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Abstract. Circular RNAs (circRNAs) are a class of novel 
endogenous transcripts with limited protein‑coding 
abilities. CircRNAs have been demonstrated to function as 
critical regulators of tumor development and distant metastasis 
through binding to microRNAs (miRNAs) and interacting 
with RNA‑binding proteins, thereby regulating transcrip‑
tion and translation. Emerging evidence has illustrated that 
certain circRNAs can serve as biomarkers for diagnosis and 
prognosis of cancer, and/or serve as potential therapeutic 
targets. Expression of functional circRNAs is commonly 
dysregulated in cancer and this is correlated with advanced 
Tumor‑Node‑Metastasis stage, lymph node status, distant 
metastasis, poor differentiation and shorter overall survival 
of cancer patients. Recently, an increasing number of studies 
have shown that circRNAs are closely associated with NSCLC. 
Functional experiments have revealed that circRNAs are intri‑
cately associated with the pathological progression of NSCLC. 

The present review provides an overview of the regulatory 
effect of circRNAs in the development and progression of 
NSCLC, taking into consideration various physiological and 
pathological processes, such as proliferation, apoptosis, inva‑
sion and migration, and their potential value as biomarkers 
and therapeutic targets.
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1. Introduction

Lung cancer is the most common type of malignant tumor, and 
is the primary cause of cancer‑related death worldwide (1). As 
the primary cause of mortality in men and women, the number 
of deaths from lung cancer was 135,720, which accounted 
for 22.5% of all cancer‑related deaths in the United States 
in 2020 (2). Small cell lung cancer (SCLC) and non‑SCLC 
(NSCLC), the two primary types of lung cancer, account 
for >85% of all lung cancer cases (3). Despite the progress 
in clinical management that has been made in the last few 
years, the 5‑year overall survival (OS) rate of NSCLC is 
15‑21% (1,2). The primary cause of the low 5‑year survival rate 
is that the majority of patients are diagnosed with advanced 
stage cancer with distant metastases at the first presenta‑
tion (3). Additionally, cancer recurrence and drug resistance 
contribute to the high mortality rates of NSCLC (4). The poor 
prognosis of NSCLC can be attributed to the complicated and 
unclear molecular mechanisms underlying its development 
and progression (5,6). Therefore, it is vital to identify novel 
biomarkers or therapeutic targets to improve the prognosis of 
NSCLC.

Multiple factors may participate in the development and 
progression of NSCLC, including proliferation, autophagy, 
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apoptosis, invasion, metastasis and drug resistance (7,8). One 
of the most fundamental characteristics of cancer cells is its 
ability to sustain chronic proliferation. However, proliferation 
and division of malignant cells is uncontrolled (9). Autophagy 
serves an important and complicated role in tumor develop‑
ment. Upregulation of autophagy in cancer therapy can 
promote the survival or death of tumor cells (10). Abnormal 
regulation of cell death, whether too little or too much, may 
contribute to several diseases. Aberrant initiation of apoptosis 
may lead to malignant transformation of NSCLC cells (11,12). 
Metastasis of NSCLC is a significant obstacle reducing the 
OS of NSCLC patients, and is considered a core step in the 
malignant progress of NSCLC (13). Although chemotherapy 
prolongs the OS of patients with NSCLC, tumor cells may 
acquire resistance, resulting in poor therapeutic effects, tumor 
metastasis and recurrence  (7). Therefore, it is necessary 
to identify and determine the relationship between novel 
biomarkers and malignant behavior in NSCLC.

CircRNAs are a novel group of non‑coding RNAs that 
do not possess 3' and 5'ends, but instead form a closed‑loop 
dissimilar to linear RNAs (14). CircRNAs were first detected 
in a virus by Sanger in 1976, and were initially deemed as 
irrelevant byproducts without any significant biological func‑
tions for a period of time (15). In the last decade, owing to the 
rapid advance of RNA‑sequencing technologies, researchers 
have re‑evaluated the crucial functions of circRNAs in the 
regulation of gene expression and in multiple diseases, such as 
carcinomas (16). Additionally, previous studies have indicated 
that circRNAs are conserved, stable and abundantly expressed 
in tissues and exosomes (17,18). According to reverse transcrip‑
tion quantitative (RT‑qPCR) and reverse transcription‑droplet 
digital (RT‑ddPCR) qualification, 343 differentially‑expressed 
circRNAs were identified between the plasma of patients with 
gastric cancer and healthy controls (19). CircRNAs are closely 
associated with tumorigenesis, development, proliferation, 
apoptosis, invasion and migration of various physiological 
and pathological processes in tumors  (20). CircRNAs are 
extensively and stably expressed in the plasma and exosomes, 
indicating that they may serve as promising biomarkers in the 
prognosis and therapeutics of malignancies (21). The present 
review summarizes the relationship between circRNAs and 
the biological behaviors of NSCLC.

