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Abstract

The underlying pathology of arsenic-related cardiovascular disease (CVD) is unknown. Few

studies have evaluated pathways through thrombosis and inflammation for arsenic-related

CVD, especially at low-moderate arsenic exposure levels (<100 μg/L in drinking water). We

evaluated the association of chronic low-moderate arsenic exposure, measured as the sum

of inorganic and methylated arsenic species in urine (ΣAs), with plasma biomarkers of

thrombosis and inflammation in American Indian adults (45–74 years) in the Strong Heart

Study. We evaluated the cross-sectional and longitudinal associations between baseline

ΣAs with fibrinogen at three visits (baseline, 1989–91; Visit 2, 1993–95, Visit 3, 1998–99)

using mixed models and the associations between baseline ΣAs and Visit 2 plasminogen

activator inhibitor-1 (PAI-1) and high sensitivity C-reactive protein (hsCRP) using linear

regression. Median (interquartile range) concentrations of baseline ΣAs and fibrinogen, and

Visit 2 hsCRP and PAI-1 were 8.4 (5.1, 14.3) μg/g creatinine, 346 (304, 393) mg/dL, 44 (30,

67) mg/L, and 3.8 (2.0, 7.0) ng/mL, respectively. Comparing the difference between the 75th

and the 25th percentile of ΣAs (14.3 vs. 5.1 μg/g creatinine), ΣAs was positively associated

with baseline fibrinogen among those with diabetes (adjusted geometric mean ratio (GMR):

1.05, 95% CI: 1.02, 1.07) not associated among those without diabetes (GMR: 1.01, 95%

CI: 0.99, 1.02) (p-interaction for diabetes = 0.014), inversely associated with PAI-1 (GMR:

0.94, 95% CI: 0.90, 0.99), and not associated with hsCRP (GMR: 1.00, 95% CI: 0.93, 1.08).

We found no evidence for an association between baseline ΣAs and annual change in fibrin-

ogen over follow-up (p-interaction = 0.28 and 0.12 for diabetes and non-diabetes, respec-

tively). Low-moderate arsenic exposure was positively associated with baseline fibrinogen

in participants with diabetes and unexpectedly inversely associated with PAI-1. Further

research should evaluate the role of prothrombotic factors in arsenic-related cardiovascular

disease.

PLOS ONE | https://doi.org/10.1371/journal.pone.0182435 August 3, 2017 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Moon KA, Navas-Acien A, Grau-Pérez M,
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Introduction

Almost five million people in the United States (US) drink water from public and private wells

with arsenic concentrations above US Environmental Protection Agency (EPA) standard of

10 μg/L [1–4], and millions more are exposed below this level. Drinking water and food are

important sources of inorganic arsenic exposure in populations with low levels of arsenic in

drinking water [4–8]. Taken together, epidemiological studies of populations with high

(�100 μg/L) [9–11], and low-moderate (<100 μg/L) levels of arsenic in drinking water [12–

14] support a causal link between chronic arsenic exposure and cardiovascular disease (CVD),

particularly coronary heart disease (CHD) [1]. The underlying etiology of arsenic-related

CVD, however, has not been established [15, 16].

Inflammation and thrombosis via increased coagulation and decreased fibrinolysis are hall-

marks of the initiation and progression of atherosclerosis [17, 18]. Higher levels of fibrinogen,

a major coagulation factor related to inflammation and vascular thrombosis, and CRP, a bio-

marker of systemic inflammation, have been consistently associated with incident CHD and

stroke in large individual participant meta-analyses from prospective cohort studies [19, 20].

Plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of the fibrinolytic system, has

been associated with incident CHD in some studies [21], but not in others [22].

Diabetes is a strong risk factor for CVD [23, 24], but differences in traditional risk factors

for CVD (e.g., dyslipidemia and hypertension) do not entirely explain the association between

diabetes and incident CVD [25]. Concentrations of plasma fibrinogen, PAI-1, and CRP are

higher in individuals with diabetes [26], and many of the shared pathological changes associ-

ated with initiation and progression of atherosclerosis and diabetes are linked to insulin resis-

tance [27].

Chronic arsenic exposure has been associated with higher plasma PAI-1 [28, 29] and CRP

[30, 31] concentrations in a few clinical or cross-sectional epidemiologic studies of populations

exposed to high levels of arsenic in drinking water (>100 μg/L). A small clinical study found

higher levels of fibrinogen in subjects with Blackfoot disease, a peripheral vascular disease

related to endemic high arsenic exposure in Taiwan, compared to controls [32]. No previous

general population epidemiologic study, to our knowledge, has examined the association

between chronic arsenic exposure and plasma fibrinogen. In in vitro and animal studies, expo-

sure to arsenic increased PAI-1 concentrations and activity [33], CRP concentrations [34], and

platelet aggregation [35].

We previously reported an association between chronic arsenic exposure and incident fatal

and non-fatal CVD in the Strong Heart Study (SHS) [12], a prospective, population-based

cohort of American Indians exposed to low-moderate levels of arsenic in drinking water. The

objective of the current study was to examine the association between chronic arsenic exposure

and three biomarkers of thrombotic risk and/or vascular inflammation, plasma fibrinogen,

PAI-1, and CRP, in the SHS. Post-hoc subgroup analyses from previous epidemiologic studies

in the SHS demonstrated that associations between urine arsenic and incident CVD and CHD

were stronger among participants with diabetes [12], and CRP was associated with incident

CVD only in those without diabetes [36]. Therefore, we hypothesized that associations between

urinary arsenic and thrombotic/vascular inflammatory markers might differ by diabetes status.

Methods

Study population

A population-based longitudinal study of CVD and its risk factors, the SHS main cohort exam-

ined 4549 men and women age 45 to 74 years in 13 American Indian communities in Arizona,
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Oklahoma, and North and South Dakota in 1989–91 (Visit 1), with two follow-up exams in

1993–95 and 1998–99 (Visit 2 and Visit 3). Details of the study design have been decribed pre-

viously [37, 38]. At baseline, the participation rate in the main cohort was 62% [39], and 88%

and 89% of surviving participants were examined at Visit 2 and Visit 3, respectively [40]. Com-

pared to non-participants at baseline, participants were similar in age, body mass index, and

the prevalence of diabetes, but were more likely to be female and to have hypertension [39].

The Indian Health Service institutional review board, institutional review boards of participat-

ing institutions, and participating tribes approved the study protocol. All participants provided

informed consent.

