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Abstract
Neuromodulation techniques have emerged as promising approaches for treating a wide range of neurological disorders, precisely 
delivering electrical stimulation to modulate abnormal neuronal activity. While leveraging the unique capabilities of AI holds 
immense potential for responsive neurostimulation, it appears as an extremely challenging proposition where real-time (low-latency) 
processing, low-power consumption, and heat constraints are limiting factors. The use of sophisticated AI-driven models for 
personalized neurostimulation depends on the back-telemetry of data to external systems (e.g. cloud-based medical mesosystems 
and ecosystems). While this can be a solution, integrating continuous learning within implantable neuromodulation devices for 
several applications, such as seizure prediction in epilepsy, is an open question. We believe neuromorphic architectures hold an 
outstanding potential to open new avenues for sophisticated on-chip analysis of neural signals and AI-driven personalized 
treatments. With more than three orders of magnitude reduction in the total data required for data processing and feature extraction, 
the high power- and memory-efficiency of neuromorphic computing to hardware-firmware co-design can be considered as the 
solution-in-the-making to resource-constraint implantable neuromodulation systems. This perspective introduces the concept of 
Neuromorphic Neuromodulation, a new breed of closed-loop responsive feedback system. It highlights its potential to revolutionize 
implantable brain–machine microsystems for patient-specific treatment.
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Introduction
Electrical brain stimulation has evolved significantly over the past 
half a century. It started in the 50s when it was found that emo
tional responses can be triggered by electrical brain stimulation 
(1). Penfield and Jasper’s work (2) was pivotal in mapping cortical 
functions, which they used to enhance the understanding of seiz
ure semiology. Since then, there has been an increasing number of 
studies on the safety of brain stimulation (3, 4) and its applications 
as therapy of intractable epilepsy (5–7), spinal cord injury 
(8), psychiatric illness (9), Parkinson’s disease (10), dystonia 
(11), refractory depression (12), and Alzheimer’s disease (13, 14). 
However, there is yet to be an effective, scalable, personalized, 
and truly responsive stimulation solution for refractory epilepsy 
or neurological diseases in general. The market share of neurosti
mulation devices was more than US$6 B in 2020 and is projected to 
pass US$11B by 2026 (15). Key manufacturers of neurostimulation 
devices include Medtronic, Boston Scientific, Abbott, LivaNova, 
Nevro, NeuroPace, Beijing Pins, and Synapse Biomedical. 
Figure 1(a and b) depicts the history of implantable 

neurostimulation devices and the trend in advanced neurostimu
lation. Although it does not perform neurostimulation, we con
sider the first pacemaker (16) the first important milestone on 
the roadmap, as it shares the same core idea: electrical stimula
tion. A decade after the first pacemaker, in 1967, the first implant
able stimulation device was introduced for chronic pain relief. 
Since then, neurostimulation has shown consistent effectiveness 
in reducing chronic pain (17). This is followed by the first implant
able defibrillator reported in 1980 (18). Neurostimulation has been 
explored for its potential as a treatment or therapy for other dis
eases such as epilepsy, Parkinson’s disease, Alzheimer’s disease, 
and spinal cord injury. The year 1997 marks the first 
FDA-approved vagus nerve stimulation (VNS) device in treating 
intractable epilepsy (19, 20). The device, NeuroCybernetic 
Prosthesis, is based on the finding that stimulating the vagus 
nerve modulates cortical activity via thalamocortical pathways, 
though the precise mechanism is not yet fully understood (21). 
Deep brain stimulation (DBS) was first used in 1980 for the reduc
tion of tremors (22) and has since become an effective treatment 
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of Parkinson’s disease with impressive clinical outcomes in terms 
of motor and nonmotor effects and quality of life improvements 
(10, 23). Neuromodulation has been tried with more acute condi
tions such as spinal cord injuries, where epidural electrical stimu
lation is applied to stimulate specific sensorimotor functions (8). 
Closed-loop VNS has shown promising evidence of the prolonged 
effects in restoring neural circuitry with a study on rats (24). Less 
commonly, neurostimulation has also been explored with other 
conditions such as psychiatric illness (9) and loss of control eating 
(25). Recent advancements in neuromodulation underscore its 
growing flexibility in targeting precise brain regions or networks, 
facilitated through various administration methods such as one- 
time treatments, continuous delivery, or adaptive responses to 
physiological changes. These advancements are pivotal for en
hancing the efficacy and versatility of neuromodulation devices, 
particularly through the integration of advanced algorithms and 
responsive feedback mechanisms, as projected by 2035 (26).

Future brain stimulation devices will use 
advanced algorithms that combine predictive 
models and responsive feedback mechanism
In responsive neurostimulation, a neurostimulator device is surgi
cally implanted within the patient’s brain or near the affected 
area. This device ideally has electrodes that constantly monitor 
the brain’s electrical activity in real time, which is not a trivial 
in terms of implementation. It is programed to detect abnormal 
electrical patterns or seizure onset based on predefined algo
rithms. One example is to treat epilepsy by continuously monitor
ing intracranial EEG and providing stimulation only when 
epileptiform activity is detected. NeuroPace developed the first 
Responsive Neuro-Stimulation (RNS) systems for epilepsy that de
tects abnormal brain activity and responds in real time (32). This 
reduces the amount of stimulation required and improves the ac
curacy of the treatment. This closed-loop system utilizes data
bases, modeling, and machine learning to enhance performance 

