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Endocannabinoids (EC), particularly anandamide (AEA), released constitutively in pain pathways might be accountable for the
inhibitory effect on nociceptors. Pathogenesis of neuropathic pain may reflect complex remodeling of the dorsal root ganglia
(DRGs) and spinal cord EC system. Multiple pathways involved both in the biosynthesis and degradation of AEA have been
suggested. We investigated the local synthesis and degradation features of AEA in DRGs and spinal cord during the development
and maintenance of pain in a model of chronic constriction injury (CCI). All AEA synthesis and degradation enzymes are present
on themRNA level inDRGs and lumbar spinal cord of intact as well as CCI-treated animals. Deregulation of EC system components
was consistent with development of pain phenotype at days 3, 7, and 14 after CCI.The expression levels of enzymes involved in AEA
degradation was significantly upregulated ipsilateral in DRGs and spinal cord at different time points. Expression of enzymes of the
alternative, sPLA2-dependent and PLC-dependent, AEA synthesis pathways was elevated in both of the analyzed structures at all
time points. Our data have shown an alteration of alternative AEA synthesis and degradation pathways, which might contribute to
the variation of AEA levels and neuropathic pain development.

1. Background

The development of neuropathic pain after nerve injury
occurs when peripheral nerve fibers are damaged or dys-
functional, which results in incorrect signals being sent
to the brain and loss of afferent sensory function with
typical features such as allodynia and hyperalgesia [1, 2].
Chronic pain serves no protective biological function unlike
a symptom of a disease process, and there is a strong need
to identify novel therapeutic targets [3]. Among the many
suggested strategies to treat neuropathic pain, cannabinoids
have the potential to become analgesic targets for drug devel-
opment. Indeed cannabinoid agonists suppress neuropathic
symptoms in animal models of neuropathic pain evoked by
chronic constriction injury (CCI) to the sciatic nerve [4–6] or
spinal nerve ligation [7–10]. Yet, this therapeutic intervention
is also associated with a number of adverse effects, includ-
ing sedation, motor impairment, and cognitive impairment.
Therefore, an alternative approach to target endocannabinoid

(EC) signaling has been proposed [11], which may pro-
vide a more effective strategy in relieving neuropathic pain
[12–14]. Anandamide (AEA), the first discovered and best
studied EC, acts via cannabinoid 1 (CB1) and cannabinoid
2 (CB2) receptors in a manner similar to naturally derived
and synthetic cannabinoid agonists, but it may also modulate
nociception via other receptors, that is, transient receptor
potential vanilloid 1 (TRPV1) [15–18].

ECs are present in multiple pain-modulating regions
throughout the central nervous system (CNS), including the
dorsal horn of the spinal cord and the dorsal root ganglia
(DRGs), where their levels are modified by acute nociceptive
stimuli and stress [19–23]. Tissue concentrations of AEA in
the spinal cord become altered [14, 23–25] as an adaptive
response to neuropathic pain, which further confirms the
significant role of the AEA in chronic pain development.

Previous reports suggest that AEA is synthesized “on
demand” [26] in regions of cellular stress (such as injured
tissues or nerves). Although AEA is mainly generated from
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Figure 1: Schematic illustration of parallel AEA synthesis and
degradation pathways. NAPE-PLD represents a Ca2+-dependent
route of AEA formation (—), while other enzymes (- - -) act in
a Ca2+-insensitive manner. Main route of AEA degradation is
hydrolysis by FAAH (- - -). High AEA tissue concentration triggers
parallel catabolic pathways through LOX-12/15 and COX-2 enzymes
(⋅ ⋅ ⋅ ). AEA: anandamide, NAPE: N-acylphosphatidylethanolamine,
NAPE-PLD: N-acylphosphatidylethanolamine phospholipase D,
GDE1: glycerophosphodiester phosphodiesterase 1, ABHD4: 𝛼/𝛽
hydrolase domain containing protein 4, PTPN22: protein tyrosine
phosphatase nonreceptor type 22, sPLA2: soluble phospholipase
A2, INPP5D: inositol 5-phosphatase, PLC: phospholipase C, FAAH:
fatty acid amide hydrolase, COX-2: cycloxygenase 2, LOX-12: arachi-
donate 12-lipoxygenase, LOX-15: arachidonate 15-lipoxygenase, gp-
AEA: glycerophosphoanandamide, p-AEA: phospho-anandamide,
lysoNAPE: lyso-N-acylphosphatidylethanolamine, AA: arachidonic
acid, ETA: ethanolamine, PG: prostaglandins, PM: prostamides, and
12/15-hAEA: 12/15-hydroxyanandamide.

