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Abstract: Reports of norovirus infections associated with the consumption of contaminated bivalve
molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current
virus recovery and PCR detection methods can be expensive and time consuming. Due to the
lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective
virus monitoring regime that is able to identify contamination points across the production line
(i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current
norovirus detection methods and discuss emerging approaches. Recent advances in omics-based
detection approaches have the potential to identify novel biomarkers that can be incorporated
into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to
simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies
discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect
norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to
be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative
efforts on research and development will be required to commercialize such products. Once
developed, these emerging technologies could provide a way forward that minimizes public health
risks associated with shellfish consumption.
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1. Introduction

Human fecal contamination from sewage discharge, septic tank leaks/overflows, recreational
activities and storm water runoff are major sources of norovirus contamination in coastal waters
(i.e., shellfish growing areas) [1]. While environmental (temperature, salinity), physical (dilution,
turbidity, transportation) and biological (inactivation) factors can reduce norovirus concentrations in
shellfish-growing waters, efficient bioaccumulation in shellfish can result in levels of contamination
that pose a risk to consumers as norovirus has a low (~18 viral particles) infectious dose [2].

Norovirus in shellfish can be difficult to remove or inactivate using simple post-harvest treatments
such as depuration and relaying [3–5]. As consumers often prefer to eat shellfish either raw or partially
cooked, heat and expensive post-harvest treatments such as high-pressure processing are not always
viable options for treatment. Therefore, regular microbiological assessment of shellfish growing
waters or shellfish is conducted according to regional shellfish quality guidelines. Shellfish harvesting
restrictions based on microbiological quality of shellfish growing waters or the shellfish themselves are
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used to mitigate risks, however, this places an economic burden on the shellfish industries. Norovirus
outbreaks related to shellfish consumption remain regularly reported worldwide [6–11].

Norovirus is a major cause of viral gastroenteritis frequently associated with outbreaks in
communal settings such as rest homes, hospitals and restaurants [6,12–14]. Each year norovirus is
responsible for approximately 125 million foodborne cases worldwide [15,16], a proportion of which
are associated with the consumption of norovirus contaminated shellfish. Accordingly, there is a
need for rapid, cheap, reliable and user-friendly detection methods for the onsite/infield detection of
norovirus in shellfish to identify the contamination points across the production line (i.e., farm to plate)
to reduce public health risk and to minimize shellfish farm harvesting closures. This review evaluates
the advantages and disadvantages of currently used methods for the detection of norovirus from
shellfish. Furthermore, emerging technologies with the potential to detect norovirus from shellfish
are assessed.

Due to the heterogeneous distribution of norovirus in shellfish and the requirement to process a
minimum of 2 g of digestive tissue, at least 6–25 shellfish (depending on shellfish size) are used to
recover norovirus from shellfish [17–20]. For the recovery of norovirus from shellfish tissue, different
methods such as virus elution and concentration, and proteinase K digestion have been developed and
evaluated [20–32]. Direct nucleic acid extraction from the digestive tissue of shellfish has also been
used [33,34].

For the virus elution and concentration methods, recovery of norovirus (or viral surrogates)
usually involves the release of viruses from the digestive tissue of shellfish using buffers (such as
phosphate buffered saline, Tris-HCL buffer, alkaline glycine buffer) [20,21,24,30]. The eluted viruses can
then be concentrated using polyethylene glycol (PEG) precipitation, ultrafiltration, ultracentrifugation,
immuno-concentration or cationic separation (Figure 1). In some cases, the concentrated material is
subjected to further clarification such as chloroform extraction, or additional ultracentrifugation.
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Figure 1. A flow diagram of current approaches to isolate, concentrate and detect norovirus
from shellfish.

The recovery rate of the elution and concentration approach has been reported to be highly
variable (20–70 reverse transcription polymerase chain reaction unit (RT-PCR U)) within or between
the protocols depending on the shellfish type and volume of shellfish digestive tissue [22–30] (Table 1).
In addition, extraction processes can be time-consuming (requiring 1 to 3 days to process a batch
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of samples) [27]. An overview of the reported limit of detection (LOD) or recovery rate (%) of each
method is presented in Table 1.

