
ability via few sources. As such, we postulate that dietary nitrogen 
content will have more predictable impacts on community that 
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are global across all diet conditions, and that, conversely, altera-
tions to MAC profile will impact a more select subset of microbes 
within a community, namely, those with the capacity to utilize the 
altered substrates.

Host physiology also influences the availability of microbial 
carbon/energy and nitrogen sources, largely through dead 
epithelial cells, mucin and uric acid/urea secretions. Intestinal 
epithelial cells secrete mucin glycoproteins to form a surface 
layer. Mucins have a bottlebrush-like structure comprising a 
serine and threonine rich protein backbone heavily decorated 
by glycan side chains (32). They constitute a carbohydrate and 
protein source to intestinal microbes, structurally distinct from 
dietary sources. A diverse range of microbes degrade mucins 
to access their sugars (e.g., fucose, sialic acid) and amino acids 
(1, 33–35). Uric acid and urea, host metabolic waste products, 
are also significant bacterial nitrogen sources. Although the host 
can impact microbial nutrition via these routes the outcome is 
interdependent with diet: host-excreted intestinal nitrogen 
increases with dietary protein content (36), and mucin-derived 
nutrients increase in importance under conditions of fasting or 
low caloric intake (23).

In summary, multiple diet dimensions influence processes 
impacting community state. Differences in food composition, 
meal sizes, and fasting periods create temporal variation in 
resource availability. Hence, the outcomes of microbial interac-
tions, either competing or co-operating for access to resources, is 
constantly changing. Modeling studies support metabolic coop-
eration as a strong driver of co-occurrence patterns in diverse 
microbial communities (37) and demonstrate that heterogeneity 
in interaction strengths influences the emergence of stable states 
(7, 18). Chronic dietary changes extending over long time frames 
can induce the emergence of a distinct stable community under-
pinned by complex interaction networks. Hence, it is important 
to adopt an integrative perspective of diet. This suggests that 
cross-sectional studies of diet–microbiome interactions that test 
one of two nutrient dimensions will have limited explanatory 
power. Indeed such studies often have conflicting results (14). 
By adopting a nutritional geometry experimental design where 
macronutrient dimensions of diet are systematically varied  
(22, 24), we recently demonstrated that broad microbial responses 
to diet can be predicted at the macronutrient level (23).

MicrOBiOMe DiMeNsiONs  
tHAt iMPAct tHe HOst

Microbially produced molecules (MPMs) exert a range of effects 
on the host: some represent nutritional resources, bioactive 
molecules influence developmental or regulatory networks, and 
effectors directly manipulate host cells. These categorizations are 
not mutually exclusive and an MPM can exhibit multiple effects.

Microbes contribute nutritional resources to the host primar-
ily though short-chain fatty acids (SCFAs), vitamins, and amino 
acids. They contribute 10–15% of human energy requirements 
through SCFAs resulting from MAC fermentation (38, 39). 
Specific SCFAs have differing effects on the host; the major SCFAs 
acetate and propionate are transported to the liver and greatly 

impact energy balance, and as the primary colonocyte energy 
source butyrate supports epithelial function (40–42). Microbes 
differ in the SCFAs they can produce, and few species produce 
substantial quantities of propionate and butyrate (42, 43). In 
principle, microbial amino acid and vitamin generation can also 
supplement our nutrition where the diet is inadequate. While this 
has been established in many animals and is important for many 
herbivores, the conditions under which microbes support human 
nutrition in this way is unclear.

The host monitors SCFA levels through dedicated receptors 
that trigger a range of signaling pathways. Many of these path-
ways regulate the gastrointestinal environment, the microbial 
community (through immune function), or host metabolism. 
For example, SCFA-signaling on enteroendocrine cells mediates 
peptide YY secretion, a gut motility-inhibiting hormone (44). 
SCFAs also promote gut epithelial mucin secretion (45, 46). 
Finally, SCFA production is associated with inflammatory regula-
tion through several routes, such as the promotion of Treg cell 
differentiation in the colon (47–49). These responses are sensitive 
to total and relative concentrations of SCFA types, and they col-
lectively impact microbial activity and their interaction with the 
host by modulating the gut environment.

The host is sensitive to microbial structural components 
through a number of pathways. MAMPs such as lipopolysac-
charide (LPS) and flagellin are targets for the TLR4 and TLR5 
innate immune signaling pathways (50, 51). Although widely 
present in bacteria, structural variants of LPS and flagellin can 
trigger very different responses. Through lipid A core structural 
variation, LPS-expressing strains differ in their inflammatory 
capacity, which has been implicated in autoimmune disease trig-
gering (52). Bacterial flagellin structural variation is thought to 
alter its interaction with TLR5 (51).