Urine arsenic was measured at baseline among 3974 participants with available stored urine

samples. In 2016, one community withdrew their consent to participate in further research,

and we have excluded their data (N = 1033) from this analysis. Plasma fibrinogen was mea-

sured at all three visits, while PAI-1 and CRP were only measured at Visit 2. First, we examined

the cross-sectional and longitudinal associations between baseline arsenic with repeated mea-

sures of fibrinogen at Visits 1, 2, and 3 in 2700 participants without prevalent CVD, complete

baseline measurements of urine arsenic and creatinine, plasma fibrinogen, and key baseline

CVD risk factors. Second, we examined the association between baseline arsenic and plasma

PAI-1 and CRP at Visit 2 among 1984 participants without prevalent CVD at or before Visit 2,

complete baseline measurements of urine arsenic, creatinine, key baseline CVD risk factors,

and plasma PAI-1 and CRP at Visit 2. Prevalent CVD was defined as a history of definite or

possible CHD, definite or possible myocardial infarction, definite or possible stroke, transient

ischemic attack, and other CVD events [38]. We present the full inclusion and exclusion

criteria for the analyses in the SHS main cohort in S1 Fig. Compared to the overall cohort

(N = 3265, excluding participants who withdrew consent and those with prevalent CVD), par-

ticipants in this analysis at baseline (N = 2700) were generally similar across socio-demo-

graphic and cardiovascular risk factors.

In a secondary analysis, we also examined the cross-sectional association between arsenic

and plasma fibrinogen, PAI-1, and CRP in a subset of participants without diabetes at base-

line in the Strong Heart Family Study (SHFS), an ancillary study of the SHS main cohort.

The SHFS is a family-based longitundinal study of participants from the main SHS cohort

and their family members age 14 or older [41]. Participants from large, multigenerational

families were examined either during a pilot study during Visit 3 of the SHS main cohort

(1998–99) or at the SHFS baseline Visit 4 (2001–03). Fibrinogen and PAI-1 were measured

at both Visit 3 pilot or Visit 4, while CRP was measured only at Visit 4. Of 2919 SHFS partic-

ipants who have given permission to conduct further research, urine arsenic was measured

in 1948 (67%) participants who were without diabetes at baseline (Visit 3 pilot or Visit 4),

were examined at a follow up visit in 2006–2009, and had sufficient stored urine for a study

of environmental and genetic risk factors of incident diabetes (prevalent cases of diabetes

were excluded from metals analysis). We further excluded participants missing either

plasma biomarkers or key covariates for a final sample size of 1901 for fibrinogen and PAI-1

and 1791 for CRP (S2 Fig).

Plasma fibrinogen, PAI-1, and CRP

Fibrinogen was measured in plasma by a modification of the von Clauss method [42] and

plasma PAI-1 antigen and high-sensitivity CRP were measured by an enzyme-linked immu-

noabsorbent assay [43, 44]. Detailed laboratory methods for the SHS have been reported previ-

ously [38, 41]. The inter-assay coefficient of variation for fibrinogen, PAI-1, and CRP were

<8%, 8%, and<5%, respectively [45].
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Urine arsenic (inorganic arsenic and methylated metabolites)

The analytical methods and associated quality control criteria for urine arsenic measure-

ments in the SHS main cohort and family study have been described previously [46]. Arse-

nic species were measured in stored urine samples collected at the baseline clinical exam

in 2009 and 2012 at the Trace Element Laboratory of the University of Graz (Graz, Aus-

tria) using high performance liquid chromatography (HPLC; Agilent 1100, Agilent Tech-

nologies) coupled to inductively coupled plasma mass spectrometry (ICPMS; Agilent

7700xICPMS, Agilent Technologies).

In the SHS main cohort, the inter-assay coefficients of variation (CV) for inorganic arsenic,

MMA, DMA, and arsenobetaine for an in-house reference urine were 6.0%, 6.5%, 5.9%, and

6.5%, respectively [46]. In the family study cohort, the inter-batch variability was checked by

replicate measurements of the arsenic compounds in three certified reference materials (NIST

2669 I, NIST 2669 II and NIES 18). The CV ranged from 5.4 to 14.4% for inorganic arsenic,

4.8 to 8.6 for MMA, and 5.5 to 8.1% for DMA (N = 46). The LOD for inorganic arsenic (arse-

nite and arsenate), MMA, DMA, and arsenobetaine plus other arsenic cations was 0.1 μg/L.

For samples with arsenic species below the LOD (5.2% for inorganic arsenic, 0.8% for MMA,

0.03% for DMA, and 2.1% for arsenobetaine plus other cations), concentrations were imputed

as the corresponding LOD divided by the square root of two [47, 48].

We used the sum of inorganic (arsenite and arsenate) and methylated (MMA and DMA)

arsenic species (SAs) as a proxy for inorganic arsenic exposure. Urine arsenic concentrations

were divided by urine creatinine concentrations to account for variability in dilution of the

random urine samples, and expressed in μg/g creatinine. We conducted two sensitivity analy-

ses to examine potential bias from dividing urine arsenic concentrations by urine creatinine,

which is associated with muscle mass and nutritional status [49]. First, we conducted the anal-

yses using urine arsenic concentrations without dividing by creatinine, and adjusted for log-

transformed urine creatinine concentrations in regression models. Second, in the subset of

participants without diabetes or albuminuria, we conducted the analyses using baseline arsenic

concentrations divided by specific gravity [49]. These sensitivity analysis results were consis-

tent with the main analysis.

Other variables

For both the SHS main cohort and SHS family study, each study visit consisted of a personal

interview and clinical examination, with blood and urine samples collected in the morning

after at least a 12-hour overnight fast. A full description of the standardized methods and pro-

tocols have been reported previously for the main cohort [38] and family study [41].

Definitions of sociodemographic and CVD risk factors were largely standardized across the

SHS main cohort and family study. We defined hypertension as systolic blood pressure of 140

mm Hg or greater, diastolic blood pressure of 90 mm Hg or greater, or antihypertensive medi-

cation use [50]. In the main cohort, low-density lipoprotein (LDL) cholesterol levels were cal-

culated using the Friedewald equation [51] and missing values were replaced with measured

LDL cholesterol using the beta quantification procedure [38]. We defined albuminuria as a

urine albumin to creatinine ratio of 30 mg/g or greater [52]. We estimated glomerular filtra-

tion rate [eGFR) from recalibrated plasma creatinine measurements [53], using the Chronic

Kidney Disease Epidemiology Collaboration equation [54]. In the main cohort, we defined

diabetes as a fasting glucose level 7.0 mmol/L or greater (126 mg/dL), two-hour post-load

plasma glucose level 11.1 mmol/L or greater (200 mg/dL), hemoglobin A1c level 6.5% or

greater, or self-reported use of insulin or an oral hypoglycemic agent [55]. In the family study,

the analysis was conducted only among persons without diabetes, defined by reported use of
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insulin or oral diabetes medication or a fasting plasma glucose concentration�126 mg/dL (7.0

mmol/L) [56].

Statistical analysis

Fibrinogen, PAI-1, and CRP concentrations were log-transformed concentrations in regres-

sion models to improve normality. All analyses were a priori stratified by diabetes status

because we previously found a stronger association between arsenic exposure and incident

CVD [12] in individuals with diabetes in the SHS, and CRP was only associated with CVD

among individuals without diabetes in the SHS [36].