An alternative method to recover norovirus (and hepatitis A virus) from shellfish was developed
that utilized the proteinase K enzyme to release the viruses from shellfish digestive tissue [22,35]. This
method is simple, can be completed in a few hours and does not include a virus concentration step.
The proteinase K digestion method has been extensively evaluated [20,30–32] and was included in
the ISO 15216 standard method for the quantitative detection of norovirus and hepatitis A virus in
2017 [32]. The recovery rate of this method is reported to be higher (21 ± 15% to 34 ± 5%) than elution
and concentration methods [20] (Table 1). An evaluation of the performance of the ISO 15216 method
for the recovery and detection of norovirus and hepatitis A viruses in shellfish found that the limit of
detection of norovirus (34 genome copies (GC)/g for norovirus GI and 53 GC/g for norovirus GII) was
lower than for hepatitis A virus (198 GC/g) [36] (Table 1).

Despite reducing the time for sample preparation, the proteinase K digestion method has the
potential to inactivate norovirus during the recovery process as the enzyme activity relies on a 65 ◦C
heat treatment [37]. Therefore, this approach may not be suitable for the downstream determination of
virus infectivity, which is essential when trying to measure the potential public health risk associated
with shellfish consumption. As such, further research should focus on improving the recovery efficiency
of norovirus from shellfish with minimal impact on infectivity.

Table 1. Limit of detection or recovery rates (%) of viruses from shellfish using various methods.

Methods
Concentration

Method (Where
Applicable)

Shellfish (Weight) Viruses
Limit of

Detection/Recovery
Rate

References

Elution and
concentration

PEG

Oysters (25 g) Norovirus 22 RT-PCR U [21]
Mussels (2 g) Norovirus GII 20 RT-PCR U [24]
Mussels (2 g) Rotavirus 10 RT-PCR U [25]
Oysters (4 g) Rotavirus 1.39 GC/4 g [27]
Mussels (4 g) Rotavirus 1.39 GC/4 g [27]
Cockles (4 g) Rotavirus 1.39 GC/4 g [27]

Mussels (1.5 g) Mengovirus 1.8% [28]
Oysters (1.5 g) Mengovirus 1.2% [28]
Oysters (1.5 g) Norovirus GI 70 RT PCR U/g [3]
Oysters (1.5 g) Norovirus GII 70 RT PCR U/g [3]

Ultracentrifuge Oysters (25 g) Hepatitis A virus 9.9% [23]
Cationic separation Oysters (5 g) Hepatitis A virus 20 RT-PCR U [26]

Proteinases K
digestion

Not applicable

Oysters (1.5 g) Norovirus GI 20.5 ± 14.7% [20]
Oysters (1.5 g) Norovirus GII 33.6 ± 5.3% [20]
Mussels (25 g) Norovirus GI 3% [30]
Mussels (25 g) Norovirus GII 3.5% [30]
Oysters (3 g) Norovirus GI 34 GC/g [36]
Oysters (3 g) Norovirus GII 53 GC/g [36]
Oysters (3 g) Hepatitis A virus 198 GC/g [36]

Direct RNA
extraction

Not applicable Oysters (0.15 g) Norovirus 10 RT-PCR U [34]
Oysters (5–50 g) Hepatitis A virus 8 PFU [38]

PEG, polyethylene glycol; PFU, plaque forming units; RT-PCR U, reverse transcription polymerase chain reaction
unit; GC, genome copies; GI, genogroup I; GII, genogroup II.

Several studies have demonstrated the successful application of direct nucleic acid extraction
from shellfish digestive tissue using zirconium beads [33,34,38]. The method detection limit was
reported to be 10 RT-PCR U from 0.15 g of oyster digestive tissue [34] (Table 1). Although direct
nucleic acid extraction methods are promising, unless combined with another approach, they are not
able to discriminate between infectious and non-infectious norovirus. As such, they are not ideal for
evaluating potential public health risks associated with shellfish consumption. In addition, direct
nucleic acid extraction may not successfully remove PCR inhibitors present in the shellfish tissues that
can hinder the downstream detection.
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2. Current Norovirus Detection from Shellfish

Reverse transcription quantitative PCR (RT-qPCR) is widely used for the detection and
quantification of norovirus from shellfish [3,18,22,32,39–41]. Unlike conventional RT-PCR, RT-qPCR
utilizes fluorescently labelled probes that allow for the simultaneous confirmation of the presence
of the specific target. For norovirus, RT-qPCR methods are rapid, sensitive and specific but as virus
quantification depends on the use of a calibration standard curve, variability in quantification can
occur between laboratories. The detailed RT-qPCR protocol with a description of the suite of controls
required for quantification was described in the ISO 15216 method [32].