2. Classification and functions of circRNAs

Classification of circRNAs. CircRNAs can be divided 
into four groups, exonic circRNAs (ecircRNAs), intronic 
circRNAs (ciRNAs), exon‑intron circRNA (EIciRNAs) 
(Fig. 1) and tRNA intronic circRNAs (tricRNAs). EcircRNAs 
are generated from single or several exons. The majority of 
circRNAs are ecircRNAs, accounting for >80% of currently 
identified circRNAs. CircRNAs are primarily localized in 
the cytoplasm and may act as miRNA sponges, indirectly 
participating in the regulation of gene expression. CiRNAs are 
intron‑derived circRNAs. CiRNAs are abundantly present in 
the nucleus and may modulate the expression of their parental 
genes. EIciRNAs contain both introns and exons that can 
regulate their parental genes in a cis manner. TricRNAs are 
derived from tRNA introns and can form stable circRNAs via 
pre‑tRNA splicing (15,22).

Functions of circRNAs. With the number of studies on 
circRNAs increasing, our understanding of the biological 
functions of circRNAs is ever growing. As shown in Fig. 2, 
an increasing number of studies have shown that circRNAs 
exhibit multiple functions, such as functioning as miRNA 
sponges, interacting with proteins, translation into proteins 
and regulation of transcription (23).

CircRNAs can sponge miRNAs. Recently, several studies have 
found that circRNA are primarily located in the cytoplasm. 
CircRNAs compete with miRNAs to regulate gene expres‑
sion via miRNA response elements (MREs) (24). CircRNAs 
can increase the levels of the target genes of miRNAs, 
and circRNAs with this competitive function are termed 
competing endogenous (ce)RNAs. As a well‑studied func‑
tion of circRNAs, ceRNAs are widely involved in various 
circRNA‑related diseases, particularly in cancer. For example, 
the expression of miR‑7 is affected by ciRS‑7 which possesses 
>70 selectively conserved binding sites for miR‑7. When ciRS‑7 
efficiently binds to miR‑7, the expression of miR‑7 is attenu‑
ated and the activity of miR‑7‑target genes is increased. The 
ciRS‑7/miR‑7 axis participates in numerous diseases, such as 
breast cancer (25), cervical cancer (26), gastric carcinoma (27) 
and hepatocellular carcinoma (28,29). CircRNA zinc finger 
protein 609 (Circ‑ZNF609) improves vascular endothelial 
dysfunction through upregulating the expression of myocyte 
enhancer factor 2A by serving as a ceRNA of miR‑615‑5p (30).

CircRNAs can bind with RNA‑binding proteins (RBPs). 
CircRNAs can also bind to proteins directly. Thus, they can 
act as protein sponges, similar in principal to their function 
as miRNA sponges. CircRNAs contain a high density of 
binding sites for RBPs, and they may affect the activity of 
related proteins through binding with them directly  (31). 
A circular transcript from forkhead box O3 (Circ‑Foxo3) is 
related with cell cycle progression. Circ‑Foxo3 affects cell 
cycle progression via regulation of a G1/S transition through 
binding with cyclin‑dependent kinase 2 (CDK2) and p21 (32). 
Circ‑Foxo3 facilitates Foxo3 expression via interacting 
with the MDM proto‑oncogene (MDM2) and p53, which 
leads to MDM2‑induced p53 ubiquitination and subsequent 
degradation (33).

CircRNAs can be translated into proteins. Although most 
circRNAs serve as miRNA sponges and indirectly regulate 
the expression of mRNAs, emerging evidence has shown that 
certain circRNAs are translatable (34). CircRNAs may contain 
an open‑reading frame (ORF), N6‑methyladenosine modifica‑
tions and/or internal ribosome entry site (IRES) elements. 
Hence, circRNAs can be translated into proteins accord‑
ingly (35,36). Moreover, circRNAs can translate into proteins 
via a rolling circle amplification mechanism in eukaryotic 
cells (37). Circ‑ZNF609 contains an ORF and it can be trans‑
lated into a protein via a splicing event (38). CircRNA F‑box 
and WD repeat domain containing 7, expression of which is 
high in the brain, encodes F‑box and WD repeat domains 
containing 7‑185aa, and inhibits proliferation and cell cycle 
progression in cancer cells  (39). A circular form of SNF2 
histone linker PHD RING helicase, which contains an ORF 
driven by the IRES, is translated into SNF2 histone linker 
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PHD RING helicase‑146aa, which is a cancer suppressor in 
human glioblastoma (40).

CircRNAs can regulate transcription. CiRNAs are primarily 
located in the nucleus, and possess very little MRE activity for 
sponging miRNAs (41). Knockdown of ciRNAs decreases the 
expression of their parental genes. CiRNAs can regulate PolII 
transcription in a cis manner via an RNA‑RNA interaction, 
and can mediate the expression of their parental genes (42,43). 
EIciRNAs interact with UI small nuclear ribonucleoprotein 
(snRNP) and PolII to regulate gene expression via RNA‑RNA 
interactions. UI snRNP is indispensable for EIciRNA‑mediated 
regulation of expression of parental genes (44). Ci‑ankrd52, 

which accumulates at transcription sites, is an intron‑derived 
circRNA that is produced from ANKRD52, and Ci‑ankrd52 
can interact with PolII to regulate transcription of the parent 
genes (45).