For plasma fibrinogen, we used a linear mixed effects model to evaluate the cross-sectional

and longitudinal associations between baseline urine arsenic and repeated measures of fibrino-

gen at baseline, Visit 2, and Visit 3 in the SHS main cohort stratified by diabetes at baseline.

Modeling repeated measures of fibrinogen allows participants without a follow-up visit to be

included, and improves the precision of the cross-sectional estimates [57]. We included fixed

effects for baseline arsenic, years from baseline visit, an interaction between baseline arsenic

and years from baseline, and potential confounders measured at baseline. The best-fitting

model, determined by the likelihood ratio test and Akaike Information Criterion (AIC),

included random subject-specific intercepts and slopes and allowed for correlation between

the random intercept and slope. We found that there was no significant interaction between

arsenic (log-transformed continuous and quartiles) and time, and subsequent models included

only the main effects of arsenic and time. We used linear regression to examine the association

between baseline urine arsenic and concentrations of PAI-1 and CRP at Visit 2 stratified by

diabetes status (diabetes at either baseline or Visit 2).

For all models, we expressed the adjusted association between urine arsenic concentrations

and each plasma biomarker as the geometric mean ratio (GMR) and 95% confidence interval

of the plasma biomarker concentrations for a specified difference in urine arsenic concentra-

tions. Urine arsenic concentrations were modeled as quartiles, log-transformed continuous

concentrations, and as restricted quadratic splines of log-transformed concentrations with

knots at the 10th, 50th, and 90th percentiles. Quartiles of urine arsenic (μg/g creatinine) were

created separately for the model of baseline fibrinogen (N = 2700) and models of Visit 2 PAI-1

and CRP (N = 1984). We controlled for potential confounding in sequential models. Model 1

was adjusted for age, sex, and education (no, some, or finished high school), smoking (never,

former, current), and alcohol drinking (never, former, current), BMI (kg/m2), LDL cholesterol

(mg/dL), hypertension (yes/no), eGFR (mL/min/1.73 m2), and diabetes status (overall models

only). Model 2, the primary model, was additionally adjusted for study center (Arizona, Okla-

homa, North and South Dakota). Model 3 additionally adjusted for albuminuria (ACR <30

mg/g, >30 to<300 mg/g, and�300 mg/g) and hemoglobin A1c (%). In the SHS, arsenic was

cross-sectionally associated with albuminuria [58], and with hemoglobin A1c among those

with diabetes [59]. Albuminuria and hemoglobin A1c may act as confounders or mediators of

the association between arsenic and plasma biomarkers of thrombotic risk and vascular

inflammation; therefore, we adjusted for these variables only in sensitivity analyses. Model 4

adjusted for the same covariates in Model 2 without diabetes status. While some evidence sug-

gests that hypertension could also be a mediator of the association between arsenic and cardio-

vascular disease [60], urine arsenic is not associated with blood pressure or hypertension in

this cohort. Additional adjustment for menopausal status among women did not materially

change the associations.

For the plasma biomarkers that we observed an association with urine arsenic concentra-

tions, we also examined whether there was an association with arsenic metabolism (urine %
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iAs, %MMA, and %DMA) in separate models. These models adjusted for covariates in Model

2 (fully-adjusted) and urine arsenic exposure (log-transformed). We conducted subgroup

analyses to evaluate effect modification by selected participant characteristics in fully adjusted

models by including interaction terms between log-transformed urine arsenic and an indicator

variables for each categorical participant characteristic. Except for diabetes status, all subgroup

analyses were exploratory without prior hypotheses. We found similar results when excluding

participants with CRP concentrations above 10 mg/L, which may reflect acute inflammation

[61].

In secondary analyses, we estimated the cross-sectional association between baseline (Visit

3 pilot/Visit 4) urine arsenic and plasma fibrinogen, PAI-1, and CRP in SHFS participants

without diabetes (metals were only measured in participants without prevalent diabetes by

design) using linear mixed models. We included a random effect for family to account for pos-

sible correlation within families. Consistent with the main analysis, we expressed adjusted

associations as GMR and modeled urine arsenic exposure as quartiles, log-transformed con-

centrations, and as restricted quadratic splines of log-transformed concentrations with knots

at the 10th, 50th, and 90th percentiles. We adjusted for the same baseline covariates as in SHS

main cohort analyses, with the exception that we adjusted for fasting plasma glucose instead of

hemoglobin A1c because hemoglobin A1c was not available in most SHFS participants.

Statistical analyses were performed with Stata Version 12.1 (StataCorp, College Station, TX,

USA) and R Version 3.2.2 (R Foundation for Statistical Computing, www.r-project.org,

Vienna, Austria). All statistical tests were two-sided and p-values less than 0.05 were consid-

ered statistically significant.

Results

Baseline characteristics of SHS main cohort participants

At the SHS main cohort baseline visit (N = 2700), the median (IQR) age was 55 (49, 62) years,

59% of participants were female, 42% of participants had diabetes, and the median (IQR)

concentration of urine arsenic was 8.4 (5.1, 14.3) μg/g creatinine (Table 1). At baseline, the

median (IQR) of fibrinogen was 286 (244, 336) mg/dL. At Visit 2, median (IQR) concentra-

tions of fibrinogen, PAI-1 and CRP were 346 (304, 393) mg/dL, 44 (30, 67) ng/mL, and 3.8

(2.0, 7.0) mg/L, respectively. Urine arsenic concentrations were highest in Arizona (median

17.2 μg/g creatinine), and lowest in Oklahoma (median 5.6 μg/g creatinine). Participants with

higher urine arsenic had lower education, a higher prevalence of albuminuria, and were more

likely to have diabetes, to drink alcohol, and have higher hemoglobin A1c. Selected participant

characteristics by diabetes status and quartiles of urine arsenic are presented in S1 Table.

We present median concentrations of plasma fibrinogen, PAI-1, and CRP at Visit 2 by dia-

betes status (at either baseline or Visit 2) and selected participant characteristics in Table 2.

Associations between participant characteristics and baseline plasma fibrinogen were consis-

tent with fibrinogen at Visit 2. In general, participants with higher plasma fibrinogen, PAI-1,

and CRP were more likely to be female and had higher BMI. Higher fibrinogen concentrations

were also associated with older age, higher hemoglobin A1c, higher prevalence of albuminuria,

and lower education. In both participants with and without diabetes, however, plasma PAI-1

concentrations were lower in older participants and lower in those with reduced kidney func-

tion (eGFR<60 mL/min/1.73 m2). In participants with diabetes, PAI-1 concentrations were

also inversely associated with SBP, hemoglobin A1c, and education (Table 2).