Digital PCR (dPCR), with a RT step (RT-dPCR) for norovirus, can overcome the requirement for a
standard curve [42,43]. dPCR is an absolute end-point nucleic acid quantitative technique based on
dividing the sample into many thousands of partitions, analyzing each partition by PCR and using
Poisson statistics, rather than an external calibration curve, to quantitate. One dPCR approach is
droplet digital PCR (ddPCR). In ddPCR, oil nanodroplets in water are first prepared and then subjected
to qPCR analysis. The number of positive and negative nanodroplets after the qPCR assay is calculated
and as for conventional dPCR, Poisson statistics are used for quantification. Another advantage of
dPCR/ddPCR over qPCR is that it is reported to give more accurate quantification and is less prone
to inhibitors that may be present in nucleic acid extracted from shellfish, even after purification. For
samples with a high concentration of target, quantification may not be possible without dilution. For
instance, one study using ddPCR reported 100% saturation of positive droplets at 105 target copies per
µL template [44].

Loop-mediated isothermal amplification (LAMP), with a RT step for norovirus, is another
molecular method that has the potential to detect norovirus from shellfish faster, cheaper and with
equal sensitivity to RT-qPCR [45,46]. The LAMP method uses auto-cycling strand displacement DNA
synthesis under isothermal conditions. While RT-qPCR/RT-dPCR uses expensive specialized equipment
such as thermal cyclers, LAMP only requires a waterbath or heat block to maintain the isothermal
conditions, with product measured using a turbidity, coloration or fluorescence-based detector. This
means that RT-LAMP has the potential to be used on-site [45,46]. Fukuda and colleagues combined
nucleic acid sequence-based amplification (NASBA) with a RT-LAMP assay (NASBA-RT-LAMP) and
evaluated the sensitivity against RT-seminested PCR. The sensitivity of the NASBA-RT-LAMP assay
for detecting norovirus in oysters was reported to be equivalent to the RT-semi-nested PCR, being able
to frequently detect less than 100 genome copies of norovirus in oysters [46].

Despite being rapid, sensitive and specific, molecular methods are unable to predict the infectivity
of norovirus present in the shellfish. In recent years, RT-qPCR methods have been combined with
a pretreatment such as enzymatic (RNase) [47–51], photoactivatable dyes (EMA, PMA, PMAxx and
PEMAX) [52–56] and a platinum compound [57] for the selective detection of infectious norovirus.
Other methods, such as porcine gastric mucin-binding [58–61] and in situ capture [62–67], have also
been combined with RT-qPCR for this purpose. The working mechanism of modified RT-qPCR assays
to determine infectivity is shown in Figure 2.

The applicability of these modified RT-qPCR assays is questionable due to their dependency on
sample matrix, pathogen inactivation mechanism, treatment conditions, condition of binding site and
lack of reproducibility [52,58,62,68]. As such, they may not provide an accurate estimation of infectivity.
In addition, some studies have evaluated the applicability of these methods to determine the norovirus
infectivity in shellfish and reported having limited success and inconsistent results [53,56]. These
inconsistent results could be due to the use of different compounds or norovirus inactivation protocols
such as heat, UV radiation and chlorination, which each damage norovirus by different mechanisms.
For example, thermal inactivation can damage the norovirus capsid more effectively than UV radiation
and chlorination. As a result, modified infectivity-based RT-qPCR assays may be more effective on
thermally inactivated norovirus, and less applicable for UV radiation and chlorination treatments.
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Figure 2. Mechanism of infectious RT-qPCR (a) and binding assays (b) for the differentiation between
infectious and non-infectious norovirus. In the assay, enzymes or compounds enter the permeable
capsid of non-infectious viruses and interact with the nucleic acid. The viral nucleic acid is then
inactivated or degraded and hence cannot be detected in the subsequent qPCR assays. In the receptor
binding assay, the binding site of the virus is lost on non-viable viruses allowing specific binding or
capture of infectious viruses only.