phospholipid precursor N-arachidonoylphosphatidyletha-
nolamine (NAPE) through hydrolysis by a N-arachidonoyl-
phosphatidylethanolamine phospholipase D (NAPE-PLD)
[27] in a Ca2+-sensitive manner, recent evidence [28] indi-
cates the existence of two parallel, additional, phospholipase
C (PLC) and secreted phospholipase A2 (sPLA2)—catalyzed,
Ca2+-independent pathways.The PLC pathway involves PLC
itself and two other enzymes with parallel activity: pro-
tein tyrosine phosphatase non-receptor type 22 (PTPN22)
and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase
1 (INPP5D) [29, 30]. The sPLA2 pathway also includes
the 𝛼/𝛽 hydrolase domain containing protein 4 (ABHD4)
and glycerophosphodiesterphosphodiesterase 1 (GDE1) [31]
(Figure 1). Similarly, multiple pathways involved in the
degradation of AEA have been suggested [27, 32, 33]. Due
to the efficient enzymatic degradation mainly by fatty acid
amide hydrolase (FAAH) and also cyclooxygenase 2 (COX-
2) as well as arachidonate lipoxygenases 12 and 15 (LOX-
12/15), locally released ECs have a short half-life [34, 35]; thus,
corrective relevance is limited.

Deregulation of the EC system underlies several neu-
rological disorders including chronic pain; thus, there is a
strong need for detailed characterization of the changes in
the EC system during the development of neuropathic pain.
Therefore, the aim of our studies was to investigate the role
of multiple AEA production (both in Ca2+-dependent and
Ca2+-independent manners) and degradation pathways as
well as the possible consequences of altering its signaling

during the development of neuropathic pain. We examined
mRNA expression of EC system elements in DRGs and
lumbar spinal cord, as both of these structures play a critical
role in the integration and modulation of nociceptive signals
from the peripheral nervous system. Additionally, changes
at the site of nerve injury and in DRGs may give rise to the
perception of pain in conditions such as neuropathy, which
modifies the transmission of pain from peripheral tissues
through the spinal cord to higher centers of the brain.

2. Results

2.1. Rats Subjected to CCI Showed Signs of Allodynia on the
Operated Paw at 3, 7, and 14 Days after Induction of Injury.
Presurgery thresholds reached the cut-off values for both
thermal and mechanical allodynia, for both animals which
undergo CCI procedure and intact. Cut-off values were also
reached for intact animals in all tested time points. Neuro-
pathic animals developed thermal allodynia as indicated by
the cold plate test thermal withdrawal latency observed at
day 3 after CCI (18.88 ± 2.88 s; ∗𝑃 < 0.01; Figure 2(a)) and
progressed at days 7 and 14 (12.85 ± 1.61 s, ∗𝑃 < 0.001 and
16.63 ± 1.64 s, ∗𝑃 < 0.001, resp.; Figure 2(a)). Mechanical
allodynia was observed as decreased mechanical withdrawal
threshold ipsilateral to injury in all time points tested (18.18 ±
1.88 g, ∗𝑃 < 0.001; 11.68 ± 1.54, ∗𝑃 < 0.001; 12.75 ± 1.40,
∗
𝑃 < 0.001; 3, 7, and 14 days after sciatic nerve injury, resp.;
Figure 2(b)). In both tests, allodynia was maximal at day 7.
The thresholds to mechanical stimulation were unaffected in
contralateral paws and sham-operated rats (data not shown).

2.2. CCI Rats Exhibited a Significant Decrease in Thermal
Hyperalgesia Thresholds after Nerve Ligation. Thermal ipsi-/
contralateral withdrawal latency did not significantly change
in intact animals or in the contralateral side of the CCI
operated rats in all time points tested (Figure 2(c)). CCI to the
sciatic nerve reduced ipsilateral thermal withdrawal latency
compared with both the intact animals and the contralateral
paw of CCI animals at all-time points tested. It reached the
lowest values at day 7 after the procedure (6.77 ± 0.46 s, #𝑃 <
0.05; 4.83 ± 0.50 s, ∗#𝑃 < 0.001; 5.25 ± 0.52 s, ∗#𝑃 < 0.001; at
day 3, 7 and 14 after CCI, resp.; Figure 2(c)).