CircRNAs enable derivation of pseudogenes. Pseudogenes are 
non‑functional residues that were formed during the evolu‑
tion of a gene family, and they serve as essential markers 
in the field of evolutionary and comparative genomics (46). 
Pseudogenes may participate in cellular differentiation and 
cancer progression (47). There is an exon‑exon junction in a 
reversed order in circRNA‑derived pseudogenes. In both mice 
and humans, numerous circRNA‑derived pseudogenes have 

Figure 2. Biological functions of circRNAs. CircRNA, circular RNA; miRNA, microRNA.

Figure 1. Biogenesis of circRNAs. CircRNA, circular RNA; ciRNAs, intronic circRNAs; EIciRNAs, exon‑intron circRNA. CircRNA, circular RNA.
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been detected by a computational pipeline (CIRCpseudo) (48). 
In all mouse strains and in the rat reference genome, there are 
dozens of low‑confidence circular SATB homeobox 1‑derived 
pseudogenes. In the gorilla and chimp genomes, researchers 
identified the homologous sequences of human circular 
protein kinase, DNA‑activated, catalytic submit‑derived and 
circular calmodulin regulated spectrin associated protein 
1‑derived pseudogenes  (49). Though reverse transcription 
may be involved in the non‑colinear exon‑exon junctions of 
pseudogenes, the mechanism of reverse transcription and 
translocation of circRNAs are still not distinct (23).

CircRNAs may serve as promising biomarkers. CircRNAs 
are stably expressed both intracellularly and in the plasma, 
due to their unique annular structure (14). RNA‑seq analyses 
indicated that >1,000  circRNAs have been identified in 
human exosomes and may transfer biological activity to other 
cells (50). CircRNAs generated from cancer cells can enter into 
the blood circulation and can be detected easily, and may thus 
be used to distinguish between cancerous and healthy indi‑
viduals (14). Exosomal circRNAs are thus potential biological 
markers of various types of cancer including NSCLC (17).

Roles of circRNAs in cancer. CircRNAs are extensively 
implicated in the pathological progression of multiple types 
of cancer, including gastric cancer, hepatocellular carcinoma, 
lung cancer, colorectal cancer and bladder cancer, amongst 
others  (51). Moreover, these circRNAs exhibit dual roles; 
serving as oncogenes and tumor suppressors dependent on the 
type and potentially stage of cancer (52,53). In the following 
section, the roles of circRNAs in NSCLC are discussed in 
additional detail.

3. CircRNAs and NSCLC

Expression of circRNAs in NSCLC. With the development 
of next‑generation sequencing technologies and advances in 
bioinformatics analysis, a large number of studies have shown 
that circRNAs are ectopically expressed in several types of 
tumors, including NSCLC. A total of 957 abnormally expressed 
circRNAs were identified by human circRNA microarray 
analysis in NSCLC tissues when compared with the adjacent 
normal tissue  (54). In another study, 356 circRNAs were 
dysregulated in lung adenocarcinoma, including 204 upregu‑
lated circRNAs and 152 downregulated circRNAs (55). By 
utilizing circRNA chips, Mu et al (56) identified and annotated 
a total of 10,566 circRNAs in the peripheral whole blood of 
patients with lung adenocarcinoma. Amongst these, 78.14% of 
the circRNAs were exonic, and 3,009 circRNAs were upregu‑
lated, whereas 1,381 circRNAs were downregulated.

CircRNAs can be used as diagnostic biomarkers in NSCLC. 
CircRNAs produced by cancer cells can enter into the blood 
circulation and can be detected easily (57). Thus, they can be 
used to distinguish between patients with cancer from healthy 
individuals. Exosomal circRNAs are potential biological 
markers in a range of cancer types (14). With the development 
of circRNA research, a plethora of circRNAs may eventually 
be used as clinically diagnostic markers for the diagnosis of 
early‑stage NSCLC (Table I).

The expression of hsa_circ_0014130 is associated with 
Tumor‑Node‑Metastasis (TNM) stage and lymphatic metas‑
tasis of NSCLC. Receiver operating characteristic (ROC) 
curves were used to determine the diagnostic potential of 
hsa_circ_0014130. The area under the ROC curve (AUC) 
was 0.878, the optimum critical value of hsa_circ_0014130 
was 0.573, the sensitivity was 87% and specificity was 84.8%. 
Thus, hsa_circ_0014130 may serve as a biomarker for distin‑
guishing NSCLC from normal tissues (58). CircRNA 100146 
was shown to be augmented in 26 cases of NSCLC, and was 
associated with pathological stage and differentiation of lung 
cancer. ROC curve analysis indicated that the AUC was 0.643 
(95% confidence interval: 0.521‑0.764), the sensitivity was 
72.5% and the specificity was 57.5%. Thus, circRNA 100146 
may also be used as a diagnostic marker in NSCLC (59).

CircRNAs may serve as therapeutic targets in NSCLC. 
CircRNAs are stably expressed both intracellularly and in the 
plasma due to their annular structure. RNA‑seq analyses indi‑
cated that >1,000 circRNAs are present in human exosomes 
and may transfer biological activity to other cells  (50). 
Numerous circRNAs have been reported to be involved in 
the tumorigenesis and progression of NSCLC, and are being 
extensively assessed as potential therapeutic targets for the 
treatment of NSCLC (Table I).

