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Background: Gaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in re-
duced enzymatic activity of β-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene
(GRN) as another gene associated with GD.
Methods: Serum levels of PGRN were measured from 115 GD patients and 99 healthy controls, whole GRN gene
from 40 GD patients was sequenced, and the genotyping of 4 SNPs identified in GD patients was performed in
161 GD and 142 healthy control samples. Development of GD in PGRN-deficient mice was characterized, and
the therapeutic effect of rPGRN on GD analyzed.
Findings: SerumPGRN levels were significantly lower in GD patients (96.65± 53.45 ng/ml) than those in healthy
controls of the general population (164.99 ± 43.16 ng/ml, p b 0.0001) and of Ashkenazi Jews (150.64 ±
33.99 ng/ml, p b 0.0001). Four GRN gene SNPs, including rs4792937, rs78403836, rs850713, and rs5848, and
three point mutations, were identified in a full-length GRN gene sequencing in 40 GD patients. Large scale SNP
genotyping in 161 GD and 142 healthy controls was conducted and the four SNP sites have significantly higher
frequency in GD patients. In addition, “aged” and challenged adult PGRN null mice develop GD-like phenotypes,
including typical Gaucher-like cells in lung, spleen, and bonemarrow.Moreover, lysosomes in PGRNKOmice ex-
hibit a tubular-like appearance. PGRN is required for the lysosomal appearance of GCase and its deficiency leads
to GCase accumulation in the cytoplasm. More importantly, recombinant PGRN is therapeutic in various animal
models of GD and human fibroblasts from GD patients.
Interpretation:Our data demonstrates an unknown association between PGRN and GD and identifies PGRN as an
essential factor for GCase's lysosomal localization. These findings not only provide new insight into the patho-
genesis of GD, but may also have implications for diagnosis and alternative targeted therapies for GD.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gaucher disease (GD), a common lysosomal storage disease (LSD), is
caused by mutations in GBA1 with resultant defective
glucocerebrosidase (GCase) function and the consequent accumulation
of its substrate glucosylceramide (β-GlcCer) in macrophages and other
cell types (Platt, 2014). There are three types of GD based on its
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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neurological complications (type 1 is non-neuropathic, type 2 is acute
neuropathic and type 3 is chronic neuropathic). Extra-neurologic sys-
tematic features include hepatosplenomegaly, pancytopenia, and osteo-
porosis as a consequence of Gaucher cell infiltration in target organs. GD
has been regarded as wholly attributable to GBA1mutations. However,
clinical manifestations may have huge variations among patients carry-
ing the same GBA1 mutations, ranging from very early disease onset to
very mild clinical presentations (Biegstraaten et al., 2011; Elstein et al.,
2010). It has therefore been speculated that additional diseasemodifiers
exist in GD patients.

Progranulin (PGRN), also known as granulin epithelin precursor
(GEP), is recognized for its roles in a variety of physiologic and disease
processes, including immunomodulation (Jian et al., 2013a), cell
growth, wound healing (He and Bateman, 2003), host defense (Park
et al., 2011) and inflammation (Park et al., 2011; Tang et al., 2011; He
et al., 2003). PGRN acts as an anti-inflammation molecule by direct
binding to TNF receptors (Tang et al., 2011; Jian et al., 2013b). PGRN
also functions as an important neurotrophic factor and mutations of
the GRN gene (coding PGRN) are directly linked to frontotemporal de-
mentia (Baker et al., 2006; Cruts et al., 2006), as well as considered con-
tributory to other neurological diseases (Mateo et al., 2013; Perry et al.,
2013). PGRN has been shown to play an important role in lysosomes,
and homozygous mutation of the GRN gene results in neuronal ceroid
lipofuscinosis (Smith et al., 2012; Gotzl et al., 2014). In this studywe re-
ported PGRN as a novel diseasemodifier inGD. In addition, recombinant
PGRN is therapeutic against GD in various preclinical models.

2. Methods

2.1. Study Participants

Serum samples from 115 GD with N370S mutation in GBA1, 44
healthy controls from the general population and 55 healthy controls
from Ashkenazi Jews were collected from New York University Medical
Center and Beth Israel Medical Center (Fig. 1a). Genomic DNA samples
from 161 GD and 142 healthy controls from GP were collected in New
York University Medical Center. Serum levels of PGRN were measured
and whole GRN gene was sequenced in 40 GD patients, and SNP
genotypingwas performed in 161 GD and 142 GP control DNA samples.
All of patients have signed informed consent forms. This study is
a

b

c

Fig. 1.GD patients have decreased levels of PGRN. (a) Demographic information of human subje
were measured by ELISA. GD patients have significantly lower levels of PGRN (96.65 ± 53.45
(150.64 ± 33.9 ng/ml), p b 0.0001.
approved by the IRB institute of New York University School of Medi-
cine. All samples were stored in −80 °C.

2.2. Serum Levels of PGRN

Serum levels of PGRN were measured by ELISA kit from Adipogen
(Cat. No. AG-45A-0018TP-KI01, San Diego, CA). Briefly, the ELISA plated
were blocked with 300 μl blocking buffer for 30 min. During that time,
sera were diluted 200 fold by PBS. The blocking buffer was discarded
and 100 μl samples were loaded as well standards (starting from
4 ng/ml to 0 ng/ml) for 2 h. Plates were washed with PBS 5 times and
100 μl Detection Antibody was added for 1 h. Plates were washed
again and 100 μl Detector was added for another hour. Plates were
rinsed and 100 μl TMB Substrate Solution was added and the reaction
was terminated by Stop solution. The results were readout at 450 nm
using a plate reader. The concentrations of PGRN were calculated
based on the standard curve. The serum progranulin cutoff level is
61.55 ng/ml based on literature (Ghidoni et al., 2012).