3. Emerging Detection Technologies

Due to the limitations of current methods including costs, lengthy times to obtain results and
the necessity of advanced laboratory equipment, infrastructure and skilled personnel, there is a need
for rapid and easy detection techniques for norovirus from shellfish with minimal manual sample
handling. Early and accurate onsite detection and identification of norovirus contamination in shellfish
tissue will reduce costs by: (a) eliminating sample transportation, (b) holding products in cold storage
while routine testing is conducted, (c) minimizing operating, infrastructure, equipment and personnel
costs linked to testing laboratories, and (d) limiting the impact caused due to farm closures or product
recalls. These early and onsite pathogen detection technologies would not only reduce the risk of
foodborne illness but also provide greater product assurance.

Recent advances in omics, nanotechnology, electrochemical and molecular detection technologies
can improve the development of such rapid diagnostic devices [69–75]. In addition, advancements in
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3D printing may improve the size and physical footprint of the detection devices and reduce their
production cost [76].

3.1. Omics-Based Approaches

Omics-based approaches such as metagenomics, proteomics and metabolomics have the potential
to deliver rapid diagnostic techniques towards food safety research [69]. The use of omics-based
approaches could result in a paradigm shift for food safety testing, as seen for human and veterinary
medicine where there have been developments in rapid and precise pathogen detection and
characterization [70]. Figure 3 illustrates the omics platforms that have the most potential for
monitoring and assessing the presence of norovirus in shellfish.
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3.1.1. Metagenomics

Metagenomics is the analysis of total nucleic acids, including those from viruses that are
present in a complex biological matrix. Viral metagenomics offers an alternative approach to a
pathogen-specific molecular method [77]. Metagenomics involves high-throughput sequencing of
RNA/DNA amplicons from a matrix, generating a large amount of genomic data. Bioinformatic
analysis of the metagenomics datasets then identify and characterize the microbial communities which
provides additional information regarding viral genomes present [78,79]. Because other human enteric
viruses can also be present in shellfish [80], metagenomics has the potential to detect multiple pathogens
from a single sample reaction. For example, metagenomics was used to identify multiple viruses from
a oyster-related acute gastroenteritis outbreak in Osaka City in Japan, which were attributed to other
pathogens such as astrovirus, sapovirus and rotavirus [80].

Despite a lack of published studies performing untargeted viromes sequencing from shellfish
samples, metagenomics can be beneficial for public health and for shellfish safety. With the recent
development in the MinION platform (Oxford Nanopore Technologies), metagenomics-based methods
have the potential to be used in the field as necessary. Currently, viral metagenomics is expensive and
requires skilled personnel to analyze the information to produce a confirmative result. In addition, the
sensitivity and specificity of the metagenomics approach has not been fully evaluated and is in need of
more research.

3.1.2. Proteomics

Metaproteomics is the analysis of proteins produced by an organism or population of organisms,
and their expression in the presence of pathogens and viruses. The proteome is defined as the entire
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set of proteins that are, or can be, produced by a genome and is different among individuals, cell
types, or even within the same cell at different times or growth phases. Proteomics encompasses
the scientific research of the proteome, including protein composition, structure, levels and unique
activity patterns [81,82]. In recent years, proteomics-based matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-ToF MS) has emerged as a tool for pathogen identification
and diagnostics from intact cells or cell extracts [81,83]. MALDI-ToF MS is a rapid and sensitive
technique and has been used for food authentication [84] and the detection of foodborne and waterborne
pathogens [85,86].

This technology primarily relies on the characterization of pathogens by analyzing the whole
cell or viral proteome in a typical mass range m/z of 2–20 kDa [87]. One of the disadvantages of
MALDI-ToF MS is that it is reliant on the existing spectral database of the mass fingerprints of the
pathogen strains and is unable to identify new species of organisms. Proteomics can be complemented
with other omics-based techniques such as metabolomics to develop a robust and reliable tool for
pathogen identification and diagnostics. Similar approaches have been applied to assess food allergies
and food safety in shellfish [88–90].