Circular protein kinase C iota (CircPRKCI) is 
generated from exons 15 and 16 of the PRKCI gene 
(chr3:170013698‑170015181) and is located at the 3q26.2 
amplicon. CircPRKCI acts as a tumor promoting factor in lung 
adenocarcinoma (LAD), and circPRKCI is positively corre‑
lated with T stage and TNM stage in patients with LAD (60). 
Knockdown of circPRKCI led to a decrease in tumor size and 
tumor weight in nude mice. Patient‑derived tumor xenografts 
(PDTXs) can be used as a translational model. Intratumoral 
injection of cholesterol‑conjugated si‑circPRKCI was used 
to clarify the therapeutic potential of circPRKCI. The find‑
ings showed that the growth of PDTX was decreased in the 
si‑circPRKCI group. These results highlight the therapeutic 
potential of circPRKCI (60). At present, EGFR tyrosine kinase 
inhibitors (EGFR‑TKIs) are widely used to treat NSCLC 
patients with EGFR‑sensitive mutations. The combination of 
EGFR‑TKIs (gefitinib) and knockdown of circPRKCI resulted 
in a more notable inhibitory effect than gefitinib or knock‑
down of circPRKCI alone. This suggests that a combination 
of EGFR‑TKIs and attenuation of circPRKCI may exert a 
synergistic effect on reducing cancer progression (60).

Circular coiled‑coil domain containing 66 (circCCDC66) is 
primarily located in the endoplasmic reticulum. CircCCDC66 
is involved in several types of cancer and serves as a diag‑
nostic and therapeutic biomarker (61). CircCCDC66 is highly 
expressed in LAD and in EGFR‑resistant H1975 cells. EGFR is 
the primary target of TKIs for tyrosine kinase mutations, such 
as gefitinib and erlotinib in LAD chemotherapy. Knockdown 
of focal adhesion kinase (FAK) and hepatocyte growth factor 
reduces circRNA CCDC66 expression, separately. FAK was 
associated with metastasis and EMT. Meanwhile, administra‑
tion of a FAK inhibitor, Y15, reduced metastasis. Conversely, 
nicotinic acetylcholine receptor α7 (nAchRα7) negatively 
regulates the expression of CCDC66β and circRNA CCDC66. 
The regulatory effect of nAchRα7 on circRNA CCDC66 is 
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greater than that of FAK. Furthermore, knockdown of circRNA 
CCDC66 suppresses EMT and invasion, and augments 
cisplatin resistance in H23 cells. CircCCDC66 may thus serve 
as a novel therapeutic target for regulating EGFR‑mediated 
tumorigenesis in NSCLC (62).

Prognostic potential of circRNAs in NSCLC. It is very 
important to evaluate the prognosis of patients with cancer. 
Aberrant expression of circRNAs has been reported to show 
extensive associations with clinical features of patients with 
NSCLC. Meanwhile, circRNAs are considered to possess 
valuable prognostic value as biomarkers in NSCLC.

According to a study with 69 cases of NSCLC, which 
used RT‑qPCR qualification, hsa_circ_100395 expression 
was found to be lower in patients with advanced TNM stage. 
Additionally, Kaplan‑Meier survival curve analysis showed 
that the survival rate of patients with lower expression of 
hsa_circ_100395 was lower (63). Circular BTG3 associated 
nuclear protein (Circ‑BANP) was shown to be upregulated in 
lung cancer tissues and cell lines, and was higher in patients 
with stage Ⅲ‑Ⅳ cancer or in the metastatic tissue. Higher 
expression of circ‑BANP was associated with reduced OS 
based on Kaplan‑Meier curve analysis. Thus, circ‑BANP may 
serve as an independent prognostic biomarker (64).

Based on the above studies, circRNAs may be used for the 
diagnosis, treatment and evaluation of prognosis of patients 
with NSCLC. In subsequent studies, increased attention should 
be paid to the molecular mechanisms by which circRNAs 
regulate cancer development/progression and in the clinical 
application of targeting circRNAs.

Functions of circRNAs in NSCLC. NSCLC pathogenesis is 
modulated by oncogenic or tumor suppressive circRNAs, via 
regulation of cell proliferation, autophagy, apoptosis, invasion, 
migration and EMT (Fig. 3). Additionally, circRNAs can act 
as independent prognostic biomarkers, and serve an important 
role in multidrug resistance (MDR) in NSCLC. The functions 

of circRNAs in NSCLC are discussed in the upcoming sections 
and are summarized in Table II.

CircRNAs in NSCLC proliferation and cell cycle progres‑
sion. Cell cycle progression is an important factor in 
maintaining cell proliferation. The phenomenon of normal 
cells inhibiting division due to contact inhibition, is termed 
density‑dependent inhibition of growth. When cells reach a 
finite density, they halt proliferation and the cell cycle arrests 
at the G0 phase of the cell cycle (65). Unrestricted cell prolif‑
eration and reduced apoptosis results in unlimited growth 
and distant metastasis of tumors. The proliferation of cancer 
cells represents a typical prognostic marker in the diagnosis 
of cancer (66). Abnormal expression of circRNAs leads to 
growth of NSCLC cells (67), suggesting that circRNAs serve 
a potential role in NSCLC treatments targeting unlimited 
proliferation.