2.3. Amplification of GRN Gene

Genomic DNA was isolated from peripheral blood cells of GD pa-
tients using DNA Purification kits from QIAGEN. 40 Genomic samples
were randomly chosen, and were used as templates to amplify the
whole GRN gene, including the 1 kb promoter region and the 8 kb full-
length GRN gene. Five pairs of primers were designed to cover the 9-
kb GRN gene with certain overlap between two adjoining fragments. A
barcode sequence was added to 5′-end of all five pairs of GRN gene
primers, and each patient has a unique barcode sequence and shared
the same GRN gene specific primers. A total of 200 (40 × 5) primers
were synthesized (Supplementary Table S1). GRN gene was amplified
by Phusion® High-Fidelity DNA Polymerases (NEB Inc., Ipswich, MA).
All 200 PCR products were mixed at an equal molar ratio into one
tube. This final sample was sent to Genomic facility of Yale University
for sequencing.

2.4. Sequencing of GRN Gene

A novel technology, PacBio RS II Sequencing System, was used to se-
quence 40 samples at one time (Supplementary data Fig. S1a) (Eid et al.,
cts. (b, c) Serum levels of PGRN from 115 GD patients, 44 healthy controls fromGP, and AJ
ng/ml) than healthy controls from GP (164.99 ± 43.16 ng/ml), and AJ healthy controls
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2009). The GRN gene amplicons from 40 GD patients were mixed into
one tube at the samemolar ratio. The DNAmixture was further purified
and ligated into circular SMRTBell template with a hair-pin adaptor
DNA (Blue) containing common sequencing primer (Orange) following
\Pacific BioSciences library preparation protocol (Supplementary
data Fig. S1b). The sequence of each patient was sorted out by their
barcode sequence, and full-length GRN sequence was aligned from
5 fragments using blasr from Pacific BioSciences (https://github.com/
PacificBiosciences/blasr, http://www.biomedcentral.com/1471-2105/
13/238/abstract), and then SAMtools (http://samtools.sourceforge.net/)
were used to detect the variants in the patients samples.

2.5. SNP Genotyping

SNP genotyping was performed by Taqman assay. Briefly, Taqman
probes that specifically recognize different alleles of rs4792937,
rs78403836, rs850713, and rs5848were purchased from Life Technolo-
gies (Carlsbad, CA). Taqman probes were mixed with genomic DNA
from GD patients or healthy controls, as well as real-time PCRmixtures.
The real-time PCR was performed in 96-well plates in StepOnePlus™
Real-Time PCR System.

2.6. Luciferase Activity Assay

A 790 bp PGRN promoter region, containing the major allele,
rs4792937 (WT), or minor allele (or mutated), was cloned from pa-
tients. The full length 3′-UTR region of PGRN, containing major allele
of rs5848 (WT), or minor allele (or mutated), was cloned into pGL3-
promoter vector. Vectorswere transfected into Raw264.7 cells, amacro-
phage cell line, and the pRL-TK vector was implemented as an internal
control. 48 h after transfection, the cells were lysed and activities of lu-
ciferaseweremeasured. The ratio of pGL3 luciferase and pRL-TK lucifer-
ase represent the activation of the reporter genes.

2.7. PGRN Deficient Mice Model

C57B/L6WT and PGRNKOmicewere housed in the animal facility of
New York University as previously described (Tang et al., 2011). All an-
imal experiments were approved by Institutional Animal Care and Use
Committee (IACUC) of New York University School of Medicine.
8 week-old mice were induced with chronic lung inflammation by in-
traperitoneal (I.P.) injection of Ovalbumin (OVA)-Alum at Day 1 and
Day 15, followed by intranasal challenge with 1% OVA, beginning at
Day 29 and administered at a frequency of every three days for the du-
ration of four weeks (Daley et al., 2008). In PGRN rescue experiments,
the frequency of intranasal challenge with OVA was increased to three
times a week, 4 mg/kg recombinant PGRN or 60 U/kg imiglucerase
were I.P. injected every week beginning concomitantly with the onset
of intranasal challenge. The mice were sacrificed, and spleen, liver, leg,
lung and bronchoalveolar lavage (BAL) were collected.

In another experiment,WT and PGRNKOmicewere hosted in an an-
imal facility of New York University until 1 year-old. Aged mice were
sacrificed, and lung, spleen, liver, femur, and spine were collected for
histology and micro-CT analysis.

2.8. Histology and Analysis

After mice were sacrificed, one lobe of the lung was collected with-
out perfusion for future protein and lipid analysis. The remainder of
the lung was perfused with 4% paraformaldehyde (PFA). Spleen, liver,
and femur were also collected and fixed with 4% PFA. These tissues
were embedded in paraffin, and stainedwith H&E and PAS byMass His-
tology Service (Worcester, MA). Quantification of Gaucher cell count
and measurement of area occupied by Gaucher cells was analyzed by
ImageJ software.
The femurs from indicated groups of mice were cleaned of soft tis-
sue. Following routine fixation, decalcification, and paraffin embedding,
tissue sections were prepared and stained with hematoxylin and eosin.
We measured the bone volume in a standard zone, situated at least
0.5 mm from the growth plate, excluding the primary spongiosa and
trabeculae connected to the cortical bone, and totaled the osteoclasts
and trabecular area in the same zone as that used for assessing bone vol-
ume (10× original magnification), using BioQuant software.