a

b

Fig. 1. a) Brief history of neurostimulation devices and possible future directions (16, 18, 20, 27–31). The first generation of neuromodulation devices 
primarily involved the delivery of constant electrical stimulation to targeted brain regions. Responsive stimulation generation represents a significant 
leap forward, incorporating closed-loop systems that dynamically adjust stimulation parameters based on real-time feedback from neural activity or 
physiological markers. Inspired by brain computing, the future generation should be focused on neuromorphic neuromodulation, which holds great 
potential for revolutionary and precise therapeutic interventions. b) Accumulated number of publications in responsive or closed-loop neurostimulation. 
An evident gap exists in closed-loop systems about the requirement for on-chip devices capable of continuous learning.
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while gathering data necessitates additional telemetry and data 
storage. Another example is the Mayo Epilepsy Personal 
Assistant Device (EPAD) that combines an implanted device with 
intracranial EEG telemetry, electrical stimulation, behavioral 
state classifiers, remote parameter control, a handheld computa
tional device, and a cloud training for managing neurological dis
eases (33, 34). Consequently, neuromodulation will increasingly 
depend on data science for better outcomes.

Challenges with current responsive 
neurostimulation devices
Almost 55% of neurostimulation devices are intended for pain 
management (15). For more acute diseases like epilepsy, despite 
promising reports showing a reduction of around 50% in seizure 
frequency with responsive neurostimulation (35, 36), people 
with refractory epilepsy still develop seizures that prevent them 
from joining the workforce or performing certain daily activities 
(e.g. driving). There are several reasons for the low efficacy in pre
venting/suppressing seizures. Firstly, the stimulation is activated 
based on the detection of anomalies, presumably epileptic seiz
ures, in brain signals which are manually predefined by physi
cians (35, 37–42). We argue that stimulating the brain after 
seizure onset is detected is sub-optimal. Activation of stimulation 
before the onset is likely more effective in preventing seizures. 
This idea was proposed back in 2003 (6) and was taken up in sev
eral patents (43, 44) but has not been tested in clinical trials yet. 
What prevents such a system from being effective is the lack of 
a high performance neurological event or seizure prediction mod
el. Seizure prediction is more challenging than the detection coun
terpart and its performance relies on long-term and 
patient-specific EEG recording (45–48). Nevertheless, having ac
cess to ultralong-term EEG recordings is just one part of the over
all solution for robust developing seizure prediction models. The 
EEG recording needs to be labeled such that it can be used to train 
a machine learning model, e.g. a deep neural network. This pro
cess is not only time-consuming, but it requires manual reading 
and labeling to be performed by neurologists, and must be regu
larly repeated as underlying physiological patterns are subject 
to changing over time (49). This corresponds to data set drift. 
Furthermore, interpreting brain data obtained chronically or in 
real time requires advanced analytics that rely on deep-learning 
algorithms and intensive computational capabilities, which are 
unsuitable for current hardware and software approaches for on- 
chip learning (50).

Can these devices be smarter, extraordinarily 
energy-efficient and perform truly real-time 
closed-loop therapy?
Neurotechnology research has seen a surge in startups and com
panies over the past decade, but on-chip computation is currently 
limited to simple signal processing and feature extraction. Existing 
systems such as the RNS, Percept family: (PC/RC) and Summit RC 
+S (31, 51, 52) rely on external systems with advanced machine 
learning algorithms for accurate symptom tracking.a For instance, 
the investigational Medtronic Summit RC+S utilizes an embedded 
dual Linear Discriminant Classifier that consumes 5 μW/channel, 
and its parameters can be upgraded through telemetry. Percept 
family includes the PC and RC. The PC device incorporates 
BrainSense technology, specifically designed for acquiring brain 
signals (known as local field potential or LFP) utilizing the im
planted DBS lead. Concerning the utilization of BrainSense tech
nology, for a patient with Parkinson’s Disease, the system 

typically consumes a moderate amount of energy over 2 months 
with the BrainSense technology incorporated. This energy usage 
is expected to sustain the device for a duration of five years. The 
FDA approved the latest innovation of the Percept (RC) in early 
2024 and includes the rechargeable neurostimulation. The RC is 
the smallest and thinnest dual-channel neurostimulator available 
for DBS that offers at least 15 years of service life with consistent 
and fast recharge performance (53). Brain Interchange ONE is the 
first version of the CorTec Brain Interchange technology, which is 
currently approved for the first study by the FDA. It consists of a 
closed-loop neuromodulation bi-directional device, in which the 
energy supply is done via induction and can record and stimulate 
brain activity in 32 channels. This device relies on external artifi
cial intelligence that runs in a designed software (54).

The RNS system continuously monitors ECoG at the seizure fo
cus and delivers closed-loop electrical stimulation when abnor
mal (epileptiform) patterns are detected. Two versions have 
been available in the market: The RNS-300 and RNS-320, with 
the latter incorporating the most recent advancements. Both ver
sions depend on the telemetry component used for communica
tion, a storage and access to historical neurostimulator data. 
However, one significant design feature, or lack thereof, in these 
devices is the demand for external transmission of information 
as continuous data telemetry drains their battery quickly. This 
system which are being said to be continuous monitoring are par
tially true. For instance, one of the RNS models can only record a 
maximum of 4 min of ECoG and it can be scheduled to repeat this 
up to four different times in a 24 h clock. That means, information 
of the whole day is not present, just instance of times. As well, this 
device passively records multiple seizures, which aids in develop
ing detection algorithms tailored to the patient. By analyzing 
these recordings, the algorithms can identify seizure patterns 
and apply responsive stimulation using techniques like line 
length and half-wave detection. Existing deep-learning models 
outperforms such algorithms. These alternatives faces challenges 
such as increased power consumption due to wireless data telem
etry and significant latency in the feedback loop (several hundred 
milliseconds) relative to potential latency for an on-device equiva
lent. Integrating this alternative approach could reduce the effect
iveness of closed-loop stimulation and an increased need for more 
frequent battery replacements or recharges of implanted batter
ies. The goal is to design the next generation of intelligent neuro
modulation systems with more on-chip computing, energy 
efficiency, and overall miniaturization (55).