CircRNAs modulate proliferation and cell cycle progression 
via sponging of miRNAs in NSCLC. CircRNAs serve their 
biological function in numerous ways. CircRNA‑mediated 
sponging of miRNAs is the most‑extensively studied circRNA 
mechanism.

CiRS‑7, also known as cerebellar degeneration‑related 
protein 1 antisense RNA (CDR1as), can absorb miRNAs, such 
as miR‑7 and miR‑671, and thus reduces the levels of CDR1 
transcripts. CiRS‑7 possesses over 70 binding sites with miR‑7. 
Several reports have demonstrated that the CiRS‑7/miR‑7 
axis contributes to several pathological processes, including 
NSCLC. CiRS‑7 may increase cell viability and induce 
cell growth in NSCLC. CiRS‑7 also significantly increases 
the expression of growth‑related genes, including EGFR, 
cyclin E1 (CCNE1) and phosphatidylinositol‑4,5‑bisphosphate 
3‑kinase catalytic subunit δ (PIK3CD) (68). Lower expression 
levels of EGFR maintains cell cycle arrest, facilitating mitosis 
and preventing cell apoptosis  (69). CCNE1 induces rapid 
progression of cells through the G1/S phase via activation 

Figure 3. CircRNAs are extensively implicated in the pathogenesis of NSCLC. CircRNA, circular RNA; NSCLC, non‑small cell lung cancer; EMT, epithe‑
lial‑mesenchymal transition.
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of CDK2 (70). The effect of ciRS‑7 on monitoring cell cycle 
progression is reversed by overexpression of miR‑7. CiRS‑7 
also regulates cell proliferation, invasion, migration and 
apoptosis via targeting miR‑7 to modulate nuclear factor‑κB 
(NF‑kB) (71).

Cyclin D1 (CCND1) is an important target of abnormally 
expressed circRNAs in NSCLC, such as circ_0013958 (72). 
Abnormal expression of circRNAs can regulate the cell cycle 
process and proliferation in NSCLC. The primary function of 
CCND1 is to promote cell proliferation. CCND1 can bind to 
and activate cyclin‑dependent kinase CDK4, which is unique 
to the G1 phase (73). Circ_0013958 was identified as a sponge 
of miR‑134, and circ_0013958 promotes the development of 
NSCLC via upregulation of oncogenic CCND1 (72).

A high‑throughput microarray assay revealed that circular 
phosphatidylinositol‑4‑phophate 5‑kinase type 1 alpha 
(circPIP5K1A) was significantly upregulated in NSCLC (58). 
CircPIP5K1A regulates the progression of NSCLC via 
activation of several signaling pathways. For example, 
circPIP5K1A promotes proliferation via a miR‑600/hypoxia 
inducible factor‑1α axis in NSCLC (74).

CircRNAs modulate proliferation and cell cycle progression 
via binding with RBPs and regulating transcription in NSCLC. 
Circular nucleolar protein 10 (circNOL10) is primarily 
expressed in the nucleus, and is generated from exons 6‑12 
of pre‑NOL10 mRNA. The expression of circNOL10 is 
cooperatively regulated by pre‑NOL10 methylation and by 
epithelial splicing regulatory protein 1, a splicing factor. 
CircNOL10 expression is low in lung cancer. CircNOL10 
directly promotes the expression of sex comb on midleg‑like 1 
(SCML1) by suppression of ubiquitination, and also promotes 
the transcriptional regulatory effect of SCML1 on the humanin 
polypeptide family, ultimately inhibiting the progression of 
lung cancer (75).

CircRNAs participate in RNA splicing in NSCLC. The 
notable associations between the expression of circ‑UBR5 and 
differentiation degree of NSCLC has been established. The 
differentiation of NSCLC is decreased following knockdown 
of circ‑UBR5. Circ‑UBR5 may thus be used to evaluate tumor 
differentiation, and as an indicator for the pathological grading 
of NSCLC. Circ‑UBR5 binds to splicing regulatory factors, 
including KH domain containing RNA binding (QKI), NOVA 
alternative splicing regulator 1 and U1 snRNA. Circ‑UBR5 
additionally participates in differentiation via modulation of 
RNA splicing (76).