2.3. Alteration of CB2 Expression Was Observed in DRGs
(L4-L6) and Lumbar Spinal Cord during the Development
of Neuropathic Pain, While No Changes Were Observed in
the Expression of CB1 and TRPV1. CB1, CB2, and TRPV1
receptor transcripts were detected both in the DRGs and
in the lumbar spinal cord of intact and neuropathic rats.
Higher levels ofCnr1 (CB1) receptor transcripts were detected
contralateral to the injury in the DRGs throughout the
development of neuropathic pain in comparison with the
ipsilateral side (1.31 ± 0.11, #𝑃 < 0.05; 1.78 ± 0.14, ∗#𝑃 < 0.001;
1.35 ± 0.09, #𝑃 < 0.01; fold change at days 3, 7, and 14 in CCI
rats, resp.; Figure 3(a)). Although there were significant dif-
ferences in Cnr1 expression in ipsilateral versus contralateral
DRGs at respective days, only day 7 was characterized by a
significant upregulation in the contralateral versus intact. No
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Figure 2: Thermal (a) and mechanical (b) allodynia and thermal
hyperalgesia (c) in intact or CCI animals at 3, 7, and 14 days after
CCI of the sciatic nerve. Thermal allodynia and hyperalgesia were
measured as thermal withdrawal latency in seconds (mean ± SEM)
and mechanical allodynia as mechanical withdrawal threshold in
grams (mean ± SEM). Cut-off values were 30 s, 26 g, and 20 s
for the cold plate, von Frey’s and Hargreaves’ tests, respectively.
Statistical analysiswas performedusing a one-wayANOVA followed
by Bonferroni post hoc tests. Values with 𝑃 < 0.05 were considered
significant.∗denotes significant difference versus intact and # versus
contralateral paw.

significant changes in Cnr1 mRNA levels were observed in
the lumbar spinal cord during development of neuropathic
pain (Figure 3(b)). Cnr2 (CB2) mRNA expression levels were
altered in both structures (Figures 3(c) and 3(d)). In DRGs,
an elevated level of Cnr2 transcript was observed ipsilateral
at day 7 after CCI procedure (1.78 ± 0.11, ∗𝑃 < 0.01; fold

change at day 7 in CCI rats). Expression of Cnr2 contralateral
to the injury decreased significantly 14 days after sciatic nerve
injury in comparison to earlier time points ($

𝑃
< 0.05).

The strongest upregulation of Cnr2 transcript was observed,
exclusively ipsilateral to the injury, in the lumbar spinal cord
at all-time points tested (6.53 ± 1.42, ∗𝑃 < 0.01; 7.43 ± 1.49
∗
𝑃 < 0.01

#
𝑃
< 0.05; 6.30 ± 1.93 ∗𝑃 < 0.05; fold change

ipsilateral at days 3, 7, and 14 in CCI rats, resp.; Figure 3(d)).
Expression of Trpv1 mRNA was not altered in the examined
structures during the development of neuropathic pain at
days 3, 7, or 14 in comparison to intact animals (Figures 3(e)
and 3(f)). However, an alterations in the DRGs at day 7 versus
day 3 was observed ($

𝑃
< 0.01).

2.4. Upregulation of Alternative Synthesis Enzymes of AEA
in DRGs and Lumbar Spinal Cord as a Consequence of
Sciatic Nerve Injury. There were no significant changes in
the expression levels of Napepld (NAPE-PLD) mRNA, the
main AEA synthesizing enzyme, in DRGs or in the lumbar
spinal cord (Figures 4(a) and 4(b)). Neuropathic pain led to
an upregulation of mRNA encoding enzymes of alternative
synthesis pathways in L4-L6 DRGs and the lumbar spinal
cord (Figure 5). Pla2g2a (sPLA2) transcript levels were
elevated in DRGs ipsilateral to the injury 7 days after CCI
compared with the intact animals (1.40 ± 0.17, #

𝑃 < 0.01;
1.69 ± 0.07, ∗𝑃 < 0.01 #

𝑃
< 0.001; 1.40 ± 0.06, #𝑃 < 0.01;

fold change ipsilateral at days 3, 7, and 14 in CCI rats, resp.;
Figure 5(a)) and in all-time points in the lumbar spinal cord
(2.15 ± 0.14, ∗#𝑃 < 0.001; 1.94 ± 0.06, ∗#𝑃 < 0.001; 1.87 ±
0.04, ∗𝑃 < 0.001#

𝑃
< 0.01; fold change at days 3, 7 and 14

after sciatic nerve ligation, resp.; Figure 5(g)).The abundance
of Inpp5d (INPP5D) mRNA was increased ipsilateral to the
injury in all tested time points in the lumbar spinal cord
exclusively (2.83 ± 0.18, ∗#𝑃 < 0.001; 2.36 ± 0.10, ∗#𝑃 <
0.001; 2.51 ± 0.05, ∗#𝑃 < 0.001; fold change ipsilateral at
days 3, 7, and 14 in CCI rats, resp.; Figure 5(l)). The mRNA
levels of other enzymes involved in AEA synthesis did not
significantly change in the measured time points after CCI of
the sciatic nerve.