2.9. Lipid Composition Analysis

Lungs fromWT and PGRN KOmicewith or without (OVA) challenge
were collected and homogenized with RIPA lysis buffer containing a
proteinase inhibitor cocktail. In another experiment, lung tissues from
untreated PGRN null mice, OVA challenged PGRN null mice with or
without imiglucerase treatment were collected and homogenized with
RIPA buffer as above. BMDM cells from PGRN KO were challenged
with lipid lysis and followed by treatment either with PGRN or imiglu-
cerase. The cells were lysed by RIPA buffer as well. 1 mg total protein
from each samplewas used tomeasure lipid composition by Lipidomics
Core at Medical University of South Carolina. Levels of Ceramide, DAG,
sphingomyelin, glucosylceramide (GlcCer), and glucosylsphingosine
(GlcSph) were measured by the high-performance liquid chromatogra-
phy/mass spectrometry (LC-MS/MS) methodology as previously de-
scribed (Mazzulli et al., 2011). Analytical results of lipids were
expressed as: lipid level/total cellular protein: pmol/mg protein, or
pmol/ml plasma.

2.10. GCase Enzyme Activity

Lungs from WT and PGRN KO mice were lysed and 20 μg total pro-
tein was used to measure GCase activity as reported previously
(Fabrega et al., 2000). Briefly GCase activity was quantified by cleavage
of artificial substrate 4-methylumbelliferyl-β-D-glucopyranoside (4-
MUGP) into 4-methylumbelliferone in solution at pH 5.9 (50mMcitrate
phosphate buffer containing 0.15% Triton X-100 and 0.125% sodium
taurocholate). The amount of 4-methylumbelliferone were measured
at 360 nm excitation and 460 nm emission filters. GCase activity was
expressed as nmole/mg/h.

2.11. Immunohistochemistry

Paraffin-embedded lung slides from WT and PGRN KO mice were
de-paraffined in xylene and ethanol gradient. Antigen was retrieved
using 0.1% trypsin (diluted from 0.5% trypsin by 0.1% CaCl2) at 37 °C
for 30 min. Endogenous hydrogen peroxidase was inactivated by 3%
H2O2 in PBS for 10 min. The slides were blocked with 3% BSA and 20%
goat serum for 30 min. Primary antibodies were diluted at 1:20–50
with 2% goat serum, primed on the slides at 4 °C overnight. The next
day, slides were washed with PBS and secondary antibodies were
added (1:200 biotin-labeled goat-anti rabbit antibody or goat-anti
mouse antibody) for 1 h. The stainingwas visualized by Vector ABC per-
oxidase kit, followed by DAB substrates.

2.12. Immunofluorescence Staining and Confocal Microscope

Frozen lung sections, or cover-slip cultured BMDM, were fixed with
4% formaldehyde for 5 min and washed with PBS twice. The cells were
permeabilized by 0.1% Triton-100 PBS for 5 min and washed with PBS.
The tissues were blocked with 1:50 dilution of normal donkey serum
for 30 min. Primary antibodies were probed on the slides at 4 °C over-
night. The next day, slides were washed with PBS, fluorescence-labeled
secondary antibodies (Alexa Fluor® 488-labeled donkey anti-mouse
combined with Cyanine cy3-labeled donkey anti-rabbit antibody, or in
some experiments different fluorescence was used) were added for
1 h and followed by wash with PBS. The tissues or BMDM cells were

https://github.com/PacificBiosciences/blasr
https://github.com/PacificBiosciences/blasr
http://www.biomedcentral.com/1471-2105/13/238/abstract
http://www.biomedcentral.com/1471-2105/13/238/abstract
http://samtools.sourceforge.net/
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mounted on anti-fademedium containing DAPI. The images were taken
by Leica TCS SP5 con-focal system.
2.13. Transmission Electron Microscope (TEM)

WT and PGRN KO mice after OVA treatment, as well as aged PGRN
KO mice, were anesthetized and the lung was perfused with fixative
containing 2.5% glutaraldehyde and 2% paraformaldehyde in 0.1M sodi-
um cacodylate buffer (pH 7.2) for 2 h. After washing, the samples were
post fixed in 1% OsO4 for 1 h, followed by block staining with 1% uranyl
acetate for 1 h, dehydration and finally, embedded in Embed 812 (Elec-
tron Microscopy Sciences, Hatfield, PA). 60 nm sections were cut, and
stained with uranyl acetate and lead citrate by standard methods.
Stained grids were examined under Philips CM-12 electron microscope
(FEI; Eindhoven, Netherlands) and photographed with a Gatan
(4 k × 2.7 k) digital camera (Gatan, Inc., Pleasanton, CA).
2.14. Fluorescence Labeling of Active Form of GCase