At Visit 2, CRP concentrations were moderately correlated with fibrinogen (Spearman ρ =

0.46, p<0.001) and PAI-1 (ρ = 0.26, p<0.001), while fibrinogen and PAI-1 showed little corre-

lation (ρ = 0.06, p = 0.002). Correlations were similar by diabetes status.
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Cross-sectional and longitudinal associations between baseline urine

arsenic and fibrinogen in the SHS main cohort

Of the 2700 participants with complete data at the SHS main cohort baseline, 78% and 69%

had fibrinogen measurements at Visit 2 and Visit 3, respectively. Participants had a mean

(standard deviation) of 6.2 (3.0) years of follow-up. As expected, plasma fibrinogen levels

increased over time, with each year after baseline associated with a 4% increase (GMR: 1.04,

95% CI: 1.03, 1.04) in fully adjusted models (Model 2). In fully adjusted models (Model 2), we

found no evidence of an interaction between baseline urine arsenic concentrations and the

annual change in plasma fibrinogen over follow-up (log-transformed baseline arsenic, p-inter-

action = 0.28 and 0.12 for diabetes and non-diabetes, respectively).

A comparison of the 75th to the 25th percentile (14.3 vs. 5.1 μg/g creatinine) of baseline

urine arsenic was associated with higher baseline fibrinogen concentrations among partici-

pants with diabetes (GMR: 1.05, 95% CI: 1.02, 1.07) but not among those without diabetes

(GMR: 1.01, 95% CI: 0.99, 1.02) after adjusting for age, sex, education, smoking, alcohol drink-

ing, BMI, LDL cholesterol, hypertension, eGFR, and study center (Table 3, Model 2; Fig 1).

Table 1. Selected characteristics of Strong Heart Study main cohort participants at baseline (Visit 1) by quartiles of baseline urine arsenic (ΣAs,

μg/g creatinine).

Quartiles of Urine Arsenic (ΣAs, μg/g creatinine)

Overall

N = 2700

Q1

N = 676

Q2

N = 675

Q3

N = 677

Q4

N = 672

Mean (SD) 11.6 (10.9) 3.8 (0.9) 6.7 (0.9) 11.1 (1.7) 24.9 (14.4)

Median (IQR) 8.4 (5.1, 14.3) 3.8 (3.1, 4.5) 6.6 (5.9, 7.4) 10.9 (9.6, 12.5) 20.4 (16.6, 27.1) p-

Range 1.6, 179.9 1.6, 5.1 5.2, 8.4 8.4, 14.3 14.3, 179.9 value *

Age, years 55 (49, 62) 55 (49, 62) 55 (49, 62) 54 (49, 61) 55 (49, 63) 0.70

Female, % 1600 (59%) 332 (49%) 413 (61%) 414 (61%) 441 (66%) <0.001

Finished high school, % 1602 (59%) 469 (69%) 438 (65%) 379 (56%) 316 (47%) <0.001

Current smoker, % 1020 (38%) 233 (34%) 248 (37%) 274 (40%) 265 (39%) 0.10

Current drinker, % 1157 (43%) 237 (35%) 262 (39%) 333 (49%) 325 (48%) <0.001

BMI, kg/m2 30 (26, 34) 30 (27, 34) 30 (26, 34) 30 (26, 34) 29 (26, 33) 0.03

Hypertension, % 960 (36%) 251 (37%) 248 (37%) 230 (34%) 231 (34%) 0.51

Diabetes, % 1145 (42%) 240 (36%) 266 (39%) 279 (41%) 360 (54%) <0.001

Hemoglobin A1c, % 5.4 (4.9, 6.8) 5.3 (4.9, 6.0) 5.4 (4.9, 6.3) 5.4 (4.9, 6.7) 5.6 (5.0, 9.0) <0.001

LDL cholesterol, mg/dL 118 (97, 140) 121 (100, 144) 121 (100, 142) 119 (97, 138) 113 (92, 137) <0.001

eGFR, mL/min/1.73 m2 100 (91, 107) 98 (88, 106) 100 (91, 107) 101 (91, 107) 103 (94, 110) <0.001

Albuminuria (ACR� 30 mg/g) 629 (23%) 102 (15%) 131 (19%) 143 (21%) 253 (38%) <0.001

Post-menopause, % of women 1212 (76%) 251 (76%) 310 (75%) 311 (75%) 340 (77%) 0.89

Fibrinogen, mg/dL (Visit 1) 286 (244, 336) 278 (242, 320) 282 (242, 326) 282 (242, 332) 293 (250, 354) <0.001

Fibrinogen, mg/dL (Visit 2) 346 (304, 393) 334 (291, 381) 347 (304, 393) 339 (299, 388) 362 (320, 411) <0.001

Fibrinogen, mg/dL (Visit 3) 363 (311, 428) 352 (298, 416) 364 (310, 429) 360 (313, 420) 381 (327, 454) <0.001

PAI-1, ng/mL (Visit 2) 44 (30, 67) 49 (33, 72) 48 (32, 70) 40 (28, 60) 39 (28, 64) <0.001

CRP, mg/L (Visit 2) 3.8 (2.0, 7.0) 3.4 (1.8, 6.1) 4.0 (2.0, 6.9) 4.0 (2.1, 7.6) 4.1 (2.0, 7.3) 0.02

SD, standard deviation; IQR, interquartile range; ACR, Albumin to creatinine ratio in urine; LDL, Low density lipoprotein; eGFR, estimated glomerular

function; BMI, body mass index; PAI-1, Plasminogen activator inhibitor-1; hsCRP, high-sensitivity C-reactive protein.

Values are median (interquartile range) for continuous variables and number of participants (percentage) for categorical variables.

* P-values from a nonparametric Kruskal-Wallis test of difference in distribution (continuous variables) or Pearson’s chi-square test of independence

(categorical variables).

https://doi.org/10.1371/journal.pone.0182435.t001
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This association was statistically significantly different by diabetes status (p-interaction = 0.014

for log-transformed arsenic concentrations). Overall, and among those with diabetes, the asso-

ciation was attenuated and no longer significant after further adjustment for both albuminuria

and hemoglobin A1c (Table 3, Model 3). In models where baseline urine arsenic treated as

Table 2. Concentrations of plasma fibrinogen, PAI-1, and CRP at Visit 2 by participant characteristics and diabetes status at baseline in Strong

Heart Study main cohort participants.