2.5. Alteration in the Expression of Main and Alternative
Enzymes for AEA Degradation in Tested Tissues of CCI
Rats during the Development of Neuropathic Pain. Analysis
of Faah (FAAH) transcript levels revealed that the main
AEA degradation enzyme showed no significant changes in
expression in the L4-L6 DRGs during the development of
neuropathic pain (Figure 6(a)). Alterations of Faah mRNA
levels were limited to the ipsilateral side of the lumbar spinal
cord at days 3, 7, and 14 after CCI (1.73 ± 0.23, ∗𝑃 < 0.001;
2.54 ± 0.36, ∗𝑃 < 0.001; 2.57 ± 0.20, ∗𝑃 < 0.001 #

𝑃
< 0.05;

fold change at respective days; Figure 6(b)). Ptgs2 (COX2)
transcript levels were altered in DRGs both at the ipsilateral
and contralateral side of the injury at different time points.
The highest levels of transcript were observed at day 7 after
injury (3.50 ± 0.25, ∗𝑃 < 0.001; 3.40 ± 0.42, ∗𝑃 < 0.001;
Figure 6(c)). Ptgs2 expression declined to baseline at day
14 after CCI surgery. We observed no appreciable changes
in the abundance of Ptgs2 in lumbar spinal cord, except



4 BioMed Research International

2.5

2.0

1.5

1.0

0.5

0.0

Day 3 Day 7 Day 14

###

$
∗∗∗

# ##

Dorsal root ganglia

Cn
r1

m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

(a)

2.0

1.5

1.0

0.5

0.0

Spinal cord

Day 3 Day 7 Day 14

Cn
r1

m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

(b)

$

##

0.0

0.5

1.0

1.5

2.0

2.5

∗∗
$$$

Day 3 Day 7 Day 14

Dorsal root ganglia

Cn
r2

m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

(c)

12

9

6

3

0

∗∗
∗∗
#

∗

Spinal cord

Day 3 Day 7 Day 14

Cn
r2

m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

(d)

$$1.5

1.0

0.5

0.0

Day 3 Day 7 Day 14

Intact

Contralateral

Tr
pv

1m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

Dorsal root ganglia

Ipsilateral

(e)

1.5

1.0

0.5

0.0

Day 3 Day 7 Day 14

Intact

Contralateral

Tr
pv

1m
RN

A
 fo

ld
 ch

an
ge

(H
pr

t1
no

rm
al

iz
ed

)

Spinal cord

Ipsilateral

(f)

Figure 3: Results of qPCR analysis of Cnr1, Cnr2, and Trpv1 gene expression levels in the L4-L6 dorsal root ganglia and in the dorsal part
of the lumbar spinal cord during the development of neuropathic pain in CCI rats. Samples were collected at 3, 7, and 14 days after CCI
procedure. Data are presented as the mean ± SEM and represent normalized averages derived from 4–6 samples for each group. Results are
presented as a fold change normalized to the expression of a reference gene Hprt1, compared to the intact animals. Statistical analysis was
performed using a one-way ANOVA followed by Bonferroni post hoc tests. Values with 𝑃 < 0.05 were considered significant. ∗ denotes
significant differences versus intact, # versus contralateral side, and $ versus indicated bar.

for the Ptgs2 ipsilateral upregulation at day 3 (1.86 ± 0.21,
∗
𝑃 < 0.001; fold change ipsilateral at day 3 in CCI rats;
Figure 6(d)). Similar patterns of gene expression levels of the
major lipoxygenases (Alox12,Alox15) in neuropathic ratswere
observed in the DRGs and the lumbar spinal cord (Figures
6(e)–6(h)). Alox12 (LOX-12) mRNA levels were significantly
upregulated ipsilateral to the injury in DRGs from day 7
after CCI (1.87 ± 0.17, ∗𝑃 < 0.001 #

𝑃
< 0.01

$
𝑃
< 0.001;

1.63 ± 0.09, ∗𝑃 < 0.001 $
𝑃
< 0.01; fold change at days 7

and 14 in CCI rats, resp.; Figure 6(e)). Elevation of Alox12

transcript levels in lumbar spinal cord was observed solely
ipsilateral to the injury at all-time points measured (1.65 ±
0.06, ∗𝑃 < 0.001 #

