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Abstract

Pathogen genome sequencing can reveal details of transmission histories and is a powerful

tool in the fight against infectious disease. In particular, within-host pathogen genomic vari-

ants identified through heterozygous nucleotide base calls are a potential source of informa-

tion to identify linked cases and infer direction and time of transmission. However, using

such data effectively to model disease transmission presents a number of challenges,

including differentiating genuine variants from those observed due to sequencing error, as

well as the specification of a realistic model for within-host pathogen population dynamics.

Here we propose a new Bayesian approach to transmission inference, BadTrIP (BAyesian

epiDemiological TRansmission Inference from Polymorphisms), that explicitly models evo-

lution of pathogen populations in an outbreak, transmission (including transmission bottle-

necks), and sequencing error. BadTrIP enables the inference of host-to-host transmission

from pathogen sequencing data and epidemiological data. By assuming that genomic vari-

ants are unlinked, our method does not require the computationally intensive and unreliable

reconstruction of individual haplotypes. Using simulations we show that BadTrIP is robust in

most scenarios and can accurately infer transmission events by efficiently combining infor-

mation from genetic and epidemiological sources; thanks to its realistic model of pathogen

evolution and the inclusion of epidemiological data, BadTrIP is also more accurate than

existing approaches. BadTrIP is distributed as an open source package (https://bitbucket.

org/nicofmay/badtrip) for the phylogenetic software BEAST2. We apply our method to

reconstruct transmission history at the early stages of the 2014 Ebola outbreak, showcasing

the power of within-host genomic variants to reconstruct transmission events.

Author summary

We present a new tool to reconstruct transmission events within outbreaks. Our approach

makes use of pathogen genetic information, notably genetic variants at low frequency

within host that are usually discarded, and combines it with epidemiological information

of host exposure to infection. This leads to accurate reconstruction of transmission even

in cases where abundant within-host pathogen genetic variation and weak transmission
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bottlenecks (multiple pathogen units colonising a new host at transmission) would other-

wise make inference difficult due to the transmission history differing from the pathogen

evolution history inferred from pathogen isolets. Also, the use of within-host pathogen

genomic variants increases the resolution of the reconstruction of the transmission tree

even in scenarios with limited within-outbreak pathogen genetic diversity: within-host

pathogen populations that appear identical at the level of consensus sequences can be dis-

criminated using within-host variants. Our Bayesian approach provides a measure of the

confidence in different possible transmission histories, and is published as open source

software. We show with simulations and with an analysis of the beginning of the 2014

Ebola outbreak that our approach is applicable in many scenarios, improves our under-

standing of transmission dynamics, and will contribute to finding and limiting sources

and routes of transmission, and therefore preventing the spread of infectious disease.

Introduction

Understanding transmission is important for devising effective policies and measures that

limit the spread of infectious diseases. In recent years, affordable whole genome sequencing

has provided unprecedented detail on the relatedness of pathogen samples [1–4]. Conse-

quently, accurately inferring transmission between hosts is becoming more feasible. However,

this requires robust statistical approaches that make use of the full extent of genetic and epide-

miological data available. Here, we present a new approach that makes use of within-host

genetic variation and epidemiological data to infer transmission.

A number of approaches have been developed that reconstruct transmission from genetic

data. The number of substitutions between samples from different hosts can be used to rule

out transmission [5–7], or the phylogenetic tree of the pathogen samples can be used as a

proxy for the transmission history [8, 9]. However, while the phylogenetic signal can be very

informative of transmission, it can also be misleading [10, 11], due to within-host variation

that can generate discrepancies between the phylogenetic and epidemiological relatedness of

hosts, and can bias estimates of infection times [12, 13].