Without Diabetes (N = 899) With Diabetes (N = 1085)

Fibrinogen (mg/dL) PAI-1

(ng/mL)

CRP

(mg/L)

Fibrinogen

(mg/dL)

PAI-1

(ng/mL)

CRP

(mg/L)

% Median p-value Median p-value Median p-value % Median p-value Median p-value Median p-value

Age, years *

� 55 57% 325 <0.001 44 0.003 3.2 0.95 51% 350.5 0.04 50 <0.001 4.7 0.002

> 55 43% 341.5 38 3.2 49% 361 44 3.8

Sex

Male 43% 327 0.002 39 0.06 2.6 <0.001 34% 339.5 <0.001 45 0.05 3.1 <0.001

Female 57% 337 42 3.6 66% 364 48 5

Education

< HS 33% 341 0.002 44 0.15 3.4 0.14 43% 367 <0.001 43 <0.001 4.3 0.66

� HS 67% 330 39 3 57% 349 50 4.2

Smoking

Never/former 58% 329 0.001 40 0.16 2.9 0.02 69% 357.5 0.78 46 0.26 4.3 0.74

Current 42% 340 42 3.6 31% 355 47 4.2

Drinking

Never/former 51% 336 0.04 42 0.42 3 0.42 64% 361 0.003 46 0.45 4.4 0.02

Current 49% 330 40 3.3 36% 346 47 4

BMI, kg/m2

< 30 66% 330 0.01 37 <0.001 2.8 <0.001 40% 346 0.001 42 <0.001 3.7 <0.001

� 30 34% 338 49 3.7 60% 364 51 4.8

Hypertension

No 74% 332 0.03 39 0.01 3.1 0.07 59% 350 0.05 47 0.44 4.4 0.29

Yes 26% 343 44 3.5 41% 363 46 4

Hemoglobin A1c, % †

<5.7 83% 332 0.03 39 0.02 3 0.02 33% 331 <0.001 48 0.11 4.1 0.06

�5.7 11% 338 47 4.1 60% 365 46 4.4

LDL cholesterol, mg/dL

<100 22% 333.5 0.90 44 0.26 3.1 0.88 30% 361 0.70 44 0.12 4.5 0.22

�100 78% 334 39 3.2 70% 354 47 4.2

eGFR, mL/min/1.73 m2

�60 99% 334 0.62 41 0.03 3.1 0.57 97% 354.5 <0.001 46 0.05 4.2 0.24

<60 1% 338 29 3.8 3% 407 40 5.6

Albuminuria

No 93% 332 0.002 40 0.16 3.1 0.02 68% 343 <0.001 48 0.07 4.1 0.11

Yes 7% 356 46 4.7 32% 388 45 4.8

Menopause ‡

No 16% 326 0.003 44 0.41 3.6 0.94 16% 356 0.02 53.5 0.05 6 0.008

Yes 41% 342 41.5 3.6 51% 365 47 4.8

HS, High School; eGFR, estimated glomerular function; LDL, low-density lipoprotein; SBP, systolic blood pressure; BMI, Body mass index p-values are

from a non-parametric Kruskall-Wallis test of equality of populations.

* Dichotomized at the overall median.

† Hemoglobin A1c was measured in 93% of participants.

‡ Among women only.

https://doi.org/10.1371/journal.pone.0182435.t002
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Table 3. Geometric mean ratios (95% confidence interval) of baseline fibrinogen, Visit 2 PAI-1, and Visit 2 CRP by baseline urine arsenic concen-

trations by diabetes status in the Strong Heart Study main cohort.

Urine Arsenic (ΣAs, μg/g creatinine)

Quartiles Log-transformed

75th vs. 25th percentile a

Quadratic

Splines b

Q1 Q2 Q3 Q4

Median: 4.7 6.3 9.9 16.8 14.3 vs. 5.1 p-value p-value

Baseline Fibrinogen

Overall Model 1 c 1 (Ref) 1.02 (0.99, 1.04) 1.01 (0.99, 1.04) 1.06 (1.04, 1.08) 1.03 (1.02, 1.04) <0.001 0.22

(N = 2700) Model 2 d 1 (Ref) 1.02 (0.99, 1.04) 1.01 (0.99, 1.04) 1.05 (1.02, 1.07) 1.03 (1.01, 1.04) <0.001 0.43

Model 3 e 1 (Ref) 1.01 (0.99, 1.04) 1.01 (0.99, 1.03) 1.02 (0.99, 1.05) 1.01 (0.99, 1.03) 0.08 0.88

Model 4 f 1 (Ref) 1.02 (1.00, 1.04) 1.02 (0.99, 1.04) 1.06 (1.03, 1.08) 1.03 (1.02, 1.04) <0.001 0.53

Without Diabetes Model 1 c 1 (Ref) 1.01 (0.99, 1.04) 0.99 (0.97, 1.02) 1.02 (0.99, 1.05) 1.01 (0.99, 1.02) 0.40 0.16

(N = 1145) Model 2 d 1 (Ref) 1.01 (0.99, 1.04) 1.00 (0.97, 1.03) 1.02 (0.99, 1.06) 1.01 (0.99, 1.02) 0.25 0.27

Model 3 e 1 (Ref) 1.01 (0.98, 1.04) 1.00 (0.97, 1.03) 1.01 (0.98, 1.05) 1.01 (0.99, 1.02) 0.50 0.23

With Diabetes Model 1 c 1 (Ref) 1.03 (0.99, 1.07) 1.05 (1.01, 1.09) 1.10 (1.06, 1.14) 1.06 (1.04, 1.08) <0.001 0.24

(N = 1555) Model 2 d 1 (Ref) 1.03 (0.99, 1.07) 1.04 (1.00, 1.09) 1.07 (1.03, 1.12) 1.05 (1.02, 1.07) <0.001 0.10

Model 3 e 1 (Ref) 1.02 (0.98, 1.06) 1.03 (0.99, 1.07) 1.04 (0.99, 1.08) 1.03 (0.99, 1.05) 0.06 0.24

Visit 2 PAI-1

Overall Model 1 c 1 (Ref) 0.96 (0.89, 1.04) 0.83 (0.77, 0.90) 0.80 (0.74, 0.86) 0.87 (0.84, 0.91) <0.001 0.35

(N = 1984) Model 2 d 1 (Ref) 0.99 (0.92, 1.07) 0.92 (0.84, 1.00) 0.91 (0.83, 1.00) 0.94 (0.90, 0.99) 0.01 0.61

Model 3 e 1 (Ref) 1.00 (0.92, 1.08) 0.90 (0.83 0.98) 0.92 (0.83, 1.01) 0.94 (0.89, 0.99) 0.01 0.68

Model 4 f 1 (Ref) 1.00 (0.92, 1.08) 0.92 (0.85, 1.00) 0.93 (0.84, 1.02) 0.95 (0.90 1.00) 0.033 0.61

Without Diabetes Model 1 c 1 (Ref) 0.93 (0.83, 1.04) 0.81 (0.72, 0.92) 0.78 (0.68, 0.89) 0.87 (0.81, 0.93) <0.001 0.74

(N = 899) Model 2 d 1 (Ref) 0.96 (0.86, 1.08) 0.90 (0.79, 1.01) 0.89 (0.77, 1.03) 0.94 (0.87, 1.01) 0.10 0.95