𝑃
< 0.01; 1.52 ± 0.08, ∗𝑃 < 0.01; 1.74 ±

0.18, ∗𝑃 < 0.001 #
𝑃
< 0.05; fold change ipsilateral at days 3, 7,

and 14 inCCI rats, resp.; Figure 6(f)). Elevated levels ofAlox15
(LOX-15) mRNA were observed ipsilateral at days 7 and 14
after sciatic nerve injury in both of the assayed tissues (2.04
± 0.28, ∗𝑃 < 0.01 $

𝑃
< 0.05; 2.64 ± 0.27, ∗𝑃 < 0.001 #

𝑃
<

0.001

$
𝑃
< 0.001; fold change DRGs ipsilateral at day 7 and

14 in CCI rats, resp., and 2.26 ± 0.36, ∗𝑃 < 0.001 #
𝑃
<
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Figure 4: Expression of NapepldmRNA in L4-L6 dorsal root ganglia and in the dorsal part of the lumbar spinal cord during the development
of neuropathic pain in CCI rats. Samples were collected at 3, 7, and 14 days after CCI procedure. Data are presented as the mean ± SEM and
represent normalized averages derived from 4–6 samples for each group. Results are presented as a fold change normalized to the expression
of a reference geneHprt1, compared to the intact animals. Statistical analysis was performed using a one-way ANOVA followed by Bonferroni
post hoc tests. Values with 𝑃 < 0.05 were considered significant. ∗ denotes significant differences versus intact, # versus contralateral side,
and $ versus indicated bar.

0.05

$
𝑃
< 0.001; 2.49 ± 0.25, ∗𝑃 < 0.001 $

𝑃
< 0.001; fold

change lumbar spinal cord ipsilateral at day 7 and 14 in CCI
rats, resp; Figures 6(g) and 6(h)).

3. Discussion

A large number of research articles have demonstrated the
efficacy of cannabinoids and modulators of the EC system
in the alleviation of neuropathic pain in various animal
models of surgically induced trauma, such as chronic con-
striction injury, partial sciatic nerve ligation, or spinal nerve
ligation [14, 36]. Recent studies highlight the importance
of alterations in the spinal and supraspinal EC levels in
neuropathic rats [24] as well as the involvement of peripheral
CB1/CB2 receptors in the antinociceptive effects of EC system
modulation [37]. However, the exact mechanisms involved
in the dynamic changes of EC concentrations in nervous
tissues have never been investigated. Given the importance
of the first-order neurons located in the DRGs and the spinal
cord for pain sensation, in the present study, we investigated
the putative AEA synthesizing and degradation enzymatic
pathways in those structures. We reported for the first time
changes in the expression of AEA metabolic enzymes at the
DRG and spinal cord levels in a rat model of neuropathic
pain.

In the rat CCI model of neuropathic pain, we evaluated
pain behavior in three independent tests (Figure 2). We
have determined that the nocifensive behavior in neuro-
pathic animals: allodynia and hyperalgesia are accompanied
by multiple changes in the expression of receptors and
metabolic enzymes for AEA. ECs are produced on demand
in regions of cellular stress, for example, in injured tissues
during the development of neuropathic pain. Unfortunately,
locally released ECs are rapidly broken down in the tissue,
so their physiological effectiveness is limited. Therefore,
the endogenous control of the EC system during chronic