BMDM were cultured on cover glass, and MDW933 (50 nM), a spe-
cific ultrasensitive fluorescence dye of active lysosomal GCase (Witte et
al., 2010; Gaspar et al., 2014), was added in cell culture medium for 2 h
to label lysosomal GCase. Next, cells were fixed with 3% (v/v) parafor-
maldehyde in PBS for 15 min, and permeabilized by 0.1 mM NH4Cl in
PBS for 10 min, and BMDM cells were mounted with DAPI-medium,
and fluorescence was visualized under confocal microscope.
2.15. Lysosome Staining in LSD Fibroblasts

Fibroblasts from GD patients were cultured on coverslip in 24-well
plates, and challenged with lipid lysis (50 μg/ml), with or without re-
combinant PGRN for 24 h. The next day, fresh medium containing
100 nM LysoTracker® Red was added for 1 h. The cells were washed
with PBS and fixed in 2% PFA. The coverslips were mounted on slides
and the staining of lysosomes was imaged by confocal microscopy.
Ten images were randomly taken from each sample, and fluorescence
intensities were measured by ImageJ software.
a

b

c

Fig. 2.GRNmutations in GD patients. (a–b)GRN gene variants in GD patients: Genomic DNA fro
region and 8-kb full-length GRN gene. DNA sequencing was performed by PacBio RS II Sequenc
mutationswere identified. (c) Logistic analysis of the association betweenGRN variant and PGRN
that GD was negatively associated with serum PGRN level. The regression coefficient is−0.05
2.16. Statistical Analysis

For comparison of treatment groups, we performed unpaired t-tests,
paired t-tests, and one-way or two-way ANOVA (where appropriate).
All statistical analysis was performed using SPSS Software. Statistical
significance was two-sided and was achieved when at p b 0.05.

3. Results

3.1. Serum Levels of PGRN in GD Patients

The features of the study participants are shown in Fig. 1a. Briefly,
serum levels of PGRN were measured from 115 Type 1 GD patients, 44
healthy controls from the general population (GP), and 55 health con-
trols from the Ashkenazi Jewish population (AJ). Serum PGRN levels
were significantly lower in GD patients (96.65 ± 53.45 ng/ml) than
those in healthy controls of GP (164.99 ± 43.16 ng/ml) (Fig. 1b, c).
Most of our GD patients were Ashkenazi Jewish. To exclude the possibil-
ity that lower levels of PGRN in GDwere caused by differences in ethnic
backgrounds,we further compared the PGRN level betweenGDpatients
and healthy AJ controls. As shown in Fig. 1b, c, GD patients have a signif-
icantly lower level of PGRN than AJ healthy controls as well (150.64 ±
33.99 ng/ml). There is no significant difference in serum levels of
PGRN between the two control groups (Supplementary data Table S2).

3.2. GRN Gene Variants

PGRN insufficiency due to GRNmutationswas first reported to cause
frontotemporal lobe dementia (Baker et al., 2006; Cruts et al., 2006).
Subsequently, many mutations in GRN have been identified in other
neurodegenerative diseases, including Parkinson's disease (Mateo et
al., 2013; Perry et al., 2013). These previous reports, together with the
finding that serum PGRN level was significantly lower in GD patients
(Fig. 1), led us to examine whether there are GRN gene mutations in
GD patients as well. Genomic DNA from 40 GD patients was used to se-
quence 9-kb, spanning the 1-kb GRN gene promoter region and 8-kb
full-lengthGRN gene. The 40 sampleswere sequenced by high-through-
put PacBio RS II Sequencing System (Eid et al., 2009). Four GRN variants,
rs4792937, rs850713, rs78403836, and rs5848, were identified in GD
patients. Among 40 GD patients sequenced, 9 patients had rs4792937,
m40GD patients was used to amplify the 9-kb DNA fragment covering the 1-kb promoter
ing System at the Genomic Facility of Yale University. Four GRN SNP sites and three point
level: PGRN level of 61.5 ng/m is set as a pathological cut off value, logistic analysis reveals

1, and the Wald test statistic is 34.06, with df = 1, p-value is b0.001.



Fig. 3. Aged PGRN null mice develop Gaucher's disease phenotypes spontaneously. 1 year-old
bone marrow were collected for histology. (a) Aged PGRN KO mice develop hepatosplenomeg
KO mice (n = 8 per group). (b) Histology of lung, spleen and bone marrow. Gaucher-like cells
PAS staining of bone marrow shows glycolipid storage in Gaucher-like cells. (d) Histology o
PGRN KO, but not in WT mice. (e) Gaucher-like cells under EM. Typical tubular-like lysosome
tests were used to compare liver size and spleen size between WT and PGRN KOmice (* p b 0

Table 1
Frequency of 4 GRN varieties in GD patients and control.

SNP sites MAF p value

rs4792937 CC TC TT Total MAF: T=
GD (n) 54 67 40 161 0.457 0.008
% 33.54 41.61 24.84 100.00
Ctrl (n) 65 60 17 142 0.331
% 45.77 42.25 11.97 100.00

rs850713 GG AG AA Total MAF: A= 0.043
GD(n) 56 84 21 161 0.391
% 34.78 52.17 13.04 100.00
Ctrl (n) 69 61 12 142 0.299
% 48.59 42.96 8.45 100.00

rs78403836 CC CG GG Total MAF: G= 0.002
GD(n) 130 31 0 161 0.096
% 80.75 19.25 0.00 100.00
Ctrl (n) 125 12 5 142 0.077
% 88.03 8.45 3.52 100.00

rs5848 CC CT TT Total MAF: T= 0.036
GD(n) 49 84 28 161 0.435
% 30.43 52.17 17.39 100.00
Ctrl (n) 57 73 12 142 0.342
% 40.14 51.41 8.45 100.00
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which is located in the gene's promoter region. 23 patients had
rs78403836, which is in the first intron and 12 patients had rs850713,
which is located in intron 5. The rs5848 variant, which is in 3′-UTR re-
gion, was present in 26 patients (Fig. 2a, b). In addition, we also identi-
fied three unknown point mutations, C315S, E316Q, and P365A, in GD
patients (Fig. 2).