In recent years a number of methods have been proposed explicitly modelling both the

transmission process and within-host pathogen genetic evolution to infer transmission events

[11, 13–28]. Some of these methods use epidemiological data and genetic sequences from path-

ogen samples, and ignore within-host evolution and other causes of phylogenetic discordance

with transmission history [14–19, 21–23]. Methods that explicitly model pathogen evolution

within hosts and within an outbreak [13, 20, 24, 25, 27] generally assume, among other things,

that samples provide individual and reliable pathogen haplotypes. This is often true for bacte-

ria that are sampled and cultured before being sequenced, but it is mostly false for viruses and

bacteria that are sequenced directly from samples without culturing. In fact, in these cases the

sequencing process delivers reads coming from the different pathogen haplotypes that consti-

tute the within-host pathogen population, and it is often very hard (if not impossible) to recon-

struct complete haplotypes from these reads. In such cases, within-sample genetic variation is

often neglected, and a single haplotype (which we call the consensus sequence of the sample) is

built. While this procedure might lead to errors (and maybe biases), it also certainly discards a

very informative part of the available genetic data, because within-sample genetic variants can

be very informative of epidemiological distance, direction of transmission, time from infection

and transmission bottleneck intensity (see [29–32] and Fig 1). Furthermore, it is generally

assumed that the pathogen does not recombine, so that a single phylogeny describes the
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evolutionary history of the whole genome, but this assumption does not fit highly recombinant

pathogens such as HIV [33]. For these reasons, a few approaches have recently been proposed

that use within-host genetic variants to reconstruct transmission [30, 32].

Here, we propose a new Bayesian approach called BadTrIP (BAyesian epiDemiological

TRansmission Inference from Polymorphisms) that not only uses within-sample genetic

Fig 1. Examples of informativeness of within-host genetic variants. Here we show how within-host within-sample genetic variants can be useful

without requiring pathogen haplotypes. Each string of letters (a frequency sequence logo [34, 35]) represents the collective genome of the pathogen at a

certain point in time, as could be observed through deep sequencing. Multiple letters in the same column represent a genetic variant, with letter size

representing allelic abundance. Time is on the Y axis, hosts are represented as black rectangles (a host is only active in the outbreak for the portion of

vertical axis it occupies), and plausible transmission events as arrows. The posterior probability of different transmission events is represented by the

arrow thickness. The number of little circles within arrows represents the inoculum size (transmission bottleneck). A) Shared genetic variants hint to

epidemiological relatedness: the two top hosts (H1 and H2) are both possible infectors of the central host (H3), but H2 shares two genetic variants with

H3, making it a likely infector of H3. Furthermore, the presence of shared genetic variants suggests a large transmission inoculum (a weak transmission

bottleneck). B) A genetic variant of the same type of a substitution can hint to an infector: as before, but now H3 has a substitution (at third genome

position, from T to C), which means that its within-host population is non-polymorphic at this position, but with a different nucleotide than the index

case. This substitution is between the two nucleotides present at the same position in H2 (where this position is a genetic variant), consistent with H2

being the infector of H3. Also, this time the absence of shared genetic variants is indicative of a small transmission inoculum (a strong transmission

bottleneck). C-D) The number of new genetic variants is informative of the age of an infection (but possibly also of the history of the pathogen

population size within the host): in C the presence of non-shared variants in H2 suggests that the infection is older, while in D their absence suggests

that the infection is younger.

https://doi.org/10.1371/journal.pcbi.1006117.g001
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variants (from possibly multiple samples per host) to reconstruct transmission (including

directionality and time of infection), but also combines this information with epidemiologi-

cal data and an explicit model of within-host pathogen population evolution and transmis-

sion. We use the phylogenetic models with polymorphisms PoMo [36–38] to model

population evolution along branches of the transmission tree; thanks to this, our transmis-

sion tree and phylogenetic tree are the same entity, and within-host evolution and recombi-

nation (resulting from a single primary infection, not multiple infections) do not create

discrepancies that make statistical inference hard and computationally demanding [24, 25,

27]. We also explicitly model transmission bottlenecks, with one parameter defining the

intensity of the bottleneck, and therefore the number of pathogen particles that establish a

new population at transmission. Another feature of our approach is that we assume that dif-

ferent genomic positions are unlinked, an assumption also made by other methods using

within-host variants [30, 32]; most coalescent-based methods assume instead no recombina-

tion at all. Because of our assumption of no linkage, we expect our approach to work well

when recombination is strong enough to break linkage between genetic variants in the same

host, or when the evolutionary rate is slow so that very few new mutations originate with

each new transmission.