CircRNAs and NSCLC autophagy. Autophagy is a process 
of transporting damaged, denatured or aging proteins and 
organelles to lysosomes for digestion and degradation in cells. 
Autophagy serves an important and complicated role in tumor 
development. Upregulation of autophagy in cancer therapy can 
promote the survival or death of tumor cells (10). Abnormal 
activity of the mTOR signaling pathway, pathophysiological 
p53 expression and endoplasmic reticulum stress serve key 
roles in autophagy of NSCLC (12). Further studies have shown 
that autophagy is one of the most important pathogenic events 
in NSCLC development, leading to drug resistance, metastasis 
and poor prognosis (10).
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CircRNAs modulate autophagy via sponging miRNAs in 
NSCLC. Circular homeodomain‑interacting protein kinase 3 
(circHIPK3) is derived from exon 2 of the HIPK3 gene, 
and circHIPK3 is primarily localized in the cytoplasm. 
Through an RFP‑GFP‑LC3B assay, Chen et al (77) reported 
that knockdown of circHIPK3 elevated autophagic flux in 
autophagy‑induced cell lines (A549 and H838). CircHIPK3 
may sponge miR‑124‑3p, a well‑known tumor suppressor 
and autophagy regulator, and therefore indirectly regulate 
IL‑6 receptor and STAT3. As a downstream factor of IL6R, 
STAT3 suppresses autophagy  (78). Downregulation of 
circHIPK3 induces autophagy by modulation of miR‑124‑3p/
STAT3/PRKAA/AMPKα signaling in NSCLC (77).

CircRNAs and NSCLC apoptosis. The unique morphology of 
cell death was first termed apoptosis by Kerr in 1972. Apoptosis 
is the process of programmed cell death which serves a crucial 
role in cell biology and life. The regulation of apoptosis must 
be strictly controlled (79). The imbalance in the expression 
ratio of pro‑apoptotic proteins and anti‑apoptotic proteins, 
such as the Bcl‑2 protein family, p53 or inhibitor of apoptosis 
proteins are crucial for regulating cell death (80). The Caspases 
are generally divided into two groups. Caspase‑1, 4, 5, 13 and 
14, which primarily participate in the inflammatory process, 
and Caspase‑2, 3, 6, 7, 8, 9 and 10, that either participate in 
initiation or execution of cell death (81). An increasing number 
of studies have illustrated that circRNAs regulate apoptosis 
in NSCLC, such as circ_0003645 (82) and circ_0074027 (83).

CircRNAs modulate apoptosis by sponging miRNAs in 
NSCLC. CircRNAs can affect the expression of apoptosis‑
related proteins by sponging miRNAs. The activation, 
expression and regulation of a series of proteins including the 
Caspase family of proteins, Bax and Bcl‑2 family of proteins 
are involved in apoptosis. Circular VANGL planar cell 
polarity protein 1 (CircVANGL1) is generated from exons 3‑4 
of the VANGL1 gene. CircVANGL1 was reported as an onco‑
gene in bladder cancer (84). Additionally, circVANGL1 was 
shown to reduce cell apoptotic rates in NSCLC. Silencing of 
circVANGL1 increased Bax expression and decreased Bcl‑2 
expression, and this effect was achieved by sponging of 
miR‑195 in NSCLC (85).

Circular PVT1 (circPVT1) is generated from exon 3 of its 
host gene PVT1, and is flanked by two long introns (35,269 
and 41,466 bp) on each side. In a total of 68 cases of NSCLC, 
the expression of circPVT1 was >2x higher than that in normal 
or paired paratumoral tissues (41/68  cases). Additionally, 
circPVT1 expression was significantly increased in 7 NSCLC 
cell lines compared with a human bronchial epithelial cell 
line (HBE cells). A luciferase assay showed that luciferase 
activity was promoted by c‑Fos interacting with the circPVT1 
promoter region. This results in upregulation of circPVT1 
in NSCLC. C‑Fos‑induced circPVT1 modulates cell prolif‑
eration, invasion and migration, and induces cell apoptosis in 
NSCLC. CircPVT1 regulates carcinogenesis by downregu‑
lating miR‑125b and upregulating E2F transcription factor 2 
(E2F2) (86).

CircRNAs and NSCLC EMT, invasion and metastasis. Tumor 
metastasis refers to the process in which malignant tumor 

cells infiltrate into the surrounding tissues from their origin. 
The progression of tumor cell metastasis is divided into three 
stages: Adhesion, degradation and migration. Malignant tumor 
cells break through the basement membrane, move from its 
primary site (primary tumor) into lymphatic vessels, blood 
vessels or body cavities to ‘target’ tissues or organs, and form 
a distant secondary tumor with the same/similar histological 
type to that of the primary tumor (87). The EMT program is 
considered a key step and is closely involved in pathological 
states of tumor progression (88). EMT is considered as the 
driving factor of invasion and metastasis  (89). Metastasis 
of NSCLC cells is a significant obstacle reducing the OS of 
NSCLC patients, and is considered a core step in the malignant 
progression of NSCLC (87). Thus, it is crucial that we improve 
our understanding of the mechanisms underlying metastasis. 
Moreover, it is widely accepted that circRNAs are related to 
the invasion and metastasis of NSCLC.