The 4 SNP sites identified in GRN-gene sequencing in 40 GD patients
were further tested by SNP genotyping in a larger scale of samples. 161
GD and 142 healthy controls were genotyped by Taqman assays. As
shown in Table 1, the minor allele frequency (MAF) of rs4792937 was
0.457 in GD vs 0.331 in control, p = 0.008; MAF of rs850713 was
0.391 in GD vs 0.299 in control, p = 0.043; MAF of rs78403836 was
0.096 in GD vs 0.077 in control, p = 0.002; and MAF of rs5848
was 0.435 in GD vs 0.342 in control, p = 0.036.

To address whether these GRN variants were associated with re-
duced serum levels of PGRN, and in turnwith GD, we fitted a logistic re-
gression model without any interaction terms, with “GD” as the
dependent variable and GRN variants as independent variables. As
shown in Fig. 2c, lower PGRN levelwas significantly associatedwith var-
iants (p-value = 0.035). From the samples, all patients with a serum
PGRN level b61.5 ng/ml have GD.
WT and PGRN KO mice without any challenge were sacrificed and lung, spleen, liver, and
aly. Liver and spleen weight divided by total animal body weight is graphed for WT and
were found in lung, spleen, and bone marrow in PGRN KOmice, but not in WT mice. (c)
f bone marrow in WT and PGRN KO mice, bone marrow was replaced by fat tissues in
s were found in lung tissue and bone marrow in PGRN KO mice. Non-paired Student's t-
.05).
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GRN variants rs4792937 and rs5848 were located in the promoter
and 3-UTR region respectively, and may directly affect the regulation
of PGRN expression. To investigate the pathogenic mechanism of both
variants, we determined whether such variants cause reduced tran-
scription of the GRN gene by generating specific reporter constructs
bearing these variants. As shown in Supplementary data Fig. S2,
rs4792937 and rs5848 variants led to approximately 50% and 30% re-
ductions in luciferase activities, respectively. These data suggest that
both rs4792937 and rs5848 variants have a similar effect and each re-
sults in insufficient expression of functional PGRN.

3.3. PGRN Deficient Mice Develop GD Phenotypes

GRN gene variants and reduced PGRN level were found in GD pa-
tients, indicating PGRN is an important factor for GD development.
The finding that PGRN insufficiency associates with GD in patients was
also observed in aged PGRN KO mice. One-year old PGRN KO mice
Fig. 4.OVA-challenged PGRNKOmice develop Gaucher-like phenotype.WT and PGRNKOmice
Day 29 for three times a week for four weeks. (a) H&E staining shows giant Gaucher-like cells i
male and 5 female for each group). (b) Quantification of Gaucher cells in (a). (c) PAS staining
accumulation of glycolipid in Gaucher-like cells in PGRN KO mice. (d) Flow cytometry of cel
challenged. There is a subpopulation of giant macrophages in PGRN KO mice after OVA treatm
than that in WT mice, and lysosome become tubular-like shape instead of the regular roun
2650×; upper right: 11,500×, lower right: 7100×). (f) GlcCer accumulates in PGRN KO mice.
1 mg of protein of each sample was used for lipid composition analysis. The levels of β-GlcCe
way ANOVA tests was used to compare means among groups (data are represented as mean ±
developed hepatosplenomegaly (Fig. 3a), which is a common symptom
of Gaucher's disease. Histologically, Gaucher-like cells were found in
lung, spleen, and bone marrow in aged PGRN KO mice, but not in age-
matchedWTmice (Fig. 3b). PAS staining of bonemarrow indicated gly-
colipid accumulation in PGRN KOmice (Fig. 3c). The bone marrow was
replaced by fat tissue in some aged PGRN KO mice (Fig. 3d). When ex-
amined under TEM, tubular-like lysosomes were observed in PGRN-
null Gaucher-like cells from PGRN KO lung and bone marrow (Fig. 3e).
In addition, aged PGRN deficient mice exhibited features of osteopenia
in long bones and vertebrae (Supplementary data Fig. S3), which is
also a well-documented symptom of Gaucher's disease. In conclusion,
aged PGRN deficient mice developed a Gaucher-like disease phenotype
spontaneously.