BadTrIP is implemented as an open-source package for the Bayesian phylogenetic software

BEAST2 [39], and as such, it can be freely installed, used, and modified. We compare the per-

formance of BadTrIP, of the shared variants-based clustering (SVC) method of [30], and of the

coalescent-based method SCOTTI [13] on simulated data and on a real dataset from the early

stages of the 2014 Ebola outbreak [40]. These applications show that BadTrIP has high accu-

racy to reconstruct transmission thanks to its explicit model of population evolution, the use

of within-host genetic variants, and the inclusion of epidemiological data, and can provide

important information to understand and limit the spread of infectious disease.

In the rest of the manuscript, we refer to a “host” as any entity that can contain and transmit

a pathogen. Typically a host is a human within a community or nosocomial outbreak, or

patients, but the concept of host can also be generalised for example to farms within a livestock

outbreak. We will refer to the collection of all pathogens of the type under consideration

within an individual host at a certain time as a “pathogen population” (for example all Ebola

virions within an infected host, excluding non-Ebola pathogens and Ebola virions from other

hosts). We will call a “pathogen unit” a single pathogen individual within a population, for

example an individual bacterial cell or an individual virion. We call a pathogen population

“polymorphic” at a particular genome position if pathogen units with different nucleotides at

that position are present in the population; in this case, we also call the considered genome

position a “genetic variant”.

Results

Modelling within-host evolution, transmission, and sequencing

Methods to reconstruct transmission that account for within-host evolution usually have to

deal with the complex task of modelling and inferring the discrepancies between the transmis-

sion tree and the pathogen phylogenetic trees [13, 20, 24, 25, 27]. We avoid this complication

by adopting and adapting a substitution model, PoMo [36–38], that describes population evo-

lution along the branches of a species (or population) tree. In this model, a virtual population,

similar to a Moran model [41] without selection and with fixed population size, evolves by

accumulating random changes in nucleotide frequencies (genetic drift, eventually resulting in

the fixation of polymorphic sites), and new mutations resulting in new polymorphic sites. Dif-

ferent genome positions are modelled as completely unlinked.

Transmission reconstruction from genomic variants
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The adoption of such a population genetic model within a transmission tree structure

means that the phylogenetic tree and the transmission tree are now the same entity, and that

each point of the tree represents the state of the pathogen population at a certain time within a

host (Fig 2). Each bifurcation in the tree represents a transmission event, where the pathogen

population splits in two groups: one remaining in the current host, and a small sub-population

colonising a new host. We use a population bottleneck at time of transmission for the colonis-

ing branch to better model the transmission process.

Our method uses two sources of information: epidemiological and genetic data. Epidemio-

logical data is in the form of dates: the times when genetic samples are collected (it is possible

to give any number of samples� 0 for any host, even no sample at all) and a time interval for

each host describing when it can contribute to the outbreak. Each host can only be infected, be

sampled, and can infect other hosts within its time interval [13]. Genetic data from each sam-

ple is in the form of nucleotide counts: for each position of the genome, for a certain sample,