While the examples above concern MPMs common among gut 
microbes, some structural components are scarcely distributed 
among bacteria and can trigger distinct responses. For example, 
segmented filamentous bacteria closely associate with the mouse 
intestinal epithelium, and profoundly impact Th17 induction  
(53, 54). The polysaccharide A of Bacteroides fragilis has been 
shown to stimulate differentiation of Treg cells (55).

The above examples all involve fairly direct links between 
intrinsic properties of the microbes and homeostatic regulation of 
the host. As such, they may be viewed as points of co-ordination 
of host–microbiome interaction. However, there are also less 
controlled interactions. Metabolites produced through non-
fermentative pathways by low-abundance microbes can influence 
host physiology and regulatory network signaling. These include 
deleterious metabolites such as trimethylamine (TMA) produced 
from choline (found in e.g., red meat, poultry, and eggs) deg-
radation or H2S production from sulfate reduction (14, 56, 57). 
Microbial transformation of dietary components can also gener-
ate beneficial metabolites. For instance, microbes transform plant 
polyphenols into phytoestrogens thought to protect against breast 
and prostate cancer, cardiovascular disease, osteoporosis, and 
menopausal symptoms (58). Microbial conjugation of ω-6 fatty 
acids into conjugated linoleic acids increases insulin sensitivity, 
reduces adiposity and atherosclerosis, carcinogenesis, and has 
anti-inflammatory properties (59, 60).
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In summary, predicting health impacts requires considera-
tion of diet-microbiome dynamics. Diets supporting microbial 
growth that is beneficial to the host, e.g., through generation 
of SCFA, will likely cause positive host–microbiome feedbacks. 
Non-growth-related metabolites that depend on microbial 
activity (e.g., TMA, isothiocyanates) will be produced only 
if host diet contains the transformation substrates, and the 
transforming microbes are supported. Finally, for structural 
components such as MAMPs, the relative balance of microbes 
possessing distinct types will dictate inflammatory conse-
quences. Nutritional geometry provides a powerful platform 
for exploring how dietary components interact to effect specific 
outcomes, but mechanistic-level modeling approaches are 
needed to explore how dietary inputs intersect with community 
interaction networks to support microbial activities ranging 
from community- to strain-specific levels. These models must 
include host–microbiome feedbacks also, as they are a critical 
factor in dictating which communities can develop and their 
resilience.

FrAMeWOrK tO DescriBe  
Diet–MicrOBiOMe DYNAMics

As discussed above, microbes influence the immune system and 
host health en masse through mechanisms operating at different 
ecological scales. Some effects arise from clonal populations of 
pathogens (e.g., toxin production), representing microbial activ-
ity at a fine ecological scale. In contrast, SCFA production is a 
more complex and emergent outcome of many populations co-
operating as a network. Thus, to describe the diet–microbiome–
host axis, we must consider the microbiome’s properties at scales 
from individual cells to group activities of interaction networks. 
High-throughput technologies characterize specific community 
properties at the DNA, RNA, protein, and metabolite levels. 
Describing diet–microbiome–host dynamics requires integrating 
these datasets and linking predictions of cellular properties (their 
activity and impact on the host) with those of community state 
dynamics.

Critical cell properties to be extracted from high-throughput 
datasets include each microbe’s resource requirements (e.g., 
carbon and nitrogen sources), potential for MPM generation, 
and response to changing environmental dimensions. Microbe 
resource requirements and metabolic potential can be determined 
through pure cultures, or predicted from genome sequences. A 
community’s possession of these properties can then be inferred 
from high-throughput 16S amplicon or shotgun sequencing. 
These approaches generate lists of taxa or microbial properties 
present in a single timepoint sample. However to infer diet effects 
on host–microbiome interaction we must also consider response 
dynamics, which requires a more precise conceptual framework 
for community ecology.

Important concepts are populations, functionally similar 
population sets, and communities (Figure  2). Terms such as 
“strain/clone/ecotype/species” define populations of organisms 
deemed biologically equivalent and allow their distinction. 
Precisely defining populations occupying the same ecological 
niche maximizes a model’s predictive power. Populations do not 

differ equally, nor in the same way. This impacts their roles in 
a community, and conceptual grouping of functionally similar 
population sets aims to capture this. Examples include taxo-
nomic groupings around similar characteristics, e.g., “genus” 
or “family,” and groupings of shared ecological or physiological 
properties, “guilds” or “functional types” (61). Accounting for 
functional complementarity or redundancy through population 
sets can improve ecological models. Finally, as reviewed above, 
the microbiome’s greatest health impacts arise as emergent 
properties. The community type concept aims to capture stable 
emergent property changes arising from self-stable networks of 
dissimilar populations. The gut microbiome’s adoption of dis-
tinct community types, termed enterotypes, was first proposed 
in Ref. (62). Although this has proven controversial, and the 
extent of distinction between proposed enterotypes is dis-
puted, a rapidly emerging body of evidence demonstrates that  
microbial communities exhibit the property of multi-stability 
(7, 18, 63).