As PGRN inhibits TNF binding to TNF receptors and is therapeutic
against inflammatory arthritis (Tang et al., 2011), we challenged two-
month old PGRN KO mice with ovalbumin (OVA) in a separate effort
to examine the anti-inflammatory activity of PGRN in chronic lung
received I.P. injection of OVA atDay 1 and 15, followedby intranasal challenge of 1%OVA at
n lung of both male and female PGRN KOmice, especially after OVA treatment. (n=10, 5
of lung from WT and PGRN KO mice, control and OVA challenged. The results show the

ls isolated from bronchial alveolar lavage from WT and PGRN KO mice, control and OVA
ent, as evidenced by CD11b+FSChigh. (e) Macrophage from PGRN KOmice is much larger
d shape, assayed by transmission electronic microscope (TEM) (upper and lower left:
Lung tissue from WT and PGRN KO mice, with or without OVA challenge, was lysed and
r (pmol/mg protein) with different carbon chain lengths are graphed, as indicated. One-
SEM, *p b 0.05; **p b 0.01, two sided).
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inflammation (Daley et al., 2008). Remarkably, large numbers of Gauch-
er-like cells were found in the lungs of PGRN KOmice, particularly after
OVA treatment, and PAS staining indicated glycolipid accumulation in
these cells (Fig. 4a–c). Flow cytometry analysis of cells in bronchiolar la-
vage reveals a subpopulation of CD11b+FSChigh giantmacrophages (Fig.
4d), TEM revealed that the lysosomes become tubular-like structures in
PGRN KOmice, and lipid analysis confirmed the accumulation of GlcCer
in PGRNKOmice after OVA challenge (Fig. 4e, f). Other lipids such as di-
acylglycerol, sphingomyelin, and ceramide, were unchanged in PGRN
KO mice (Supplementary data Fig. S4). Administration of Imiglucerase,
a macrophage-targeted, mannose-terminated human GCase analogue
that is delivered to lysosome via a mannose receptor dependent path-
way, to PGRN KO mice significantly reduced Gaucher cells' size and
overall histological presentation in lung tissue, shrunk the size of liver
and spleen, and decreased GlcCer accumulation (Fig. 5). Taken together,
these data indicate that OVA-challenged PGRNKOmice developGD-like
phenotypes,which therefore represent a novelmousemodel that close-
ly mimics the signs of human GD (Farfel-Becker et al., 2011).

3.4. PGRN is Required for the Lysosomal Localization of GCase

We next sought to determine themechanism underlying the associ-
ation between PGRN insufficiency/deficiency and GD by evaluating
GCase activity and expression. Accumulation ofβ-GlcCer in GD is caused
by reduced GCase enzymatic activity or decreased GCase protein ex-
pression (Grabowski, 2012). To our surprise, neither enzymatic activity
Fig. 5. Imiglucerase treatment relieve the GDphenotype in PGRNKOmice. (a) Imiglucerase trea
OVA-unchallenged (Ctrl), OVA-challenged PGRNKOmice treatedwith vehicle (OVA) or imigluc
KO mice with or without imiglucerase treatment. (c) Sizes of the liver and spleen of PGRN KO
spleen were significantly reduced following imiglucerase treatment. (d) Imiglucerase treatmen
unchallenged (Ctrl), OVA-challenged PGRN KOmice treated with vehicle (OVA) or imiglucerase
among groups (Data are represented as mean ± SEM, *p b 0.05; **p b 0.01, two sided).
nor protein expression of GCase was reduced in tissue lysates from
PGRN KO mice (Fig. 6a, b), despite the development of phenotypes
mirroring that of GD in these mice. We next examined whether PGRN
deficiency affected the intracellular localization of GCase. Indeed, im-
munohistochemistry staining of GCase revealed that GCase intracellular
localization was dramatically altered. In comparison to WT mice, in
which GCase was distributed in the lysosomes, GCase was aggregated
in the cytoplasm in OVA-challenged PGRNKOmice (Fig. 6c). In contrast,
the intracellular localization of alpha-galactosidase A (GLA), a lysosomal
enzyme that is primarily delivered to lysosome via a mannose-6-phos-
phate receptor-dependent pathway (Prabakaran et al., 2012), was not
affected in OVA-challenged PGRN deficient cells (Fig. 6c). Confocal im-
aging of stained frozen sections of lung tissues also demonstrated the
aggregation of GCase in OVA-challenged PGRN deficient mice (Fig.
6d). To further visualize the defect of GCase lysosomal localization in
PGRN KO macrophages, we employed the activity-based probe (ABP)
MDW933, which can spontaneously cross membranes and allow sensi-
tive and specific labeling of active lysosomal GCase in living cells (Aerts
et al., 2011; Gaspar et al., 2014;Witte et al., 2010). This probe, which re-
acts with GCase at its optimal pH (4 to 5, lysosomal pH) and does not
react at pH 7.4, failed to detect GCase in lipid-stimulated PGRN deficient
BMDMs, but it efficiently labeled lysosomal GCase in WT BMDMs (Fig.
6e). Immunogold labeling TEM further demonstrated that GCase was
aggregated in the cytoplasm and absent in the tubular-like lysosomes
of PGRN null macrophages, while GCase was present in lysosomes in
WT macrophages (Fig. 6f).
tment reduces β-GlcCer accumulation in OVA-challenged PGRN KOmice. Lung tissue from
erase (Imig.), was processed and analyzed. (b) Quantification of Gaucher-like cells in PGRN
mice induced by OVA challenge, with and without imiglucerase treatment. Both liver and
t reduces GlcCer accumulation in OVA-challenged PGRN KOmice. Lung tissue from OVA-
(Imig.), was processed and analyzed. One-way ANOVA tests was used to comparemeans
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3.5. Recombinant PGRN is Therapeutic Against GD

The findings that levels of PGRN are reduced in GD patients, that
PGRN KO mice developed a GD-like phenotype, and that PGRN is re-
quired for GCase lysosomal localization, led us to determine whether
PGRN is therapeutic against GD. First, we developed an in vitro cell cul-
turemodel tomimicβ-GlcCer accumulation inmacrophages. Bonemar-
row derived macrophages (BMDM) were isolated and differentiated
from WT and PGRN KO mice as described previously (Hu et al., 2006).
BMDM cells were stimulated with 5 and 50 μg/ml of lipid-rich brain ly-
sates for 10 days. Immunofluorescence staining revealed that β-GlcCer
accumulated in PGRN KO BMDM in a dose-dependent manner after
lipid stimulation (Supplementary data Fig. S5a). Importantly, this accu-
mulation was effectively prevented by addition of rPGRN or imigluce-
rase (serving as a positive control) (Supplementary data Fig. S5b–d).