In this perspective, we aim to explain why neuromorphic com
puting may represent a potential solution for making embedded 
smart electroceuticals devices. These ground-breaking devices 
use electrical impulses to precisely modulate the body’s neural 
circuits (56–58). We discussed the practical advantages of our ap
proach with a feasible application, study cases with potential im
provements, challenges, and opportunities in this emerging field.

Neuromorphic neuromodulation: driving 
the next generation of on-device 
AI-revolution in electroceuticals
Data telemetry is power hungry
The rapid advancement of AI and neural networks has led to com
puters exhibiting impressive cognitive abilities. However, reducing 
computational costs and achieving brain-like efficiency remains a 
challenge. Deep neural networks form the basis of state-of-the-art 
AI as it stands, and these networks rely on computing systems, 
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from the transistors to hugely memory-intensive graphics process
ing units (GPUs), which consume substantial energy in their 
general-purpose and conventional computing architectures. 
Training these networks on energy-intensive servers yields high ac
curacy but also high energy consumption. For example, running a 
model on an intelligent glass-embedded processor would exhaust 
its battery (2.1 Wh) within a span of 25 min (59). This high power 
consumption makes such systems unsuitable for bio-electronic 
medicine applications, which prioritize low energy usage. External 
data processing in implantable devices requires wireless data tel
emetry, which is limited by bandwidth, communication range, 
interference, and, crucially, energy requirements. As real-time 
processing is a need, such external interaction would hinder timely 
response to signal features and potential efficacy issues. 
Conversely, on-device (edge) computing solutions enable the im
mediate processing of recorded signals and facilitate closed-loop in
terventions (60, 61). Expanding edge computing capabilities beyond 
inference-only to on-device learning would significantly enhance 
the personalization and efficacy of these devices.

Can we take inspiration from the brain through 
neuromorphic?
The human brain possesses a remarkable computational power 
ranging from 1013 to 1016 operations per second, with a power con
sumption of approximately 20 W.b In contrast, a computer per
forming a classification task requires around 250 W. The brain 
consists of billions of neurons (∼ 9 × 109) connected by trillions 
of synapses (∼ 3 × 1014), allowing for information processing at a 
rate of approximately 6 × 1016 bits per second (62, 63). Recent in
vestigations explores the prospects of neuromodulation over a 
decade (64), where it discusses the potential of neuromorphic 
chips for implanted body-machine systems, which mimic the co- 
location of logic and memory, hyper-connectivity, and parallel 
processing of the human brain, as shown in Fig. 2. The field of neu
romorphic computing has seen significant advancements in in
dustry and academia (63). Several notable neuromorphic chips, 
like IBM’s TrueNorth and Intel’s Loihi, cater to specific applica
tions with dedicated software ecosystems. In the European 
Union Human Brain Project, chips like BrainScales, SpiNNaker, 
NeuroGrid, IFAT, and DYNAPs excel in tasks such as object detec
tion and medical image analysis. There’s a growing focus on 

versatile neuromorphic platforms integrating hardware and soft
ware, like the Tianjic chip supporting both spiking neural net
works (SNNs) and traditional artificial neural networks (ANNs). 
Spinnaker serves as a general-purpose accelerator for diverse 
workloads. These chips employ digital, analog, or mixed-signal 
configurations based on their functional needs (65–75). Table 1
overviews some of the most prominent current neuromorphic 
chips. Notably, there is a wide range of neuromorphic chips, but 
we consider the mostly commercially available for demonstra
tion. Research notes limitations in current devices for peripheral 
nervous system stimulation and suggests neuromorphic circuits 
as an ideal solution for enhancing bioelectric medicine. 
Adaptive closed-loop systems using neuromorphic engineering 
can improve symptom control by continuously monitoring 
physiological signals and adapting in real time (76). These systems 
use mixed-mode analog/digital transistors and consume ultra- 
low power. Neuromorphic engineering can overcome bandwidth 
and power consumption limitations, improving neural data ac
quisition and processing (77). Analog neuromorphic front-ends of
fer a low-power solution for high-bandwidth neural recording and 
multichannel processing needs. They process analog signals dir
ectly, converting them into spikes for SNN use. Recent neuromor
phic computing advances enable on-chip training with minimal 
power usage and a small device size. Frenkel et al. (78) demon
strate on-chip training in a 32-mm2 silicon area, achieving 95.3% 
accuracy with the MNIST dataset, slightly lower than off-chip 
training’s 97.5% accuracy. Existing neuromorphic chips, such as 
the well-known IBM TrueNorth and Intel Loihi chips, are general- 
purpose chips that support various types of networks and config
urable parameters (i.e. number of layers, kernel sizes, etc.). 
However, their versatility comes with a cost of higher power con
sumption and heat dissipation. For implementation of neural net
works with learning capability, a neuromorphic chip should be 
fully optimized for one specific application if continuous active 
learning is to be coupled with a medical device, especially im
plants that have strict constraints on temperature.