CircRNAs modulate EMT, invasion and metastasis through 
sponging miRNAs in NSCLC. Circular SRY‑box transcription 
factor 4 (circ‑SOX4) possesses a covalently closed cyclic struc‑
ture, and has been shown to be upregulated in NSCLC. Reduced 
expression of Circ‑SOX4 decreases the number of invasive and 
metastatic cells, and decreases the expression of the EMT related 
proteins, including N‑cadherin, Vimentin, ZEB1, Slug, Twist, 
Snail, matrix metalloproteinase (MMP)2, MMP7 and MMP9. 
Overexpression of circ‑SOX4 increases β‑catenin expression in 
the cell nucleus and reduces its expression in the cell cytoplasm 
(increases translocation). Thus, circ‑SOX4 results in activation 
of the Wnt pathway. c‑MYC is upregulated upon Wnt pathway 
stimulation. Furthermore, c‑MYC harbors two binding sites 
with circ‑SOX4, and can increase its expression, highlighting 
the presence of a positive feedback loop between circ‑SOX4 and 
c‑MYC. Invasion, metastasis and EMT of NSCLC is promoted 
by circ‑SOX4 via increased activity of the Wnt/β‑catenin 
pathway, through increasing the expression of c‑MYC (90). 
Gao and Ye (91) showed that circ‑SOX4 was upregulated in 
LUAD Western blotting showed that expression of Wnt pathway 
related proteins and EMT representative proteins was increased 
when circ‑SOX4 was overexpressed. These effects were altered 
via upregulated expression of miR‑1270 and decreased expres‑
sion of PLAG1 like zinc finger 2.

Three circRNAs, hsa_circ_0005273, hsa_circ_0008305, 
and hsa_circ_0003221, which are spliced from different exons 
of the pre‑mRNA of PTK2, are all termed circular protein 
tyrosine kinase 2 (CircPTK2). In NSCLC, hsa_circ_0008305 
expression is low in patients with distant metastasis. 
Hsa_circ_0008305 interacts with miR‑429 and miR‑200b‑3p 
in NSCLC. The expression of tripartite motif containing 33 
(TIF1γ) is reduced following overexpression of miR‑429 and 
miR‑200b‑3p, as they can bind to the 3'‑untralsted region (UTR) 
of TIF1γ. TIF1γ may mediate EMT and the TGF‑β/Smad 
pathway by ubiquitinating Smad4. CircPTK2 participates in 
TGF‑β‑induced EMT and invasion. Mechanically, circPTK2 
represses miR‑429/miR‑200b‑3p expression and increases 
TIF1γ expression (92).

The process of tumor cell metastasis requires destruction 
of any physical barriers, such as the basement membrane and 
the extracellular matrix (ECM). MMPs are important prote‑
ases that degrade the ECM, and they serve an important role 
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in tumor invasion and metastasis (93). Circular cysteine rich 
transmembrane BMP regulator 1 (circCRIM1), also known 
as hsa_circ_0002346, is an exon‑related circRNA. LUAC 
patients with TNM stage II and III and lymph node metastasis 
exhibited lower circCRIM1 expression levels than patients 
with TNM stage I LUAD. Functional experiments revealed 
that circCRIM1 represses invasion and metastasis in LADC. 
CircCRIM1 serves as a miR‑182/93 sponge. Resulting in upreg‑
ulation of leukemia inhibitory factor receptor and increases 
MMP13 expression via activation of the PI3K/AKT/JAK1 
signaling pathway (94).

CircRNAs modulate EMT, invasion and metastasis through 
binding with RBPs in NSCLC. Circular La ribonucleoprotein 4 
(circLARP4), derived from the LARP4 gene, acts as a La‑related 
RBP. In NSCLC, downregulated expression of circLARP4 
is associated with a worse prognosis. Overexpression of 
circLARP4 suppresses the metastatic ability of SPCA1 cells. 
Additionally, the protein levels of the SMAD family member 7 
(SMAD7) is upregulated following circLARP4 overexpression. 
Thus, circLARP4 negatively regulates invasion and metastasis of 
NSCLC by upregulating of SMAD7 (95).

CircRNAs modulate EMT, invasion and metastasis through 
sponging miRNAs and regulating expression of their parental 
genes. Dysregulation of the Wnt/β‑catenin signaling pathway 
modulates EMT progression in a range of cancer types. 
CircRNAs modulate the Wnt/β‑catenin pathway through 
different mechanisms. Circ‑ITCH is located on chromosome 
20q11.22. Circ‑ITCH expression is significantly decreased in 
lung cancer tissues, and its expression is positively correlated 
with its parental gene, ITCH. Circ‑ITCH inhibits the activity 
of the Wnt/β‑catenin pathway. Western blot analysis showed 
that overexpression of circ‑ITCH suppressed the protein 

expression levels of β‑catenin. Subsequently, mRNA expres‑
sion of c‑Myc and CCND1, the two downstream binding 
partners of β‑catenin, was reduced following circ‑ITCH 
upregulation/overexpression. Thus, circ‑ITCH interacts with 
miR‑7 and miR‑214, and participates in the progression of lung 
cancer (96).

CircRNAs and NSCLC drug resistance. Chemotherapy is a 
common method for treating cancer, including NSCLC. It has 
been found that cells that are resistant to certain chemothera‑
peutic drugs may also possess resistance to other structurally 
unrelated drugs via different mechanisms. This phenomenon 
of broad drug resistance is termed MDR (97). Whilst certain 
factors in tumor cells underlying the development of resistance 
to chemoradiation and targeted therapy have been character‑
ized, the process and the underlying molecular mechanisms are 
still not completely understood. Recent studies have described 
the roles of circRNAs in drug resistant NSCLC (98,99).