3.1.3. Metabolomics

Metabolomics is the analysis of the small chemical compounds (metabolites, molecular weight
<1.5 kDa) produced and consumed by an organism or a population of organisms because of their
environmental and genetic potential (including exposure to viruses). The metabolome comprises the
final downstream product of the genome, transcriptome, and proteome, which reflects the phenotype
of a biological system [82]. Traditionally, metabolomics has been extensively applied in disease
diagnosis [91], agriculture [92,93] and toxicology [94].

Research around ‘food metabolomics’ has gained momentum in the last decade. Several studies
have applied this approach for the detection of foodborne pathogens (e.g., Listeria spp.) [95–97].
A considerable proportion of metabolomic-based applications are focused on food composition
and traceability of foods, food quality and food safety [98–100]. For example, Aru et al. [101] and
Alfaro et al. [102] applied a metabolomics approach to analyze changes in the metabolic profile
of mussels under various food storage conditions, correlating observed metabolite signatures with
microbial counts as potential biomarkers of spoilage. Nguyen et al. [103] utilized metabolomics to assess
the tissue-specific immune response of New Zealand Greenshell™ mussel (Perna canaliculus) infected
with Vibrio coralliilyticus. Nguyen et al. [103] concluded that such an approach could be used to rapidly
assess infected mussels by assessing the mussel immune response to infection. Others have utilized
metabolomics of shellfish to assess climate change impacts and environmental contaminants [104,105].

Although there is great potential for omics-based approaches to detect norovirus, these methods
are in the early stages of development and have not been evaluated extensively for the detection of
norovirus from shellfish. Extraction of nucleic acid, metabolites, and protein may hinder its onsite
application. Limitations of omics-based approaches need to be considered so that public health
risks are not overestimated. Despite the limitations, omics-based approaches have the potential to
provide or identify biomarkers that can be used to develop rapid onsite diagnostic sensors or kits for
norovirus detection.

3.2. Emerging Technologies for Onsite Detection

3.2.1. Nanomaterials

Different nanomaterials, such as nanocrystals, quantum dots and graphene, are gaining interest
as a potential agent for virus detection. For instance, functionalized rod-shaped, colloidal cellulose
nanocrystals (CNCs) have been used for the detection of cowpea chlorotic mottle virus and norovirus
virus-like particles (VLPs). Cationic polymer brush was generated on the surface of these CNCs to
retain excellent dispensability and colloidal stability in water with the electrostatic binding of the
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VLP [106]. The capture of norovirus VLPs by modified CNCs was verified by size (dynamic light
scattering measurement) and electron microscopy.

Quantum dots (QDs) are small fluorescent labels made with CdSe-ZnS with unique emission
properties on a single wavelength excitation. QDs were utilized on a Surface Plasmon Resonance (SPR)
assisted immunoassay to detect norovirus VLPs [73]. Combining the SPR enhancement, intensity of
auto-fluorescence, and excitation efficiency of quantum dots, the single-to-noise ratio was optimized
to increase the sensitivity of the sandwich assay for the detection of norovirus VLPs from phosphate
buffered saline (PBS). The newly developed assay was able to detect 100 VLPs from the PBS solution [73].
Another plasmonic sensor was developed by Junesch and colleagues, where the lipid bilayer membrane
was developed for binding norovirus, enabling label-free and real-time detection [107]. The interaction
of norovirus with glycosphingolipids induced negative membrane curvature or invaginations due
to viral accumulation. This novel location specific sensor is superior to conventional SPR or to other
planar detection surfaces and requires only an ordinary spectrophotometer in virus detection.

Novel nanostructure using a hybrid of graphene and gold is also being explored for the detection
of norovirus VLPs [108]. Antibody conjugated graphene-gold nanoparticles catalyze the substrate
to generate a visible blue color which is directly proportional to the concentration of the target.
This nanostructure combined the enhanced Raman intensity and peroxidase-like catalytic activity of
graphene and gold. This combinational approach allowed the assay to be 100 times more sensitive
than conventional ELISA methods and detected 100 pg/mL of the target.