Feasible application for neuromorphic 
neuromodulation
Figure 3 demonstrates three main categories of neuromodulation de
vices, including those which are commercially available (Fig. 3a and b) 

Fig. 2. Contrast between conventional (von Neumann, e.g. CPUs) architecture with bio-inspired (non-von Neumann, e.g. neuromorphic) architecture. 
Conventional computers rely on sequential, clock-driven (synchronous) binary operations, separating memory, and computation units. In contrast, the 
human brain employs event-driven (asynchronous), neural action potentials (spikes), with a great network capacity for parallel processing and capability 
for local learning mechanisms. These basic, seemingly shallow, yet fundamental distinctions contribute to the brain’s inherent superiority in terms of 
energy efficiency, positioning it as a promising avenue for custom or general-purpose integrated circuits and computing architectures development.
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and under investigation (Fig. 3c). In an open-loop system (Fig. 3a), 
stimulation parameters such as amplitude, frequency, and duty cycle 
are predetermined by a clinician. Stimulation persists unless manual
ly turned off by the patient or the clinician. The device can be re- 
programed during a subsequent patient visit if the stimulation does 
not show effectiveness. In contrast, a closed-loop system triggers 
stimulation by responding to physiological changes. The system in 
Fig. 3b continuously senses the patient’s state (e.g. EEG signals) and 
streams it wirelessly to a portable device (or a bedside computer) 
that is in charge of analyzing the signals by using threshold-based 
rules or machine learning models, and turning it into a control signal 
to the stimulation (48, 50, 52, 90–95). In epilepsy management, a port
able device activates stimulation upon detecting or predicting a seiz
ure onset. This closed-loop system, aided by external computing, 
minimizes unnecessary stimulation compared to traditional ap
proaches. However, continuous data streaming to external resources 
consumes substantial power, limiting battery life or increasing device 
size. Moreover, wireless communication between the device and ex
ternal computing poses challenges like connection loss, interference, 
and security risks. Figure 3c illustrates how an alternative closed-loop 

system can address the complications from continuous data stream 
of standard closed-loop systems by incorporating an on-device com
puting unit to the neuro-modulation device without reliance on exter
nal computational power to host the control algorithms (44, 96, 97). In 
these closed-loop system models (Fig. 3b and c), the optimization of 
models (on-device or off-device) must still be performed regularly 
and involves a human expert and/or cloud computation to adapt 
with the changes in the patient’s conditions and/or in the underlying 
disease (49). This implies that the patient’s data needs to be stored in 
the external device (Fig. 3b) or in the implantable device (Fig. 3c) and 
regularly be uploaded to the cloud. The data will also need to be ana
lyzed or labeled by a human expert so it can be used to update 
threshold-based rules or to retrain the machine learning models. It 
should be noted that none of the aforementioned methods offer on- 
device training and retraining, and requires expert involvement for 
regular retraining (98), which limits the scalability of the system to a 
large number of patients (99). The idea of on-device active learning 
proposed in Ref. (100) relied on an ideal detection and deterministic 
feature extraction technique to actively train a prediction model with
out expert intervention or external computational resources. 

a

c d

b

Fig. 3. Neuromodulation approaches. a) An open-loop system with an expert who occasionally reviews the effectiveness of the system and adjusts the 
stimulation parameters accordingly. Such system employs cyclic stimulation regardless of the current state of the target (e.g. brain state). b) A 
closed-loop system with external computing for accessing the state of the target to condition the stimulation. The external computing component can be 
in the form of a portable device, e.g. tablet, or a local computer. The recording device continuously streams data (e.g. EEG signals) to the external 
computing where trained algorithms are executed to determine the target’s state. The deployed algorithms on the external computing component can be 
updated occasionally by involving a review from an expert(s) and big data/cloud computing (retraining). c) The computing component is embedded 
within the device, which eliminates the need for continuous streaming of data to the outside world (44, 97). However, the on-device algorithms need to be 
occasionally updated to reflect the change in physiological signals (e.g. change of seizure patterns in epileptic patients). The device must also have 
sufficient memory to store the signals for the expert(s) to review and for the retraining that takes place in the cloud. d) A neuromorphic neuromodulation 
system where the medical device can run and retrain its algorithm by itself without relying on external computing resources. The system utilizes labels 
generated by a detection model that has performance on-par with a human expert (101–103) and a continuous learning strategy that as a recorder to train 
a prediction model. The rapid improvements in neuromorphic computing (104, 105) have made on-device active learning possible. It’s noteworthy that 
such system will intermittently transmit relevant snapshots or markers of the recorded bio-signal to comply safety-efficacy standards.
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However, we argue that deterministic feature extraction may lose its 
efficacy over time because the underlying disease is evolving. Our al
ternative is neuromorphic neuromodulation, a computationally self- 
sufficient closed-loop system, shown in Fig 3d. Our proposed system 
eliminates the requirements of continuous data telemetry and the re
liance on external computational resources. We believe our self- 
contained system can provide an ultimate personalized closed-loop 
neuromodulation system. The vision is ambitious but not impractical.

Evaluating standards in a self-sufficient 
responsive neuromorphic system
Here, we discuss some fundamental standards and criteria that 
our system adheres for future neuromodulation devices.

Physiological event detection becoming more 
trustworthy
The field of automatic annotation of physiological data has seen 
significant advancements, with recent developments approach
ing the accuracy and reliability of human experts. Notable exam
ples of these advancements include the detection and 
classification of arrhythmias (101), the identification of epilepti
form discharges (102), and the marking of seizures (103). These 
technological improvements not only enhance automatic health 
monitoring, thereby reducing the burden on clinicians, but also 
create opportunities to leverage unlabeled data. For instance, 
algorithm-generated labels can be utilized to train other predict
ive models without the need for human expert intervention. 
While detecting seizures during or immediately after the onset 
has proven more successful than predictive methods, these ad
vancements have led to the development of AURA, an Adaptive, 
Unlabeled, and Real-time Approximate-Learning platform (106).