Model 3 e 1 (Ref) 0.96 (0.85, 1.07) 0.89 (0.79, 1.01) 0.88 (0.76, 1.02) 0.94 (0.87, 1.01) 0.09 0.85

With Diabetes Model 1 c 1 (Ref) 0.98 (0.88, 1.09) 0.84 (0.76, 0.94) 0.81 (0.73, 0.90) 0.88 (0.83, 0.93) <0.001 0.11

(N = 1085) Model 2 d 1 (Ref) 1.02 (0.92, 1.13) 0.93 (0.83, 1.05) 0.94 (0.84, 1.07) 0.95 (0.89, 1.01) 0.12 0.22

Model 3 e 1 (Ref) 1.02 (0.92, 1.13) 0.93 (0.83, 1.05) 0.94 (0.83, 1.07) 0.95 (0.89, 1.01) 0.14 0.16

Visit 2 CRP

Overall Model 1 c 1 (Ref) 1.04 (0.92, 1.17) 1.10 (0.97, 1.24) 1.05 (0.93, 1.19) 1.05 (0.98, 1.11) 0.18 0.68

(N = 1984) Model 2 d 1 (Ref) 1.01 (0.90, 1.14) 1.03 (0.91, 1.17) 0.97 (0.84, 1.11) 1.00 (0.93, 1.08) 0.99 0.86

Model 3 e 1 (Ref) 0.99 (0.87, 1.12) 1.02 (0.90, 1.17) 0.95 (0.82, 1.10) 0.99 (0.92, 1.07) 0.82 0.77

Model 4 f 1 (Ref) 1.02 (0.91, 1.15) 1.04 (0.92, 1.19) 0.99 (0.86, 1.15) 1.02 (0.94 1.10) 0.68 0.84

Without Diabetes Model 1 c 1 (Ref) 1.02 (0.86, 1.21) 1.03 (0.87, 1.22) 0.96 (0.79, 1.16) 1.02 (0.92, 1.12) 0.73 0.88

(N = 899) Model 2 d 1 (Ref) 0.98 (0.83, 1.17) 0.94 (0.78, 1.12) 0.83 (0.67, 1.03) 0.95 (0.85, 1.06) 0.37 0.94

Model 3 e 1 (Ref) 0.97 (0.82, 1.16) 0.93 (0.78, 1.12) 0.82 (0.66, 1.01) 0.94 (0.85, 1.05) 0.31 0.99

With Diabetes Model 1 c 1 (Ref) 1.06 (0.90, 1.26) 1.14 (0.97, 1.35) 1.10 (0.94, 1.30) 1.05 (0.96, 1.14) 0.25 0.66

(N = 1085) Model 2 d 1 (Ref) 1.05 (0.89, 1.24) 1.11 (0.93, 1.33) 1.07 (0.88, 1.30) 1.03 (0.93, 1.14) 0.57 0.76

Model 3 e 1 (Ref) 1.05 (0.89, 1.24) 1.10 (0.92, 1.32) 1.04 (0.85, 1.27) 1.02 (0.92, 1.13) 0.59 0.58

Notes:

Q1, 1st quartile; Q2, 2nd quartile; Q3, 3rd quartile; Q4, 4th quartile; ΣAs, Sum of inorganic arsenic and methylated species in urine; PAI-1, Plasminogen

activator inhibitor-1; CRP, C-reactive protein; Ref, Reference.
a Geometric mean ratio comparing the 75th percentile to the 25th percentile of urine arsenic, estimated by multiplying the coefficient of log-transformed

arsenic concentrations by the difference between the 75th and 25th percentiles on the log scale.
b P-value from a Wald test that the two non-linear restricted quadratic spline coefficients are different from zero. Restricted quadratic splines were created

from log-transformed arsenic concentrations, with knots at the 10th, 50th, and 90th percentiles.
c Model 1 adjusted for age, sex, and education (no, some, or finished high school), smoking (never, former, current), and alcohol drinking (never, former,

current), body mass index (kg/m2), LDL cholesterol (mg/dL), hypertension (yes/no), and eGFR (mL/min/1.73 m2). Overall models (not stratified by diabetes

status) were also adjusted for diabetes status.
d Model 2 was further adjusted for study center (Arizona, Oklahoma, North and South Dakota).
e Model 3 was further adjusted for albuminuria (ACR <30 mg/g, >30 to <300 mg/g, and�300 mg/g) and hemoglobin A1c (%). Hemoglobin A1c was

measured in 93% of participants.
f Model 4 was adjusted Model 2 variables without adjustment for diabetes.

https://doi.org/10.1371/journal.pone.0182435.t003
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restricted quadratic splines of log-transformed urine arsenic, we found no statistical evidence

of a non-linear association with baseline fibrinogen (Table 3).

In models examining the association between arsenic metabolism (urine %iAs, %MMA,

and %DMA) and baseline plasma fibrinogen, we found no association with %iAs (GMR: 1.01,

95% CI: 1.00, 1.01; p = 0.26), a positive association with %MMA (GMR: 1.03, 95% CI: 1.01,

1.04), and an inverse association with %DMA (GMR: 0.98, 95% CI: 0.97, 0.99). There was no

evidence of an interaction between any of the urine methylation markers and diabetes status

(all p-interaction <0.05).

Associations between baseline urine arsenic and plasma PAI-1 and

CRP at Visit 2 in the SHS main cohort

In fully adjusted models, comparison of the 75th to the 25th percentile (14.3 vs. 5.1 μg/g creati-

nine) of baseline urine arsenic was not significantly associated with Visit 2 PAI-1 when strati-

fying in those with or without diabetes (GMR without diabetes: 0.94, 95% CI: 0.87, 1.01; GMR

with diabetes: 0.95, 95% CI: 0.89, 1.01) and there was no significant difference in the associa-

tion between arsenic and PAI-1 by diabetes status (p-interaction = 0.66) (Table 3, Model 2;

Fig 1). Overall, the corresponding GMR of Visit 2 PAI-1 concentrations (GMR: 0.94, 95% CI:

0.89, 0.99) by arsenic levels was statistically significant (Table 3, Model 2). For CRP, a corre-

sponding difference in baseline urine arsenic was not associated with Visit 2 CRP concentra-

tions either overall (GMR: 1.00, 95% CI: 0.93, 1.08) or stratified by diabetes status (GMR

without diabetes: 0.95, 95% CI: 0.85, 1.06; GMR with diabetes: 1.03, 95% CI: 0.93, 1.14; p-inter-

action = 0.66) (Table 3, Model 3; Fig 1). Additional adjustment for time between baseline and

Visit 2 did not affect the associations. Results were consistent using arsenic quartiles created

from the set of participants with complete data at baseline, and when stratifying by baseline

diabetes. In post-hoc subgroup analyses, we found some evidence for effect modification of

the association between urine arsenic and CRP concentrations by sex (S2 Table).