Most of the nanostructures like nanoparticles are utilized in combination with Lateral Flow Assays
(LFA) for onsite detection of target pathogens [75]. Traditional LFA has limited sensitivity due to
the background signal and lower signal intensity of commonly-used gold or blue latex nanoparticles.
Phase nanoparticles have been used as a reporter based on antibodies identified from sandwich
ELISAs. Validation of the LFA was performed using both gold and phase nanoparticles and showed
phage nanoparticle LFA had a100-fold lower LOD than the gold nanoparticle LFA using the same
antibody pair.

3.2.2. Aptamer

Aptamers are short DNA, RNA and peptide-based sequences selected through systematic ligand
evolution by an exponential enrichment (SELEX) process, which binds with the target (e.g., norovirus)
based on its protein structure (Figure 4) [109–111]. Escudero-Abarca and colleagues developed four
ssDNA aptamer candidates that targeted norovirus GII.4 but showed affinity to both GII.2 and GII.4
strains using an enzyme-linked aptamer sorbant assay [112]. The binding capacity of the aptamer was
13-14 VLPs, equivalent to that of a commercial anti-norovirus antibody (1 to 5 µg/mL). One of the
four potential aptamer candidates (aptamer 25) developed by Escudero-Abarca and colleagues was
coupled with a magnetic capture method for the detection of norovirus from artificially-contaminated
lettuce. The capture efficiency of the magnetic capture method was 2.5 to 36% with a LOD of 10 RNA
copies/lettuce sample [112].

To advance the aptamer-based detection technology, Moore and colleagues developed an
aptamer-based technique not only to detect norovirus but also to demonstrate the confirmation-based
binding. The aptamer was designed to target the P-domain protein of a norovirus GII.4 strain using
E. coli to express and purify the P protein [109]. After SELEX, an aptamer named M6-2 was selected
and confirmed for targeting norovirus GI.7, GII.2, GII.4 and GII.7 strains with low to moderate binding
affinity. Magnetic particle-based capture and RT-PCR demonstrated a LOD of 4.88 log10 input genome
copies (GC). These aptamers could also be used in combination with multiple sensing platforms for
the detection of murine norovirus (used as a norovirus surrogate) or norovirus. One such example is
the work by Wang and colleagues, where they combined aptamers with Micro-Electro-Mechanical
Systems (MEMS) to develop a biosensor for norovirus [113].



Foods 2019, 8, 187 9 of 18

Foods 2019, 8, x FOR PEER REVIEW 8 of 17 

 

intensity of auto-fluorescence, and excitation efficiency of quantum dots, the single-to-noise ratio was 

optimized to increase the sensitivity of the sandwich assay for the detection of norovirus VLPs from 

phosphate buffered saline (PBS). The newly developed assay was able to detect 100 VLPs from the 

PBS solution [73]. Another plasmonic sensor was developed by Junesch and colleagues, where the 

lipid bilayer membrane was developed for binding norovirus, enabling label-free and real-time 

detection [107]. The interaction of norovirus with glycosphingolipids induced negative membrane 

curvature or invaginations due to viral accumulation. This novel location specific sensor is superior 

to conventional SPR or to other planar detection surfaces and requires only an ordinary 

spectrophotometer in virus detection. 

Novel nanostructure using a hybrid of graphene and gold is also being explored for the detection 

of norovirus VLPs [108]. Antibody conjugated graphene-gold nanoparticles catalyze the substrate to 

generate a visible blue color which is directly proportional to the concentration of the target. This 

nanostructure combined the enhanced Raman intensity and peroxidase-like catalytic activity of 

graphene and gold. This combinational approach allowed the assay to be 100 times more sensitive 

than conventional ELISA methods and detected 100 pg/mL of the target.  

Most of the nanostructures like nanoparticles are utilized in combination with Lateral Flow 

Assays (LFA) for onsite detection of target pathogens [75]. Traditional LFA has limited sensitivity 

due to the background signal and lower signal intensity of commonly-used gold or blue latex 

nanoparticles. Phase nanoparticles have been used as a reporter based on antibodies identified from 

sandwich ELISAs. Validation of the LFA was performed using both gold and phase nanoparticles 

and showed phage nanoparticle LFA had a100-fold lower LOD than the gold nanoparticle LFA using 

the same antibody pair.  