On-device learning
AI systems utilizing Application-Specific Integrated Circuit (ASIC) 
with parallel multiply-and-accumulate (MAC) exhibit better infer
ence and energy efficiency than GPUs. However, by performing 
MAC operations, the need for intensive data transfer between 
this units and data buffers limits energy efficiency and therefore 
and are restricted to functioning solely in inference mode, 

whereas the human brain has the remarkable ability to learn con
tinuously. Consequently, on-device learning emerges as a signifi
cant characteristic of neuromorphic systems. On-chip learning is 
indispensable for tailoring and personalizing smart devices to ca
ter to individual user requirements. Moreover, it bolsters privacy 
by eliminating the need to transmit user data to the cloud (107– 
110). At the core of AURA, on-device learning is achieve by a 
high performance physiological event (e.g. epileptic seizure) de
tection model that acts as an algorithmic “human expert” to gen
erate labels on-the-fly as the signal arrives. The generated labels 
are paired with recorded signals from a loop recorder to be used 
as a training dataset for a predictive model (e.g. seizure forecast
ing). It is worth noting that while the detection model or label gen
erator must have high performance, it does not necessarily need 
to be perfect. In fact, imperfect labeling from a mix of clinicians 
and medical students with varied levels of experience has shown 
to remain effective in training a deep-learning model to perform 
seizure detection at a high level of accuracy and generalization. 
AI models face limitations due to misaligned metrics with clinical 
needs, requiring validation through prospective data and real- 
world data testing (111).

Embrace multimodal signals
As part of physiological monitoring, it is usual that there are mul
tiple signals being recorded. For instance, in the VNS device, 
multimodal approaches are also used in some cases, such as in
corporating a heart rate sensor to activate stimulation when the 
heart rate exceeds a predetermined threshold since some seizures 
are associated with an acceleration in heart rate. Combining sig
nals from multiple sources has the potential to improve the per
formance of a detection/prediction model (112, 113). It is 
important to note that depending on performance requirements, 
power consumption and/or heat dissipation, the detection model 
of AURA may use a different set of sensory modalities from the 
prediction counterpart.

Integrating bio-inspired algorithms for 
energy-efficient electroceutical systems
SNNs provide an alternative approach by mimicking the behavior 
of biological neurons and offering potential energy efficiency 

Fig. 4. Neuromorphic neuromodulation employing bio-inspired learning rules represents a cutting-edge paradigm in the field of neural systems. This 
innovative approach enables the development of on-device learning capabilities, thereby facilitating the seamless integration and real-time processing of 
continuous bio-signals. By leveraging this neuromorphic system, it becomes possible to dynamically adapt to extracted features, subsequently 
converting them into spikes. These spikes are then fed into a shallow, sparse, and bio-inspired algorithm that utilizes a continuous learning rule for 
precise adjustment, ultimately yielding responsive stimulation tailored to each individual patient. This approach eliminates the reliance on cloud 
computing.
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advantages, making them suitable for resource-constrained envi
ronments like edge devices (111). Training approaches can be 
categorized into different methods. One common approach is to 
directly train the SNN itself using surrogate gradient descend. 
Another approach involves training a traditional ANN and then 
mapping it into an SNN. The ANN is trained using conventional 
techniques, and the resulting trained weights and connections 
are then transferred to the SNN. Reservoir computing is another 
technique used in SNNs, where the network is structured with 
an input layer, a reservoir layer, and a readout layer. The reservoir 
acts as a dynamic memory, and the readout layer is trained to in
terpret the reservoir’s activity. Lastly, spike-timing-dependent 
plasticity is an approach based on the synaptic plasticity mechan
ism, where the weights of the connections are adjusted according 
to the relative spike timings between pre- and post-synaptic neu
rons. These training approaches provide different strategies for 

training SNNs, each with its own advantages and applications. 
(114–121). The AURA system is built on conventional SNN archi
tectures and training. Studies have investigated seizure detection 
using closed-loop direct neurostimulation devices in epilepsy with 
neuromorphic chips by successfully transferring a CNN to 
TrueNorth, demonstrating accurate detection with low memory 
usage and efficient runtime with a power consumption lesser 
than 40 μW. However, it is noted that CNNs’ dependency on back- 
propagation can result in issues such as catastrophic forgetting 
and heightened computational costs (122–124).

Back-propagation: implausible biological way 
and issues with neuromorphic hardware
Artificial neural networks (ANNs) use back-propagation and gra
dient descent to adjust synaptic weights, but this leads to several 

Fig. 5. Memory usage and energy consumption achieved by an inference-only task by a conventional AI model (ConvLSTM) run on a von Neumann 
computing architecture vs. a spiking ConvLSTM model that runs on a neuromorphic architecture.

a b

Fig. 6. Power breakdown of a Neuromorphic Device. Traditional algorithms used in neuromorphic often utilize Time-Series Signal Processing (TSSP) 
methods like Fast Fourier Transform (FFT) or Short-Time Fourier Transform (STFT) for feature extraction to enhance performance. All parts discussed 
are considered as one solely system (a). Power reduction can be address with the algorithm (software) development and this can even further be improve 
with the use of larger batch sizes in processing operations and the incorporation of more biological plausible algorithms for future implantable 
neuromorphic devices (b). AFE, analog front end; DT, detection; PR, prediction; FP, forward propagation; BP, backward propagation.
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issues, including catastrophic forgetting, weight-symmetry prob
lems (125), freezing of neural activity (126), and nonlocal weight 
updates (127). Back-propagation is also vulnerable to adversarial 
attacks (128) and requires excessive computational hardware in 
analog VLSI (129). Novel solutions, such as the forward-forward 
algorithm, aim to address these problems (130, 131). However, 
its current scope is limited to static datasets like CIFAR-10, with 
slightly worse test errors than current back-propagation frame
work. Nonetheless, in the following study cases we used 
biological-plausible solutions to tackle those problems and poten
tially served as framework for the proposed perspective solution.