Secondly, we examined the in vivo therapeutic effects of recombi-
nant PGRN in OVA-challenged, PGRN-deficient animal models. PGRN
KO mice challenged with OVA were intraperitoneally (I.P.) injected
with either PBS or rPGRN (4mg/kg per week) from the first week of in-
tranasal challenge until the end of the experiment. Histology of lung tis-
sues showed infiltration of Gaucher-like cells induced byOVA challenge
Fig. 6. PGRN is required for lysosomal appearance of GCase. (a) GCase enzymatic activities are
after either PBS or OVA challenge, and GCase activity was measured by examining the cleavage
increased, in KOvs.WTmice after PBS orOVA challenge. Lung tissueswere lysed and the level of
in PGRN KOmacrophages. Paraffin-embedded lung slides from OVA-challenged mice were sta
PGRN KO macrophages is indicated with arrows. (d) GCase is aggregated in PGRN KO mic
challenged WT and PGRN KO mice were stained with GCase antibodies by immunofluore
undetectable in PGRN deficient macrophages, assayed with activity-based probe MDW933. BM
50 nM MDW933 for 2 h, followed by fixation and DAPI staining, and the images were tak
macrophage, assayed by immunogold labeling of lung tissue. GCase is expressed in the lyso
absent in tubular-like lysosomes, and is aggregated in the macrophage of PGRN KOmice (mid
a dashed line.
in PGRN KO mice, and rPGRN dramatically reversed these phenotypes
(Fig. 7a, b), indicating that PGRN inhibited both Gaucher-like cell forma-
tion and β-GlcCer accumulation.

Thirdly, the therapeutic effect of rPGRN in GD was further demon-
strated with an established GD animal model. We took advantage of
D409V/− GD mice, a GD model generated by deletion of one allele of
the Gba1 gene and the other allele carrying a D409V point mutation
(Barnes et al., 2014). This mutated GCase is unstable and is degraded
very quickly (Liou et al., 2006) and these Gba1mutant mice spontane-
ously develop Gaucher cells at around 8 weeks. 5-weeks-old D409V/−
mice were injected with rPGRN (4 mg/kg/week) for 4 weeks and then
sacrificed for histological and β-GlcCer analyses. rPGRN administration
significantly reduced pathological severity as well as the accumulation
of glycolipids, including β-GlcCer, and the number and the size of
Gaucher cells were significantly reduced following rPGRN treatment
(Supplementary data Fig. S6a–d). In addition, rPGRN treatment, which
stabilized and increased the levels of GCase, led to detectability of the in-
teraction between mutant GCase and PGRN (Supplementary data Fig.
S6e, f).

Lastly, we examined the therapeutic effect of PGRN in GD using pa-
tient fibroblasts. In this set of experiments, we first took advantage of
unchanged in PGRN KO vs. WT mice. Lung tissues fromWT and PGRN KOmice were lysed
of its substrate 4 MUGP. (b) GCase protein levels are not decreased, but in fact are slightly
GCasewasmeasured byWestern blotting. (c) Distribution of GCase, but not GLA, is altered
ined with GCase or GLA antibody by immunohistochemistry. The aggregation of GCase in
e, assayed by immunofluorescence staining. Frozen sections of lung tissue from OVA-
scence. The aggregation of GCase is indicated with an arrow. (e) Lysosomal GCase is
DMs from WT and PGRN KO mice pre-stimulated with lipid mixture were labeled with

en under confocal microscope. (f) GCase is aggregated in the cytoplasm of PGRN null
some, indicated by an arrow, in WT macrophage (left panel 53,000×), while GCase is
dle panel, 25,000×). An aggregation region of denser immunogold labeling is circled with



135J. Jian et al. / EBioMedicine 11 (2016) 127–137
MDW933, a probe specific for lysosomal GCase (Witte et al., 2010;
Gaspar et al., 2014). Although this probe showed weak labeling of mu-
tant GBA (N370S) in type 1 GD fibroblasts, treatment with rPGRN
(0.4 μg/ml) for 24 h led to a significant increase in the lysosomal appear-
ance of mutant GCase (Supplementary data Fig. S5e). Next, we treated
fibroblasts from type 2 GD patients (D409H) with 50 μg/ml lipid stimu-
lation with or without 0.4 μg/ml rPGRN and examined the aggregation
of GCase and β-GlcCer. GCase was aggregated around the nucleus and
accompanied by β-GlcCer accumulation following lipid stimulation,
and these phenotypes were markedly inhibited by addition of rPGRN
(Fig. 7c).