3.2.2. Aptamer 

Aptamers are short DNA, RNA and peptide-based sequences selected through systematic ligand 

evolution by an exponential enrichment (SELEX) process, which binds with the target (e.g., 

norovirus) based on its protein structure (Figure 4) [109–111]. Escudero-Abarca and colleagues 

developed four ssDNA aptamer candidates that targeted norovirus GII.4 but showed affinity to both 

GII.2 and GII.4 strains using an enzyme-linked aptamer sorbant assay [112]. The binding capacity of 

the aptamer was 13-14 VLPs, equivalent to that of a commercial anti-norovirus antibody (1 to 5 

µg/mL). One of the four potential aptamer candidates (aptamer 25) developed by Escudero-Abarca 

and colleagues was coupled with a magnetic capture method for the detection of norovirus from 

artificially-contaminated lettuce. The capture efficiency of the magnetic capture method was 2.5 to 

36% with a LOD of 10 RNA copies/lettuce sample [112].  
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3.2.3. Biosensor-Based Detection

A biosensor is an object that transduces biological signals to measurable optical, electrical or
physical signals [114]. The output signals are either displayed, stored or analyzed to generate useful
diagnostic information [115]. A biosensor generally possesses an antibody/antigen, enzyme, nucleic
acid, phage, cell, or biomimetic membrane as a receptor or signal transducer. The most commonly used
bioreceptors are antibodies, and nucleic acids such as aptamers. Figure 5 illustrates the mechanism of
sensor-based detection technologies for monitoring and assessing the presence of norovirus in shellfish.
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in shellfish.

A miniaturized and portable MEMS-based electrochemical aptasensor was developed and
evaluated for the detection of norovirus [113]. The electrode surface was functionalized with
virus-specific fluorescent aptamers using drop-casting methods. The binding capability between the
aptamer and the sensing electrode was evaluated by testing the sensor responses to different titers of
murine norovirus. The MEMS aptasensor exhibited a rapid and clear response to different virus titers
with a LOD of 50 plaque forming units (PFU)/mL.

Another electrochemical biosensor using Concanavalin A (ConA) conjugated with nanostructured
gold electrode was developed to capture norovirus from food material within an hour with better
specificity and sensitivity [116]. The study also demonstrated a LOD of norovirus from lettuce extract
was 60 GC/mL with a specificity of 98% from a mixture containing hepatitis A virus, hepatitis E virus
and norovirus.

A label-free homogeneous assay was developed using a split G-quadruplex nano-tweezer to
detect a partial norovirus RNA [117]. The nano-tweezer, with a single signal-transducing molecule,
could self-assemble from three single-stranded DNA molecules by simple mixing. Upon recognition
of norovirus RNA, the signal molecule structure changed and restored its activity hence producing the
detectable signal. The LOD was reported at 4 nM.
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Multiple other biosensor assemblies have been published for potential norovirus detection from
various sample sources [73,107,118]. For example, a thioglycolic-capped CdZnSeS quantum dot probe
was developed for the detection of norovirus RNA with a high photo-luminescence quantum [118].
The sensitivity of this technology was reported to be 8.2 viral copies/mL with a specificity of 98%.
Similarly, a gold-immobilized cysteine-incorporated peptide-based electrochemical biosensor was also
evaluated for the detection of norovirus [119]. The reported LOD of this method was 7.8 copies/mL PBS.
The described proof-of-concept studies showed potential for application to miniaturized micro-devices
as a diagnostic tool for onsite detection of norovirus or other enteric viruses from shellfish.