Case studies for AURA: foundations of 
efficient, low-power, and biologically 
inspired models for seizure detection
In the realm of seizure detection/prediction, the quest for effi
cient, low-power models employing lifelong learning draws atten
tion from bio-inspired algorithms, which can enhance the 
performance of the AURA system. Lifelong learning refers to the 
ability of a system to continuously learn and adapt to new infor
mation, similar to how biological systems function. Within this 
context, our exploration unveils three distinct yet impact success 
cases of studies. The following models stand as exemplars of ef
fectiveness and power efficiency, showcasing an alternative ap
proach to seizure detection, with the perspective for accurate 
neuromodulation. Leveraging the principles derived from bio
logical systems, these algorithms manifest a prowess in lifelong 
learning, exhibiting adaptability and responsiveness.

Case 1: Continual learning with artificial 
metaplastic models
In computational neuroscience, the stability-plasticity dilemma re
volves around AI models ability to acquire new memories while re
taining existing ones. Synaptic plasticity, the basis of learning, 
involves neuronal connections adjusting their strength over time. 
This paradox is addressed through synaptic artificial metaplasticity, 
a bio-inspired approach to continuous learning. Using a binarized 
neural network (BNN), researchers implemented synaptic meta- 
plasticity to mitigate catastrophic forgetting in multitask learning. 
This method modulates hidden weights via a function fmeta(Wh), po
tentially applicable to neuromorphic platforms (132, 133). We applied 
this principles to our model MetaEEG, which is a low-power neuro
morphic proof of concept for lifelong learning on EEG seizure. We pro
posed a BNN with artificial metaplasticity for stream learning setting 
to place the model in a close to wearable data-feed. We trained our 
model on the Temple University Hospital (TUH) dataset, dividing it 
into 300 subsets and sequentially presenting each to the model for 
20 epochs. Every five subsets, we tested the model on unseen test 
data. We evaluated its performance on different EEG signatures to as
sess its adaptability to significant changes in seizure patterns. By gen
erating five synthetic EEG datasets featuring different seizure 
signatures, we illustrated the model’s ability to adapt without forget
ting previous patterns, achieving an AUROC of nearly 0.80 (134). This 
feasibility proof paves the way for future studies focusing on integrat
ing artificial meta-plastic behavior with SNN compatibilities for seiz
ure prediction, addressing buffer limitations in the AURA system.

Case 2: Effective, sparse, interpretable, and 
low-power liquid time constant-based models
Liquid time neural networks are a class of time-continuous recur
rent neural networks models that posses stable and bounded 

behavior, improving performance on time-series prediction tasks. 
Their low complexity allow for a better representation of the hid
den states, and adapting to changing conditions such as autono
mous driving and medical time-series data (135–142). We used 
Liquid Time Constant in different scenarios such as models on 
shallow bio-inspired models and spiking neural version of their
selves with a forward-propagation through time algorithm (143). 
We developed a dynamic spiking model for seizure detection 
across continental datasets utilizing spiking liquid-neuron net
works with forward propagation through time (FPTT) (144). By 
training and validating in the TUH dataset, we evaluated general
ization in the Royal Prince Alfred (RPA) Hospital dataset achieving 
an AUROC of 0.83 in 192 patients, which is slightly higher that a 
conventional algorithm based on ConvLSTM (145). By reducing 
the model’s memory requirement by 10 times, we examined the 
model’s robustness and found it to perform to the level of a large 
dynamic SNN, with an AUROC of 0.82. Subsequently, we applied a 
scaled-down model, which achieved an AUROC of 0.83 in the 
EPILEPSIAE Dataset. We provided a estimation of power consump
tion of the model with a 3.1 μJ/Inf (per inference) in Loihi. Further 
exploration should include this dynamic models with ECoG and 
LFP data.

Case 3: On-device fine-tuning with spiking 
liquid-base models: feasible application on 
hardware
We initiated a study exploring a Spiking Neural Circuit Policies 
(NCPS) model variant employing liquid time constant for 
Arrhythmia detection, incorporating for on-device fine-tuning (146). 
Our setup utilized the Radxa Zero SBC with an Amlogic 905Y2 proces
sor and 4GB LPDDR4 memory. Refinement of the model on the Radxa 
Zero involved leveraging a pretrained model, initially trained for two 
epochs on the Telehealth Network of Minas Gerais dataset (TNMG) 
via GPU. Adjustments were implemented, including reducing the 
batch size to 8 during fine-tuning, utilizing 72% memory. The fine- 
tuning phase encompassed training on a dataset comprising 640 
data points across five epochs, followed by validation on a subset 
of 320 data points. The evaluation of the fine-tuned model involved 
comparing its performance against the base model trained on GPU. 
Throughout the training iterations, the model displayed notable im
provements in performance metrics. The average F1 score increased 
from 0.46 to 0.56, and the AUROC enhanced from 0.65 to 0.73. A fine- 
tuned model was tested on a larger dataset of 1,280 samples, where 
significant improvements are present with F1 score and AUROC in
creasing from 0.31 and 0.63 and from 0.45 and 0.72, respectively. 
These findings have motivated further investigation into its suitabil
ity for deployment on neuromorphic chips. Integrating these studies 
cases could be seen in a bio-inspired model as detailed in Fig. 4.