pain remains an important issue to study, and it might
provide new insight into the possibilities of EC modulation.
The present investigation has expanded the knowledge of
endogenous control mechanisms by showing that parallel
pathways of synthesis and degradation of AEA become
activated in response to the development of neuropathic
pain and in consequence may influence levels of AEA in
effected tissues. Studies on the endogenous levels of AEA
in neuronal tissues during the development of chronic pain
have yielded conflicting results in this regard. It was reported
that the development of chronic pain was accompanied by
a significant elevation of AEA levels at the spinal cord level
[6, 24, 33, 38], although other studies showed no changes
or even decreases in AEA concentration in different models
of chronic pain [12, 22, 23, 25, 39, 40]. Several parallel
pathways are suggested to contribute to the synthesis of AEA,
among which the main occurs from its membrane precursor
through cleavage by NAPE-PLD. It was reported that tissues
fromNAPE-PLDknockoutmice exhibited enzymatic activity
converting NAPE to AEA in a calcium-independent manner
[41], suggesting the involvement of parallel biosynthetic
pathways and supporting the theory that NAPE-PLD only
makes a partial contribution to the biosynthesis of AEA [42].
Although some data showed the expression of enzymes of
alternative pathways in neuronal tissues [43], comparison
of expression profiles between control and neuropathic pain
animals has never been performed.The present investigation
has supplemented these observations by showing the upreg-
ulation of AEA synthetic enzymes in parallel pathways in
a rat model of neuropathic pain (Figure 5). We confirmed
that NAPE-PLD shows no alteration during the induction of
pain (Figure 4) (as previously reported [40]). Therefore, we
hypothesized that the variations in AEA levels are derived
from disparities in the activity of alternative synthesis path-
ways. As a matter of fact, parallel pathways for AEA synthesis
involving Ca2+ -insensitive enzymes were elevated ipsilateral
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Figure 5: Gene expression analysis of enzymes involved in alternative pathways of anandamide synthesis—Pla2g2a, Abdh4, Gde1, Plcb1,
Ptpn22, and Inpp5d in L4-L6 dorsal root ganglia and in the dorsal part of the lumbar spinal cord during the development of neuropathic pain
in CCI rats. Samples were collected at 3, 7, and 14 days after CCI procedure. Data are presented as the mean ± SEM and represent normalized
averages derived from 4–6 samples for each group. Results are presented as a fold change normalized to the expression of a reference gene
Hprt1, compared to the intact animals. Statistical analysis was performed using a one-way ANOVA followed by Bonferroni post hoc tests.
Values with 𝑃 < 0.05 were considered significant. ∗ denotes significant differences versus intact, # versus contralateral side, and $ versus
indicated bar.
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Figure 6: Expression of main anandamide degradation enzymes—Faah, Ptgs2, Alox12, and Alox15 in L4-L6 dorsal root ganglia and in the
dorsal part of the lumbar spinal cord during the development of neuropathic pain in CCI rats. Samples were collected at 3, 7, and 14 days after
CCI procedure. Data are presented as the mean ± SEM and represent normalized averages derived from 4–6 samples for each group. Results
are presented as a fold change normalized to the expression of a reference gene Hprt1, compared to the intact animals. Statistical analysis
was performed using a one-way ANOVA followed by Bonferroni post hoc tests. Values with 𝑃 < 0.05 were considered significant. ∗ denotes
significant differences versus intact, # versus contralateral side, and $ versus indicated bar.

to the injury in both of the tissues examined in our studies
(Figure 5). Additionally, PLC-dependent pathway activity
was altered in the site of injury in the lumbar spinal cord
exclusively (Figure 5). Our findings stress the importance of
the activation of these pathways in the endogenous control of
AEA levels during the development of chronic disorders.

Similar to the synthetic pathways, there is more than one
degradation route of AEA. It has been assumed that AEA
undergoes mainly FAAH-mediated hydrolysis. In the present
study, we report strong upregulation of FAAH transcripts
ipsilateral to the injury on the spinal cord level (Figure 6).This
finding supports our previous studies, which were focused on
investigating the role of FAAH inhibition in the alleviation
of pain behavior through the endogenous elevation of AEA

levels (for details see [13]). Yet, diminishing or eliminating the
hydrolysis of AEA by FAAH would increase the probability
that AEA might undergo alternative routes of metabolism,
such as oxidation by fatty acid oxygenases that are known to
act on endogenous arachidonic acid, namely, the members of
the lipoxygenase (LOX) and cyclooxygenase (COX) [33, 44,
45] families. Herein, we also examined mRNA levels of LOX-
12 and LOX-15 and showed an ipsilateral alteration of these
enzymes in both the DRGs and lumbar spinal cord during
the development of neuropathic pain (Figure 6). This result
suggests that changes in LOX expression, as well metabolism
of AEA via this pathway, may influence nociceptive process-
ing. Moreover, LOX catabolism may lead to the production
of active AEA metabolites, for example, 12/15-hydroxy-AEA,
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which may act via TRPV1 and/or PPARalfa receptors, which
contribute to the modification of pain behavior [33, 46, 47].
AEA was also shown to serve as a substrate for COX-2
[48]. As a result, it is a precursor of prostaglandins and
prostamides, which can induce neuroinflammation and can
result in the attenuation of therapeutic benefits of FAAH
inhibitors [49, 50]. Moreover, some oxidized forms of AEA
might serve as FAAH inhibitors [51]. Because they can be
formed in vivo, they might also play an important role in
controlling AEA degradation and, as a consequence, its levels
in tissues. As in our studies, both LOX-12/15 and COX-2
levels were elevated, the effects of AEA metabolites should
be considered based on the estimation of the benefits of
pharmacological FAAH enzyme inhibition.