CircRNAs modulate drug resistance through sponging 
miRNAs in NSCLC. One circRNA can interact with multiple 
miRNAs to moderate the nucleotide excision repair (NER) 
signaling pathway. Hsa_circ_0001946 is an exon‑derived 
circRNA that is produced from CDR1 with a length of 1,485 nt. 
Hsa_circ_0001946 is located in chrX: 139865339‑139866824. 
FISH analysis indicated that hsa_circ_0001946 is primarily 
present in the cytoplasm. Hsa_circ_0001946 functions 
as a tumor suppressor in NSCLC. Upregulation of hsa_
circ_0001946 enhances the cisplatin sensitivity of A549 cells. 
Moreover, silencing of hsa_circ_0001946 activates the NER 
signaling pathway, which decreased cisplatin sensitivity of 
lung cancer. Hsa_circ_0001946 is implicated in regulation of 
the sensitivity of NSCLC cells to cisplatin via modulation of 
the NER signaling pathway. Hsa_circ_0001946 sponges four 

Figure 4. Several circRNAs and their downstream targets in the regulation of the pathological progression of NSCLC. CircRNA, circular RNA; NSCLC, 
non‑small cell lung cancer; miR, microRNA.
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miRNAs (hsa‑miR‑7‑5p, hsa‑miR‑671‑5p hsa‑miR‑1270 and 
hsa‑miR‑3156‑5p) to moderate NER signaling (100).

Circ_0002483 is located at chr8:141862969‑141921766. 
Circ_0002483 is significantly downregulated in NSCLC 
tissue samples and in Taxol‑resistant NSCLC cell lines. Lower 
levels of circ_0002483 is correlated with a poorer prognosis 
in patients with NSCLC. A Cell Counting Kit‑8 assay showed 
that overexpression of circ_0002483 notably increased the 
sensitivity of NSCLC cells to Taxol. Using dual‑luciferase 
reporter assays and an RNA immunoprecipitation assay, 
circ_0002483 was confirmed to competitively bind to 
miR‑182‑5p. Knockdown of miR‑182‑5p increases sensitivity 
to Taxol in A549 and H1299 cells. A luciferase assay indi‑
cated that miR‑182‑5p could bind to the 3'UTR of growth 
factor receptor bound protein 2 (GRB2), forkhead box O1 
(FOXO1) and forkhead box O3 (FOXO3). Co‑transfection of 
miR‑182‑5p and circ_0002483 restored GRB2, FOXO1 and 
FOXO3 expression and induced resistance to Taxol in NSCLC 
cells. These findings suggest that circ_0002483, serves as a 
miR‑182‑5p sponge, promotes GRB2, FOXO and FOXO3 
expression and enhances the sensitivity of A549 and H1299 
cells to the chemotherapeutic drug Taxol (101).

CircRNAs modulate drug resistance through binding 
with RBPs in NSCLC. CircRNA_103762 is significantly 
highly expressed in NSCLC tissues and cell lines, and its 
upregulated expression is closely correlated with shorter 
survival rates in patients with NSCLC. CircRNA_103762 
is also upregulated in cisplatin‑resistant H358/CDDP lung 
cancer cells. CircRNA_103762 represses the expression of 
DNA damage inducible transcript 3 and facilitates MDR in 
NSCLC (102).

CircRNAs modulate drug resistance through regulation of 
translation of their parental genes. Hsa_circ_0004350 and 
hsa_circ_0092857 are transcribed from eukaryotic translation 
initiation factor 3 subunit A (EIF3a). Hsa_circ_0004350 is 
located on chromosome 10:120.832.401‑120.833.449 and hsa_
circ_0092857 on chromosome 10:120.809.312‑120.810.833, 
including three exons and two introns, and are differentially 
expressed in A549 and A549/DDP cells. Hsa_circ_0004350 
and hsa_circ_0092857 are prominently associated with 
translation regulation based on analysis of data obtained from 
Metascape. Gene Ontology analysis showed that the overlap‑
ping RBPs of the two circEIF3as were regulators of translation, 
and they may exhibit functional synergy with their parental 
gene, EIF3a. Abnormal expression of hsa_circ_0004350 and 
hsa_circ_0092857 may impact the cisplatin resistance of lung 
cancer cells (103).

4. Conclusion

This review summarizes the findings of recent studies on 
circRNAs that may function as carcinogenic or tumor suppressor 
genes in NSCLC (Fig. 4). Several circRNAs participate in regu‑
lating the pathological progression of NSCLC. Compared with 
coding RNAs, miRNAs and lncRNAs, circRNA research is in 
its initial stages, and several problems still need to be addressed. 
To date several functions of circRNAs and their participation in 
the regulation of the progression of cancer have been identified, 

although considerably more remain undetermined. For NSCLC, 
in order to improve the prognosis and OS of patients, novel 
targeted therapeutic approaches are required. Further devel‑
opment of targeted circRNAs may become potential pivotal 
elements to improve our understanding of NSCLC. These 
mentioned circRNAs may serve as biomarkers of diagnosis 
and prediction in NSCLC. They may also serve as a means of 
non‑invasive treatments. In future studies, additional attention 
should be paid to the role of circRNAs in the clinical diagnosis 
and treatment of NSCLC.
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