3.2.4. Microfluidic Technology

Microfluidic technology is the miniaturization of molecular assays, which improves analytical
performance by decreasing the consumption of reagents, detection time and human errors; while
increasing sensitivity, reliability and the ability to detect multiple species of pathogens by integrating
all necessary steps onto a single handheld disposable device [115,120]. Based on these advantages,
microfluidic techniques offer promise for the rapid detection of norovirus from shellfish. During the
assay, the sample passes through different regions on the microfluidics device either by capillary action
or by pressure-driven by pumps. Multiple reactions of virus capture, isolation and identification
can occur in different sections of microfluidic devices inside a closed system. Assays in closed
systems ensures automated control of all steps and can reduce human errors and increase accuracy,
reproducibility, and reliability of test results (Figure 6). Currently, there are two types of microfluidic
technologies available for the detection of norovirus, (a) micro total analysis systems (lab-on-a-chip
(LOC)) and, (b) paper-based analytical systems.
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Typically, the LOC system is a silicon, glass, and polymer-based chip where all of the
processes for detection can be completed and results can be obtained within a short period of
time [75,121–123]. In addition to the advantages of conventional microfluidics, such as size, speed and
reduced sample amount, paper-based LOC also adds an inexpensive multiplexed setting [124]. Paper
is considerably easy to source, cheap, biodegradable and, most importantly, easy to modify chemically.
Other advantages of paper devices include requiring no external power sources, a high ratio of
surface-to-volume and minimal technical expertise requirements. Paper-based microfluidics, compared
to microfluidics with LOC formats, has significant advantages such as it is a simpler technology and
has reduced costs. However, paper-based microfluidics has issues in sample retention and evaporation
that makes it less suitable for the detection of a low concentration of pathogens in a particular sample.

LOC modules have been used to detect murine norovirus with drop-based microfluidics [125].
A microfluidic platform combined with RT-dPCR was developed to amplify, detect and characterize
genetic recombination between two murine norovirus strains. Another LOC-based norovirus detection
method incorporated micro-bead beating to capture the virus and later this was used to lyse the
virus inside the closed system [123]. This was achieved by switching the surface charge of the
nanoparticles. An isothermal RNA amplification method and NASBA was utilized to detect murine
norovirus from artificially contaminated oysters within 4 h. Viral RNA amplification and subsequent
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detection was achieved with LOD of 100 PFU of murine norovirus per oyster. Another example of the
application of LOC for norovirus detection in environmental and food samples is the use of microfluidic
RT-qPCR. A microfluidic RT-qPCR has already been used for the simultaneous quantification of eleven
major human viruses including enterovirus, Aichi virus, adenovirus, astrovirus, sapovirus, rotavirus,
norovirus, hepatitis A virus and hepatitis E virus from environmental water samples [126]. High
throughput quantitative information can be obtained with detection limits of 2 GC/µL of DNA or
cDNA. The recent advancement on omics-based technology, nanomaterials, nanoenzymes, aptamers
and biosensors could be utilized to develop more sensitive, cheap and rapid microfluidic devices in
the near future.

In this review, we evaluated the advantages and disadvantages of the current detection methods
and emerging technologies for the detection of norovirus from shellfish. Current nucleic acid-based
detection methods including RT-qPCR, RT-dPCR and RT-LAMP/NASBA-RT-LAMP methods are rapid
and sensitive and can be cheap (LAMP). However, these methods are unable to provide information
on the infectivity of norovirus in shellfish. Molecular methods have beenmodified to inform on
the infectivity of norovirus but still have limitations. In 2016, an in vitro cultivation method for
norovirus using human intestinal enteroids was reported [127]. While the method is time consuming,
expensive and still being optimized, the ability to culture norovirus will provide valuable infectivity
information [128] and will enable better assessment of current detection methods to selectively detect
infectious norovirus. Due to the limitations of current methods including cost, lengthy times to obtain
results and the necessity of advanced laboratory equipment, infrastructure and skilled personnel, there
is a need for rapid and easy detection techniques for norovirus from shellfish with minimal manual
sample handling. Different rapid detection methods including aptamers, biosensors and microfluidic
devices have been developed and evaluated for the rapid and sensitive detection of norovirus. So far,
all emerging detection technologies have been tested using a simple matrix with a known concentration
of norovirus. However, shellfish is a complex food matrix containing polysaccharides, glycogen and
other compounds that may affect the efficacy of these emerging technologies. More research will be
required to evaluate the performance of these new technologies in complex sample matrices such as
shellfish. In addition, the continuous evolution of the norovirus RNA genome is another challenge that
needs to be considered when developing onsite detection kits using emerging technologies. Despite
the limitations, these technologies have the potential to be rapid and user-friendly detection kits that
can be used for the detection of norovirus in real time.
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