The analgesic effects produced by the activation of CB1
receptors have been well described and extensively reviewed
[14, 52]. However, the broad distribution of CB1 receptors in
the central nervous system emphasizes both their therapeutic
effects, such as analgesia, as well as their side effects. Although
it was reported bymany authors that CB1 receptor expression
is increased in the chronic pain conditions [53, 54], there
is evidence showing no effect of pain development on
CB1 receptor level alterations [55, 56], which is consistent
with our studies. Due to the side effects mediated by CB1
receptor, it is clinically relevant to focus on the periph-
erally restricted CB1 agonists [57] as well as on signaling
through the CB2 receptor. In our studies on neuropathic pain
development, the CB2 receptor rather than the CB1 receptor
showed significant upregulation, which is consistent with
results obtained by other authors [58–60] and this finding
might contribute to the hypothesis of the involvement of
CB2 receptors in the attenuation of nociceptive response
in models of neuropathic pain [61, 62]. Moreover, studies
showed that the administration of CB1/CB2 agonist can
attenuate pain response, although no change in expression of
those receptors was observed [63]. This result might suggest
more complex interactions between cannabinoid receptors
during the development chronic pain dependent on the
various features of the animal model used. Because AEA
might act on different molecular targets, we examined the
expression of the TRPV1 receptor at the transcript level as
well. Although we observed no changes in the transcript
levels of this receptor, its activity depends on phosphorylation
and dephosphorylation processes, which are crucial for its
function and act to decrease or increase channel activity,
respectively [64].

4. Conclusions

The present investigation has expanded the knowledge of EC
system modulation by showing that all AEA synthesis and
degradation enzymes are present in DRGs and lumbar spinal
cord of intact as well as neuropathic animals. Alterations
in a variety of synthesis and degradation enzymes of AEA
illustrate the flexibility of the EC system. This may explain
why genetic ablation or pharmacological inhibition of only
one of its metabolic pathways does not cause a substantial
change in the cellular levels of AEA and may lead to

unexpected behavioral effects. By combining behavioral tests
and measuring the transcript levels of metabolic enzymes
of AEA, we provide new insight into the involvement of
the EC system in the development of neuropathic pain.
Because therapies using ECs hold substantial promise, an
understanding of the plasticity of the EC system is crucial and
should be further investigated.

5. Methods

5.1. Animals. Male Wistar rats (Charles River, Hamburg,
Germany), initially weighing 225–250 g, were used for all
experiments. Animals were housed five per cage under a
standard 12/12 h light/dark cycle (lights on at 08:00 h) with
food and water available ad libitum. All animals were allowed
to acclimatize to their holding cages for 3 to 4 days before
any behavioral or surgical procedures were carried out. All
experiments were conducted during the light cycle between
8:00 and 13:00. All experiments were performed according
to the NIH Guide for the Care and Use of Laboratory
Animals with recommendations by IASP [65] and were
approved by the Local Bioethics Committee. Care was taken
to implement the 3 Rs rule (replacement, reduction, and
refinement) both to reduce the number of animals used
and the suffering during the experiments. Different sets of
animals were used for behavioral and biochemical studies
to avoid changes in expression levels caused by thermal and
mechanical stimulation. Results obtained in our research
group [66] as well as those reported by others [67] showed
no significant differences between sham operated group and
intact (naive) animals in allodynia and hyperalgesia thresh-
olds in development of neuropathic pain. Moreover Paszcuk
et al. reported no significant differences in expression of
EC system components in sham versus intact animals [54].
Therefore, respecting 3 R policy in laboratory animals use, we
decided to compare only intact (naive) and neuropathic pain
groups in our biochemical experiments.

5.2. Sciatic Nerve Surgery. Peripheral neuropathy was
induced by chronic constriction injury (CCI) as described by
Bennett and Xie [68].The sciatic nerve injury was performed
under sodium pentobarbital anesthesia (60mg/kg, i.p.). The
biceps femoris and the gluteus superficialis were separated,
and the right sciatic nerve was exposed. Proximal to the
sciatic trifurcation, approximately 7mm of nerve was freed
from the adhering tissue, and the injury was produced by
tying four loose ligatures (4/0 silk, 1mm spacing) around the
sciatic nerve until they elicited a brief twitch in the respective
hind limbs.This twitch prevented us from applying a ligation
that was too strong. The total length of nerve affected
was 5-6mm. No procedure was conducted on the control
animals.