A recent study modulating the gut microbiome in  
obesity through diet revealed populations and guilds through 
co-abundance and co-occurrence patterns in metagenome data 
(64). Biologically equivalent bacteria populations with similar 
environmental responses should exhibit highly autocorrelated 
gene abundances. Thus, sets of sequence reads belonging to 
the same co-abundance group (CAG) represent a population’s 
pangenome (its constituents’ collective genomes). A similar 
analysis over CAGs (populations) can classify populations 
into sets termed genome interaction groups (GIGs) (64). 
Significantly, this approach revealed the lack of biological 
precision in several gut species. For example, nine differ-
ent CAGs were taxonomically affiliated to Faecalibacterium 
prausnitzii. However, their distribution over several distinct 
GIGs suggested they have distinct ecological roles. Across this 
study, GIG abundances either remained stable, all declined or 
all increased in response to the diet modulation, consistent 
with the ecological guild concept. In summary, the ability to 
explain emergent outcomes of diet modulation was enhanced 
by describing the community in terms of interaction groups as 
well as species.

PreDictive, iNteGrAtive MODeLiNG

The full potential of conceptually modeling the diet–host–gut 
microbiome axis lies in its integration with platforms that 
predict system responses to given interventions (65, 66). 
Statistical models constructed through machine learning have 
demonstrated that high-throughput microbiome analysis data-
sets contain the information and patterns required to predict an 
individual’s response to defined diets (20, 67). Though lacking 
mechanistic explanation, these models could reveal associations 
between the conceptual units explored above if those abstrac-
tions can be applied to high-throughput datasets prior to their 
input. Making abstractions that generalize across datasets and 
experiments is a key challenge and will become a focus of the 
field in the coming years.

Fine-scale metabolic networks are already being reconstru-
cted through mechanistic genome scale models (68–70). Built 
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FiGUre 2 | Predicting the microbiome response to dietary intervention requires that we define “units of response” capturing groups of microbes 
similarly responding to environmental parameters. The dendrogram depicts the genomic similarity of eight hypothetical microbes, which are differentially 
present in two communities. These communities are subject to a change in host diet, under which each microbe population either increases, declines, or remains 
stable. Attempts to reason about the community at the level of unique sequences are cumbersome as each community contains microbes that the other does not. 
This represents an over-classification, wherein several “units” (unique sequences) capture each possible response. Common practice in gut microbial ecology is to 
cluster unique sequences sharing 97% of their genomes into distinct groups, often termed “operational taxonomic units” (OTU). While analysis at the level of groups 
common to all communities can be performed, differential group constituent presence can still generate misleading results; this is because microbial traits, such as 
response to a given dietary change, do not correlate well with genomic similarity. For instance, Group 2 is seen to increase in Community 1, but decrease in 
Community 2. More meaningful is to group microbes by their response to environmental variables, in this case response to changing dietary intake: “guilds.” An 
open challenge for the microbial ecology field is predicting a microbe’s response to environmental variables based on either its genome or pure culture experiments.
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upon organisms’ annotated genomes, these models are predicting 
community growth and metabolic responses to given nutritional 
environments. We anticipate that in the coming years these mod-
els will be coupled with agent-based and mathematical modeling 
frameworks to facilitate the integration of host–feedback  
pathways. The more abstractive agent-based (23, 71), partial- 
and ordinary-differential equation models (7, 18, 72) are ideal 
for capturing the conceptual units explored above, and their 
mechanistic relationships. Deployment within a nutritional 
geometric framework that systematically varies dietary inputs 
to these models can reveal how specific dimensions of diet 
together interact with intrinsic features of microbes and their 
potential for interactions with one another and the host to drive  
community states.

Predictive, integrative models applied to complex systems 
can help tame complexity and identify core principles govern-
ing system function. In the coming years, we anticipate the 
development of integrative models highlighting how concerted 
alterations to dietary composition, intake patterns, and admin-
istration of pre-, pro-, and antibiotics can together shift a stable 
microbial community to another desired state. This is the key 
to providing personalized, tailored manipulations for specific 
patients that shift their microbiomes from disease- to health-
promoting states.
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