Fig 2. Graphical representation of the transmission, evolution and sequencing model. Here we describe some key aspects of our model. The figure

depicts a possible evolutionary outcome for one position of the pathogen genome and the given transmission history. There are three hosts in this

outbreak, represented by the black rectangles: H1 infects H2, which in turn infects H3. Time is on the vertical axis, and transmission events are

represented by the thick arrows between hosts. Within each host, while it is colonised, the pathogen population consists of 15 units, each of which can

have one of the four nucleotides at the considered position and at any time. For example, H1 starts off with all 15 pathogen units having an A, but

during infection one of them mutates to C, and through genetic drift when H1 infects H2 it has 4 C’s and 11 A’s. While instantaneously only small

changes can occur (one pathogen unit changing its nucleotide), along a time interval any number of changes can occur. As H2 is infected by H1, H2 is

colonised by a copy of the pathogen population of H1, but the transmission bottleneck in this case causes one of the nucleotides to be lost, so that H2 is

founded by a homogenous population of A’s. Within H2 again a mutation occurs and now a G is present in the pathogen population, but when H3 is

colonised by H2 both nucleotides survive the transmission bottleneck, so H3 starts off with a polymorphic population. In the figure, H1 and H3 both

have samples extracted and sequenced once, while H2 is not sampled at all. The sequencing process can result in any coverage (24 for H1 and 7 for H3

at the considered position). Furthermore, the observed nucleotide frequencies don’t necessarily exactly match the real nucleotides frequencies due to

the randomness of read sampling, and because sequencing error can cause absent nucleotides to be observed at very low frequencies.

https://doi.org/10.1371/journal.pcbi.1006117.g002
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the model expects the number of times each of the four nucleotides is observed in the reads

(for example: 59 As, 0 Cs, 12 Gs, 1 Ts). We assume that reads are sampled with replacement

from the pathogen population according to the (hidden) true nucleotide frequencies, and we

model the sequencing error. This in particular means that sites without any sequencing cover-

age, or with very low coverage, are also allowed, and that differently from similar approaches

(i.e. [30, 32]) we don’t require the specification of a minimum genetic variant frequency

threshold.

While in our model we make the strong assumption that sites are completely unlinked, we

test the performance of our approach with simulations in which we explicitly model within-

host recombination events and we assume that a limited number of individuals in the patho-

gen population is sequenced. We even simulate scenarios in the total absence of recombination

(complete linkage) to measure the robustness of our method. We simulate a broad range of

scenarios: different transmission bottleneck severities (weak vs. strong), different amounts of

genetic information, different recombination and mutation rates, different sequencing cover-

age levels, different sequencing error rates, and different virtual population sizes. We give fur-

ther details on the model used and the simulations in the Materials and Methods section.

Accuracy of inference on simulated data

To test the accuracy of our new method BadTrIP in inferring transmission events, and to com-

pare it to previous methods [13, 30], we simulated pathogen evolution within outbreaks and

sample sequencing, and we used different methods to reconstruct the transmission history

from sequencing and epidemiological data. To simulate pathogen evolution, first we simulated

an outbreak using SEEDY [42] (we used a fixed population of 15 hosts, one initial case, and a

basic reproduction number of 1.43, see Materials and methods); then, we translated the trans-

mission history into a population history, and simulated within-population pathogen coales-

cent, recombination and mutation with fastsimcoal2 [43]. Throughout the simulations each

host in the outbreak is sampled exactly once. We measure the accuracy of a method as the fre-

quency with which the correct transmission source of each host is inferred to be the most likely

a posteriori. We also give a measure of how well calibrated [44] methods are by counting how

often the correct source is in the 95% posterior credible set, defined as the minimum set of

sources with cumulative probability� 95% such that all sources in the set have higher poste-

rior probability than all sources outside of it.

BadTrIP shows elevated accuracy in detecting the correct source of transmission (between

50% and 90%) and calibration (between 80% and 100%), in particular compared to the SVC

approach (accuracy between 20% and 45% and calibration between 45% and 95%), see Fig 3.