5.3. Nociceptive Behavior. All experiments were conducted
3, 7, and 14 days after the sciatic nerve injury to determine
thermal and mechanical withdrawal thresholds during the
development of neuropathic pain. Thermal allodynia was
assessed using the cold plate test (Cold/Hot Plate Analgesia
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Meter No. 05044 Columbus Instruments, USA).The temper-
ature of the cold plate was kept at 5∘C, and the cut-off latency
was 30 s. The rats were placed on the cold plate, and the
time until the hind paw was lifted was recorded. The injured
paw exhibited lower reaction latency. For the assessment of
mechanical allodynia (von Frey’s test), rats were tested for
their foot withdrawal threshold in response to an automatic
von Frey apparatus (Dynamic Plantar Aesthesiometer Cat.
No. 37400, Ugo Basile Italy). Rats were placed in plastic
cages with a wire net floor 5min before the experiment. The
von Frey’s filament was applied to the midplantar surface of
the ipsilateral hind paw, and the measurements of applied
mechanical force were taken automatically. The strength of
the von Frey’s stimuli in our experiments ranged from 0.5
to 26 g. Thermal hyperalgesia (Hargreaves’ test). For the
assessment of paw withdrawal latency (PWD) to a noxious
thermal stimulus the Analgesia Meter (mod 33, IITC INC.,
Landing, NJ) was used. On the day of the experiment, each
animal was placed in a plastic cage with a heated glass floor.
After 5min of habituation, a noxious thermal stimulus, a light
beam, was focused onto the plantar aspect of a hind paw until
the animal lifted the paw away from the heat source.The paw
withdrawal latency was automatically rounded to the nearest
0.1 s. A cut-off latency of 20 s was used to avoid tissue damage.

5.4. Sample Preparation & RNA Isolation. Animals were sac-
rificed at either the 3, 7, or 14 day after nerve ligation. A group
of naive animals was used as a reference. The L4-L6 dorsal
root ganglia (DRGs) and dorsal lumbar spinal cord were
collected from both ipsilateral and contralateral side to the
injury. Tissue samples were placed in individual tubes with
the tissue storage reagent RNAlater (Qiagen Inc., Valencia,
CA, USA), frozen on dry ice, and stored at −80∘C until
RNA isolation. Samples were homogenized in 1mL of Trizol
reagent (Invitrogen, Carlsbad, CA, USA). RNA isolation was
performed according to Chomczynski’s method [69]. RNA
concentration was measured using a NanoDrop ND-1000
Spectrometer (Thermo Scientific, Wilmington, USA).

5.5. qPCRAnalysis of Gene Expression. Reverse transcription
of total RNA (1 𝜇g per sample) was performed using Omnis-
cript reverse transcriptase (Qiagen Inc., Valencia, CA, USA)
at 37∘C for 60 minutes. For quantitative PCR, 45 ng of cDNA
was used as a template. Reactions were performed using
Assay-On-Demand TaqMan probes and TaqMan Universal
PCR Master Mix (Applied Biosystems, Foster, CA, USA)
according to the manufacturer’s protocol. The following
assays were used: Rn02758689 s1 (Cnr1), Rn03993699 s1
(Cnr2), Rn00583117 m1 (Trpv1), Rn01786262 m1 (Napepld),
Rn00668379 g1 (Pla2g2a), Rn01488539 m1 (Abhd4),
Rn00583529 m1 (Gde1), Rn01514511 m1 (Plcb1),
Rn01533758 m1 (Ptpn22), Rn01400935 m1 (Inpp5d),
Rn00577086 m1 (Faah), Rn00568225 m1 (Ptpgs2),
Rn01461082 m1 (Alox12), Rn00696151 m1 (Alox15),
Rn01527840 m1 (Hprt1). Cycle threshold values (Ct)
were calculated automatically by the iCycler IQ 3.0 software.
Expression levels were normalized with the Ct for a reference
gene, which was hypoxanthine phosphoribosyltransferase

1 (Hprt1). The abundance of RNA was calculated as
2

−(normalized threshold cycle).

5.6. Statistics. All data are presented as the mean S.E.M.
The results of behavioral experiments and RT-qPCR were
evaluated by the analysis of variance (ANOVA) followed by
Bonferroni tests. Groups included 8–10 animals for behav-
ioral tests or 4–6 animals for RT-qPCR experiments. A value
of 𝑃 < 0.05 was considered to be statistically significant.
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Sañudo-Peña, “Pain modulation by release of the endogenous
cannabinoid anandamide,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 96, no. 21, pp.
12198–12203, 1999.

[21] A. G. Hohmann, R. L. Suplita, N. M. Bolton et al., “An endo-
cannabinoid mechanism for stress-induced analgesia,” Nature,
vol. 435, no. 7045, pp. 1108–1112, 2005.

[22] P. Bishay, H. Schmidt, C. Marian et al., “R-flurbiprofen reduces
neuropathic pain in rodents by restoring endogenous cannabi-
noids,” PLoS ONE, vol. 5, no. 5, Article ID e10628, 2010.
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