Fig 1. Geometric mean ratios of fibrinogen, PAI-1, and CRP in relation to urine arsenic in the SHS main cohort by diabetes status. Lines

represent the geometric mean ratio (GMR) of baseline fibrinogen (left panel), PAI-1 at Visit 2 (center panel), or CRP at Visit 2 (right panel), by log-

transformed urine arsenic concentrations (ΣAs, μg/g creatinine), with the 10th percentile (3.6 μg/g creatinine) as the reference. The GMR of baseline

fibrinogen concentrations are from a linear mixed model and the GMR of Visit 2 PAI-1, and CRP concentrations are from a linear regression (see

statistical methods for details). Arsenic was modeled using restricted quadratic splines of log-transformed urine arsenic (knots at the 10th, 50th, 90th

percentiles; 3.6, 8.4, and 22.4 μg/g creatinine, respectively). Models were fully-adjusted for all potential confounders in Model 2 (age, sex, education (no,

some, or finished high school), smoking (never, former, current), alcohol drinking (never, former, current), BMI (kg/m2), LDL cholesterol (mg/dL),

hypertension (yes/no), eGFR (mL/min/1.73 m2), and study center (AZ, OK, ND/SD).

https://doi.org/10.1371/journal.pone.0182435.g001
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For plasma PAI-1, we found no association with %iAs (GMR: 1.01, 95% CI: 1.00, 1.01;

p = 0.080), an inverse association with %MMA (GMR: 0.94, 95% CI: 0.91, 0.98), and a positive

association with %DMA (GMR: 1.02, 95% CI: 1.06, 1.10). There was no evidence of an interac-

tion between any of the urine methylation markers and diabetes status (all p-interaction

>0.05).

Cross-sectional association between baseline urine arsenic and

fibrinogen, PAI-1, and CRP in SHFS participants without diabetes

Among 1901 participants without diabetes at the SHFS baseline (Visit 3 pilot/Visit 4), the

median (IQR) age was 36 (24, 47) years, 60% were female, and 70% had finished high school

(S3 Table). The overall median (IQR) of urine arsenic was 4.3 (2.9, 7.1) μg/g creatinine. The

median (IQR) baseline concentrations of fibrinogen, PAI-1, and CRP were 359 (311, 416) mg/

dL, 45 (27, 69) ng/mL, and 3.2 (1.2, 6.9) mg/L, respectively. Participants with higher urine arse-

nic were older, more likely to be female, had less education, were more likely to smoke, and

had a higher prevalence of albuminuria. We present the median concentrations of fibrinogen,

PAI-1, and CRP in relation to selected participant characteristics in S4 Table.

After adjusting for age, sex, education, smoking, alcohol drinking, BMI, LDL cholesterol,

hypertension, eGFR, and study center, there was no association between a difference in the

75th versus the 25th percentile of urine arsenic and fibrinogen (GMR: 0.99, 95% CI: 0.98, 1.01),

PAI-1 (GMR: 1.01, 95% CI: 0.97, 1.06), or CRP (GMR: 0.95, 95% CI: 0.87, 1.02) among SHFS

participants without diabetes (S5 Table, Model 2; S3 Fig). In post-hoc subgroup analyses, we

found some evidence for effect modification of the association between arsenic and fibrinogen

by LDL cholesterol and PAI-1 and CRP concentrations by study site (S6 Table).

Discussion

In the SHS main cohort, a population of adult men and women exposed to low-moderate lev-

els of arsenic in drinking water (<100 μg/L), we identified a positive association with plasma

fibrinogen limited to participants with diabetes and an inverse association with plasma PAI-1

in relation to baseline urine arsenic concentrations. Further adjustment for albuminuria and

hemoglobin A1c, which may act as confounders or mediators of the association between arse-

nic and CVD [58, 59], attenuated the association with fibrinogen but did not change the asso-

ciation with PAI-1. We found no associations between baseline urine arsenic and plasma CRP

in the SHS main cohort, and no associations between baseline urine arsenic and fibrinogen,

PAI-1, and CRP in a secondary analysis of SHFS participants without diabetes.

Arsenic may dysregulate one or multiple pathways related to CVD development and pro-

gression. As reviewed recently by Wu et al., the strongest epidemiologic evidence for an associ-

ation between chronic arsenic exposure and subclinical CVD endpoints comes from studies of

subclinical atherosclerosis, QT interval prolongation, and circulating markers of endothelial

dysfunction, particularly soluble intercellular and vascular cell adhesion molecules (sICAM-1

and sVCAM-1) and most studies have been conducted among populations exposed to arsenic

in drinking water above 100 μg/L [62]. To our knowledge, this is the first general population

epidemiologic study to examine the association between chronic arsenic exposure and plasma

fibrinogen and the first epidemiologic study to examine low-moderate arsenic exposure

(<100 μg/L in drinking water) and PAI-1 or CRP concentrations. A small clinical study (36

cases and 100 controls) found higher levels of platelet aggregation and coagulation factors,

including plasma fibrinogen, in subjects with Blackfoot disease, a peripheral vascular disease

related to endemic high arsenic exposure in Taiwan [32].
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Higher plasma fibrinogen concentrations indicate impaired fibrinolysis (i.e., an increased

risk of thrombosis), but fibrinogen is also an acute phase protein that is upregulated down-

stream of the cytokine-driven inflammatory cascade [63]. A meta-analysis of individual partic-

ipant data from prospective cohort studies found that a difference of 1 g/L of fibrinogen was

associated with an almost two-fold increase in the risk of CHD, stroke, and vascular mortality

in CVD-free individuals, with no evidence of differential risk by diabetes status [19]. In the

SHS, fibrinogen was associated with a higher risk of incident non-fatal and fatal CVD events

[64, 65] but not with ischemic stroke [66]. It is uncertain whether fibrinogen is causally associ-

ated with CVD, and Mendelian randomization studies have not supported a causal role for

fibrinogen in CVD [67]. Plasma fibrinogen levels increase strongly with age, and are associated

with traditional CVD risk factors like lipids, obesity, and diabetes [68, 69]. We adjusted for age

in multivariable regression models.

Our finding of a differential association between arsenic exposure and fibrinogen concen-

trations by diabetes status is consistent with our previous findings in the SHS main cohort that

the association between baseline urine arsenic and incident CVD and CHD was stronger

among participants with diabetes [12]. The etiologic pathways proposed for the cardiovascular

effects of chronic arsenic exposure may share commonalities with the pathophysiology of dia-

betic vasculopathy. For example, diabetes has been linked to subclinical atherosclerosis, such

as increases in carotid intima-media thickness [70], endothelial dysfunction [71], and chronic

inflammation [72].