4. Discussion

Insufficiency of GCase activity in lysosomes due to GBA1 genemuta-
tions is themolecularmechanism of GD. However, it has been observed
that patients with the same GCase mutations may have significant var-
iably in disease presentation, from a life-threatening manifestation to
almost asymptomatic (Biegstraaten et al., 2011; Elstein et al., 2010).
Here we reported PGRN as another previously-unrecognized molecule
associated with GD. In addition to low serum levels of PGRN in GD pa-
tients, whole GRN gene sequencing identified 4 SNP sites. Logistic
Fig. 7. rPGRN is therapeutic against GD. (a) rPGRN prevents GD development in OVA-challenge
(4mg/kg) once a week starting at theweek of first intranasal challenge with OVA (n=6 per gr
cells' formation. (b)Numbers of Gaucher-like cells from untreated, OVA-treated, andOVA+PG
treated, and OVA+ PGRN treated PGRN KOmice. (c) rPGRN prevents GCase aggregation and β
type 2 GD patients were treated with lipid stimulation in the presence or absence of rP
immunofluorescence staining with their specific antibodies, the nuclei stained with DAPI, and
regression analysis revealed a correlation with GRN mutations and
serum level of PGRN (Figs. 1, 2). Although reporter gene assays indicat-
ed lower transcriptional activities of rs4792937 and rs5848 SNPs, the
limitation of the study is noted and further investigations, including
measuring the levels of PGRN mRNA and protein in large numbers of
GD patients with particular GRN variants, are warranted to fully deter-
mine whether specific variants lead to lower PGRN levels. Given that
mutations in the GRN gene identified here were present in around 70%
GD patients, detecting these variants using a simple PCR assay could
be employed as another genetic diagnostic approach for GD. In addition,
identification of GRN variants in GD patients betters our understanding
of the pathogenesis of GD, and especially our understanding of the ex-
traordinarily diverse phenotypes among patients harboring identical
GBA1 mutations (Elstein et al., 2010).

The association between PGRN and GD is also supported by animal
data. Both “aged” andOVA-challenged adultmicewith PGRNdeficiency,
but with normal Gba1 gene, developed GD-like phenotypes, including
typical Gaucher cell infiltration in multiple organs, tubular-like lyso-
somes in macrophages, and GCase substrate accumulation. In addition,
these GD-like phenotypes can be ameliorated with imiglucerase, the
drug used clinically to treat GD. More importantly, recombinant PGRN
protein also facilitates the lysosomal appearance of mutated GCase, as
d PGRN null mice. PGRN KOmicewere challenged by OVA, and treatedwith PBS or rPGRN
oup). H&E staining of lung tissues reveals that rPGRN dramatically decreased Gaucher-like
RN treated PGRNKOmice and quantification of Gaucher-like cell size fromuntreated, OVA-
-GlcCer accumulation in the fibroblasts from type 2 GD patients (D409H). Fibroblasts from
GRN for 2 days, and levels of GCase (Green) and β-GlcCer (Red) were measured by
images captured by confocal microscope.
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evidenced by the significant reduction in lysosomal storage in fibro-
blasts from GD patients following treatment with rPGRN. Homozygous
mutation of the GRN gene was reported to associate with neuronal
ceroid lipofuscinosis (Smith et al., 2012; Gotzl et al., 2014). We also ob-
served the accumulation of lipofuscin in “aged” PGRN KOmice (Supple-
mentary data Fig. S7), suggesting that PGRN deficient mice may be also
a useful model for studying additional lysosomal storage diseases in ad-
dition to Gaucher's diseases.

GBA1 mutations, especially L444P and N370S, were also found in
Ashkenazi Jews with Parkinson's disease (PD) (Sidransky et al., 2009),
and mutated GCase has been considered to be a risk factor for parkin-
sonism (Migdalska-Richards and Schapira, 2016). The mechanisms un-
derlying the association of GBA1 mutations with these two different
diseases still remain unclear (Mazzulli et al., 2011). Isolation of PGRN
as a novel genetic factor in GD may also better our understanding of
the association between GBA1 mutations with both rare (i.e. GD) and
common (i.e. PD) diseases. Previous reports that GRNmutations associ-
ated with PD and α-synuclein pathology (Mateo et al., 2013; Leverenz
et al., 2007), together with this study's finding that GRN mutations are
also linked to GD, indicates that there may exist a functional and a ge-
netic linkage between the GRN and GBA1 genes, and their homozygous
or heterozygous mutations cause or render some carriers vulnerable to
rare and/or common diseases.

Currently marketed GD drugs, such as imiglucerase, have a demon-
strated record of safety and efficacy in the treatment of GD. However,
PGRN possesses features that suggest it may compare favorably to
these established agents. For example, currentlymarketed drugs are en-
zyme replacement or substrate reduction therapies. In contrast, PGRN
functions as a co-factor of GCase and enhances the lysosomal appear-
ance of mutant lysosomal enzymes. Due to this alternate mechanism
of action, PGRN may be a viable agent for the clinical treatment of
LSDs, particularly GD.

In summary, the identification of PGRN deficiency/insufficiency as a
risk factor for GD is certainly a source of considerable excitement in the
field. Moreover, serum levels of PGRN and prevalent mutations in GRN
gene may represent alternative approaches for clinical diagnosis of
GD. Further, recombinant PGRN effectively corrected the aggregation
of mutant GCase and the accumulation of glucosylceramide in several
preclinical models, supporting the potential development of different
therapeutic strategies for the treatment of GD. Thus, these findings
may not only provide new insight into the pathogenesis of GD, but
also have implications for diagnosis and targeted therapy of GD.
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