Estimation of power consumption of a fully 
integrated AURA system
A study conducted with spiking neural networks on EEG datasets 
(Freiburg, CHB-MIT, Epilepsiae) for seizure detection was pro
posed by (147) where they demonstrate the capabilities of neuro
morphic approaches to reduce the memory usage and energy 
consumption from ten to thousands of magnitude in comparison 
like running in conventional GPUs devices with conventional AI 
algorithms. The results of this study are demonstrated in Fig. 5. 
Drawing inspiration from the aforementioned findings and case 
studies, these instances serve as a basis for projecting the power 
usage of a completely integrated system. For a fully integrated de
tection/prediction system, we assume the input signal (EEG) has 
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10 channels and a sampling rate of 128 Hz. For the sake of simpli
city, both detection and prediction networks use similar convolu
tional long short-term memory (ConvLSTM) network 
architectures proposed in Ref. (148), which consists of three 
ConvLSTM layers followed by two fully connected layers. The de
tection and prediction algorithms use input windows of 10 and 30 
s, respectively. The inputs are divided into 50% overlapping 1-s 
sub-windows to be fed to a ConvLSTM network. Using the Loihi 
neuromorphic chip as a reference and a real-time batch size of 1 
(one input is processed at a time), the cost of inference for a single 
data sample is 25 mJ and 77 mJ for the detection and prediction al
gorithms, respectively. Since detection occurs every 10 s and pre
diction every 30 s, the energy can be amortized over time, with the 
total power consumption for inference of both networks being 5.1  
mW (2.6 mW, detection; and 2.5 mW, prediction). Note that this 
power consumption can be reduced if inference is parallelized 
into batches and distributed across a longer time interval. For ex
ample, with a batch size 32, the total inference power consump
tion becomes 160 μW. Regarding the training of the prediction 
network, as the architecture is fixed, the backward pass can be 
completed simultaneously with the forward pass using a deter
ministic mode of forward-mode auto-differentiation; therefore, 
the gradient calculation cost is similar to the inference cost. 
Given the network has 31.5M parameters, and the energy for up
dating each additional weight is 120 pJ (Loihi), the total cost of 
weight update is 3.78 mJ. The total required energy for training 
the prediction algorithm is (77 mJ + 3.78 mJ) or 81.78 mJ. This 
training step occurs every 30 s, so its power consumption is 2.73  
mW (batch size = 1) or 85 μW (batch size = 32). With a custom de
sign, the EEG’s Analog Front-End (AFE) power consumption can be 
optimized to less than 3 μW per channel (149). Considering the AFE 
solely, using a commercially available rechargeable Li-Po battery 
with a size volume of 2.7 × 30 × 34 mm3 and a capacity of 240 mAh 
at 3.7 V (150), the system can be powered for at least 24 hours be
fore a recharge. The battery life can be considerably extended 
with calculations in batches, with the only trade-off of a slight de
lay in obtaining results. Considering the size of the detection and 
prediction networks and adhering to the synaptic density of the 
TrueNorth chip, we estimate a required area of ∼ 62 mm2 to im
plement the whole system. A power breakdown of a inspired neu
romorphic device is provided in Fig. 6. To this extend there could 
be areas of opportunities in our algorithm by using more biological 
plausible algorithm. Studies had achieve efficient and energy- 
saving training of time-domain signals by incorporating dendrites 
into spiking neurons (151), potentially eliminating the depend
ency of TSSP blocks. Leveraging the model’s capacity to interpret 
bio-signal data conserves power, prolonging implantable device 
lifespan.

Challenges and opportunities 
of neuromorphic-AI
We will need a better mapping of the neural circuits associated 
with the treated pathophysiology. At the signal level, we will 
need better decoders of the neural language associated with the 
pathophysiological states and more precise therapeutic patterns 
of electrical impulses targeting the rate, even the timing of spikes 
(76, 152). Generating such adaptive and precise neuromodulators 
will require a multidisciplinary effort: the development of neuro
morphic circuits for real-time spike processing will translate the 
biological understanding of what is happening at the neural level 
in health and disease (153). The absence of standardized bench
marks in neuromorphic algorithm development makes it difficult 

to compare and assess hardware systems for specific applications. 
Neuromorphic hardware development involves extensive re
search into new materials and devices. Choosing appropriate ma
terials are crucial for developing neuromorphic chips for 
neuromodulation, with carbon-based nanostructures suggested 
for bio-compatible probes and FDA-approved parylene utilized 
for neuromorphic building blocks (154, 155). Memristive systems 
based provides prospects for the hardware realization of ANNs 
for wearable and biomedical applications. Opportunites are pre
sent for software–hardware co-design, tailoring hardware to spe
cific applications. It explores analog and mixed-signal computing, 
mimicking biological neural computation’s stochastic nature. 
Nanowire networks (NWNs) offer a promising hardware approach 
to emulate the brain’s physical structure, including neurons and 
synapses. NWNs mimic synaptic metaplasticity, strengthening 
synaptic pathways for memory consolidation. This highlights 
their potential for neuromorphic systems crucial in practical ap
plications like robotics and sensor edge devices (156, 157). 
Neuromorphic processors, with their low-power consumption, 
are set to play a crucial role in various edge-computing and edge- 
learning applications in autonomous systems, robotics, remote 
sensing, implantable, wearables, and the Internet of X Things, 
where the X can be medical, industrial, etc. (114, 158).