The explanation for our observed inverse association between arsenic and PAI-1 concentra-

tions in the SHS main cohort, particularly in contrast to the null association in SHFS partici-

pants without diabetes, is unclear. We were surprised to find that PAI-1 was inversely

associated with several CVD risk factors in univariate analyses, including age and eGFR in

both participants with and without diabetes, and with SBP, hemoglobin A1c, and education in

participants with diabetes. Levels of PAI-1 may reflect a mixture of inflammation, metabolic

control, and neurohormonal activation, all of which may contribute to CVD risk [73, 74].

PAI-1 concentrations were associated with incident CHD in the Framingham Study [21], but

were not associated with incident CVD in the SHS main cohort [64]. Previous epidemiologic

studies of chronic arsenic exposure, albeit at high levels of arsenic in drinking water (>100 μg/

L), have all found positive associations with plasma PAI-1 concentrations [28, 29]. In Taiwan,

28 Blackfoot disease patients had higher PAI-1 levels compared to age-matched controls [28].

In a sample of 668 HEALS study participants in Bangladesh, higher water arsenic was associ-

ated with higher PAI-1 concentrations, with a stronger association among participants with a

BMI above 19.1 mg/kg2 [29]. Further, cultured human microvascular endothelial cells exposed

to 50 to 500 μg/L sodium arsenite had higher PAI-1 levels and higher PAI-1 activity compared

to controls [33].

CRP is commonly considered a sensitive biomarker of nonspecific systemic inflammation,

but it may also have pleotropic effects in atherosclerosis through its effects on adhesion mole-

cule expression, fibrinolysis, and endothelial dysfunction [75]. Current evidence suggests that

CRP is unlikely to play a causal role in CVD [76]. In the SHS main cohort, baseline CRP was

associated with incident CVD events, although the association was limited to participants

without diabetes [36]. Small cross-sectional studies of populations exposed to high levels of

arsenic exposure in drinking water (>100 μg/L) in Bangladesh have found a positive associa-

tion with CRP [30, 31]. In human hepatic cells, relatively low levels of arsenic (0.13 to 0.67 μM

of sodium arsenite, equivalent to 17 to 87 μg/L) resulted in significantly higher CRP expression

and secretion compared to controls and mice exposed to 100 μg/L of sodium arsenite in drink-

ing water for six months had higher CRP expression in liver cells compared to controls [34].
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We observed contrasting associations between arsenic methylation and plasma biomarkers

of thrombosis and inflammation. Higher %MMA was positively associated and %DMA was

negatively associated with baseline fibrinogen, whereas higher %MMA was negatively associ-

ated and %DMA was positively associated with Visit 2 PAI-1. These results suggest that lower

arsenic metabolism is associated with higher fibrinogen but that higher or more complete arse-

nic methylation is associated with PAI-1. Although methylation was initially thought to reduce

arsenic toxicity, the association between arsenic metabolism and health effects has been found

to be complex and may differ across arsenic-related disease outcomes. In a recent systematic

review, most studies observed that higher %MMA and lower %DMA was associated with

CVD outcomes, whereas lower %MMA and higher %DMA was often associated with diabetes

and metabolic syndrome [77]. PA1-1 is generally more strongly related to obesity, insulin

resistance, and diabetes compared to fibrinogen [74], although the relationship between the

inflammatory and fibrinolytic systems, observed as plasma fibrinogen and PAI-1, and CVD

and diabetes is complex. Thus, our results of a differential association between urine arsenic

methylation markers and fibrinogen compared to PAI-1 are consistent with this general pat-

tern of lower methylation associated with CVD outcomes and higher methylation related to

diabetes-related outcomes.

The high-quality measurement of speciated arsenic in urine is a major strength of this study

and is particularly useful in a population with low-moderate arsenic exposure in drinking

water where diet can contribute substantially to overall exposure [40]. The SHS had high qual-

ity data collection methods, information on important metabolic and lifestyle CVD factors,

and little loss to follow-up or missing data. In the SHS main cohort, plasma fibrinogen was

measured at multiple visits, allowing for the examination of both cross-sectional and longitudi-

nal associations. Although plasma fibrinogen, PAI-1, and CRP vary diurnally [78–80], the

influence of circadian variation is likely minimized in the SHS because all biological samples

were collected in the morning.

This analysis also had some limitations. Urine arsenic is likely a good biomarker of chronic

exposure in this population because concentrations of urine arsenic remained stable over 10

years in the SHS [12], drinking water arsenic levels tend to be relatively constant over time

[81], and the SHS participants have low residential mobility; however, the half-lives of urine

arsenic species are relatively short (e.g., days to weeks). Measurements of plasma fibrinogen,

PAI-1, and CRP taken several years apart may vary due to measurement error, chronic disease,

aging, or changes in other CVD risk factors. PAI-1 and CRP were only available at Visit 2, and

the association between baseline arsenic and Visit 2 CRP and PAI-1 concentrations may have

been different if these biomarkers were measured at baseline. Due to the observational nature

of the study, there is the possibility of selection bias and residual confounding. Residual con-

founding by socioeconomic status, geographic factors, or other factors is possible, although

our results were robust to adjustment for traditional CVD risk factors, education, and study

site. While collider stratification bias is a potential concern in epidemiological studies, we did

not see major differences in models with and without adjustment for diabetes and thus we

believe it is unlikely that diabetes is acting a collider. We cannot rule out reverse causation,

especially considering prothrombotic and inflammatory factors are elevated in kidney disease

[82], and urine arsenic concentrations may be affected by kidney function [83]. Absolute levels

of fibrinogen and PAI-1 were generally higher than in other studies [22, 36, 64, 84], likely

reflecting the higher prevalence of obesity, diabetes, and insulin resistance in the SHS. Our

results may not be generalizable to other populations with different CVD risk factor profiles.

Our secondary analysis using SHFS data was limited to individuals without diabetes because

urine arsenic has now been measured only in participants without diabetes at baseline.
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About 1.8 million United States residents are exposed to arsenic in public drinking water

above the EPA standard of 10 μg/L [1] and approximately three million are exposed to arsenic

in private wells above 10 μg/L [2–4]. Examining the association between arsenic and subclini-

cal CVD endpoints can help support arsenic risk assessment and drinking water policy by pro-

viding evidence for pathophysiological pathways that link arsenic and clinical CVD endpoints.

Emerging untargeted strategies, such as metabolomics and epigenome-wide association stud-

ies, could help identify mechanistic pathways for arsenic-related CVD.

In summary, we identified a positive cross-sectional association between low-moderate

chronic arsenic exposure and plasma fibrinogen concentrations in participants with diabetes

and an unexpected inverse association with plasma PAI-1 in the Strong Heart Study. Addi-

tional research is needed to understand how environmental exposures, such as arsenic, can

increase the risk of cardiovascular disease in the presence of diabetes. Future studies, particu-

larly at low-moderate levels of arsenic exposure, are needed to confirm these associations and

should investigate additional subclinical markers that could explain the association between

chronic arsenic exposure and CVD.
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