Promises of neuromorphic AI
A CMOS-based neuromorphic device detects epileptic seizures by 
analyzing Local Field Potential (LFP) signals (159). It enables 
closed-loop intervention for early seizure control and seizure re
duction using SNN with a delay of 64.98 ± 30.92 ms and consumes 
<50 pW for each ictal event detection. NET-TEN, a subsequent 
technology, enhances neuromorphic processors by reducing 
area and power consumption, making it suitable for implantable 
devices. Another study present a first feasible real-time neuro
morphic detection system of high frequency oscillations, which 
utilizes mixed-signal neuromorphic computing system with 
high sensitivity (160, 161). Integrating neuromorphic technologies 
into neuroprosthetic devices could offer a promising strategy for 
enhancing the development of more intuitive human–machine 
interfaces, by improving performance and embeddability (152, 
162–164). An study has unveil epilepsy seizure prediction system 
using deep learning and big data, compatible with low-power neu
romorphic chip and wearable integration via closed-loop therap
ies (124, 165, 166).

Risk of false alarms or unnecessary stimulation
Ongoing neuromodulation has shifted towards adaptive, 
closed-loop stimulation from traditional open-loop methods. 
The key challenge now is ensuring stimulation is activated pre
cisely when needed. Based on research findings showing that 
chronic brain stimulation can be performed safely with appropri
ate control of charge density (4, 167), we can allow the stimulation 
activation system to have as high a sensitivity as possible with an 
increased number of false positives as a trade-off. A responsive 
stimulation with many false positives can be considered equiva
lent to an open-loop system that performs cyclic stimulation, giv
en that there is a control of charge density and stimulation 
frequency/duration in place. Saluda Medical conducted a pioneer
ing study on responsive neurostimulation therapies, the first 
FDA-approved double-blind trial for Spinal Cord Stimulation. 
Patients were randomly assigned to either Evoke compound ac
tion potentials (ECAP)-controlled closed-loop stimulation or 
fixed-output, open-loop stimulation. Results showed a 21% higher 
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success rate in the closed-loop group at both 3 and 12 months, 
without adverse effects (168, 169).

Elimination of continuous data communication
Wireless data communication can consume half or more of the total 
power consumption of the whole EEG recording implant (170, 171). 
Neuralink reduces the frequency of sending data outside to every 
25 ms and places a rechargeable battery and an inductive charger 
in the implant (172). Continuous data communication or a brain– 
computer interface is critical for disease diagnosis. It is also inevitable 
for responsive closed-loop neurostimulation systems where some 
computation (training of the event detection/prediction model) 
needs to be performed with an external device or on the cloud (93). 
The system’s event detection/prediction model requires periodic re
training with recent data to adapt to patients’ physiological changes. 
We propose that if the implant autonomously learns from the data 
itself to adapt to changes and becomes patient-specific, external 
data communication and model training on external hardware can 
be eliminated, except for debugging. This approach aligns with inter
ventional medicine, where the device autonomously treats the con
dition based on diagnostics.

Data security, privacy, dangers of these 
techniques hazards and pitfalls
Neuromodulation devices must be developed to guard against this 
data being abused or hacked. Issues to be addressed include how 
long and where these data should be stored and who is in charge. 
If data can be “written to” the brain, we need systems to guard 
against undesirable intrusions. Access to data provided by a med
ical device can be empowering for patients. This allows them to 
receive reports on their health data and receive alerts for concern
ing events such as seizures. As examples, studies aimed to im
prove the security of insulin pump devices for diabetic patients. 
One employed an on-chip neural network system, while the other 
proposed an efficient deep-learning method to counter fake glu
cose dosage (173, 174). Unauthorized access to the device, often 
called brainjacking, could allow an attacker to manipulate the 
stimulation parameters or even cause harm to the patient. 
Interference on the wireless communication between the device 
and external equipment could disrupt therapy. Ensuring the se
curity of communication in Implantable Medical Devices (IMDs) 
is a critical issue for patient safety, with several research groups 
focusing in addressing challenges for a reliable solution due to 
factors such as the device’s battery life, adaptability, and the re
quired level of security to avoid malicious software (111, 175, 
176). Integrating Body Area Communications (BAC) or Body 
Channel Communication (BBC) into AI systems reduces reliance 
on external telemetry while enabling the capture of daily activity 
snapshots for safety-efficiency standards. This enhances self- 
sufficiency, privacy, and security (177).

Conclusions
Current challenges for designing implantable stimulation 
devices or electroceuticals, in general, include implant volume, 
safety, energy consumption, limited capacity in signal processing, 
and the need for data telemetry (55, 178). We envision that 
effective, responsive neuromodulation needs to be computation
ally self-sufficient in performing active on-chip learning to elimin
ate regular telemetry. Recent advancements in neuromorphic 
computing are critical to making our vision possible. We argue 
that neuromorphic computing in combination with highly low- 

power microelectronics for sensing (179, 180) and stimulation 
(181) will enable the emergence of neuromorphic neuromodula
tion device as a long-term solution for intractable neurological 
diseases.

Notes
a Some of these techniques are approved only for investigational use.
b This is an indicative figure based on whole body metabolic studies.  
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