This shows that the use of epidemiological data and an explicit model of evolution can help to

reconstruct transmission. Using alternative statistics for accuracy and calibration leads to

similar patterns (Fig F in S1 Text). BadTrIP also shows more accuracy than the coalescent

approach SCOTTI (accuracy between 25% and 70%). The latter method appears very conser-

vative in this application (calibration between 95% and 100%). SCOTTI uses the same epide-

miological information as BadTrIP, but a different format of genetic data and a different

model of genetic evolution. In fact, like most coalescent-based approaches, SCOTTI requires

a full haplotype to be given for each sample; in these simulations we used the consensus

sequence of a sample as its haplotype for SCOTTI, discarding within-sample genetic variation.

The fact that SCOTTI has strictly less genetic information available than BadTrIP can explain

why generally it has less accuracy and is more conservative, however it is not the only factor at

play, another being recombination. For example in the scenario with 1x coverage BadTrIP

seems to have higher accuracy than SCOTTI, despite the two methods having the same

Transmission reconstruction from genomic variants
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information available: this can be explained with the fact the SCOTTI wrongly assumes that

there is no recombination. Similarly, the simulations suggest that the accuracy gap between

SCOTTI and BadTrIP reduces with no recombination, and increase at high recombination:

this fits well with the fact BadTrIP assumes no linkage between genomic positions, while

SCOTTI assumes complete linkage (no recombination). While these results are very suggestive

and fit with our expectations, we also have to warn that for each individual scenario we have

10–20 simulated outbreaks, so while the general patterns are clear, the specific patterns of each

scenario are subject to considerable uncertainty.

Comparing the base scenario with the one with almost no mutation, we see that BadTrIP

accuracy drops from about 80% to about 50%; this drop hints to the contribution given by

genetic data to the inference of transmission. Also, since in the latter scenario almost no

genetic information is available, it also suggests what is the contribution of epidemiological

information alone. Calibration of BadTrIP seems to increase as mutation rate decreases, one

probable contributing factor being that as mutation rate decreases the effect of genetic linkage

on the pathogen evolutionary dynamics decreases (neither method models genetic linkage), or

possibly as a result of the increased uncertainty on the evolutionary process. The complete

Fig 3. Accuracy and calibration of BadTrIP on simulated data. A) We represent accuracy as the frequency with which the correct simulated

transmission event is more likely a posteriori than the alternatives. B) Calibration is the frequency with which the correct transmission event is in the

95% posterior credible set (the minimum set of sources with cumulative probability� 95% such that all sources in the set have higher posterior

probability than all sources outside of it). Bars represent percentages (from 0, worst, to 100, best) for BadTrIP (red), SCOTTI [13] (yellow) and the

shared variants-based clustering (SVC) approach [30] (blue). On the x axis are different simulation scenarios with the first one, “base”, being the basic

simulation scenario with 10–15 cases per outbreak, about 300–500 SNPs among all hosts, recombination 10 times stronger than mutation, complete

bottleneck (no transmission of within-host genetic variants), read coverage of 40x, PoMo virtual population size of 15, actual pathogen population size

of 1000, and genome size of 5 kb. All other scenarios are obtained from the base one changing one or two parameters: in “no recombination” the

recombination rate is set to 0; in “high recombination” the recombination rate is 10 times higher; in “high mutation” the mutation rate is 10 times

higher resulting in 2000–3000 SNPs per outbreak; in “low mutation” the mutation rate is 10 times lower resulting in 30–50 SNPs per outbreak; in “very

low mutation” the mutation rate is 1000 times lower, resulting in 0–1 SNPs per outbreak; in “weak bottleneck” at transmission 5 pathogen units from

the infector colonised the infected host, instead of just 1; in “high rec. weak bott.” both the recombination rate is 10 times higher and the founding

population at transmission is made of 5 pathogen particles; in “high coverage” read coverage in sequencing is 100x instead of 40x; in “1x coverage” read

coverage in sequencing is 1x instead of 40x; in “sequencing error” 0.2% of read bases are randomly modified to simulate sequencing error, coverage is

reduced to 20x, and genome size is reduced to 1kb; in “high N” the PoMo virtual population size is 25 instead of 15.

https://doi.org/10.1371/journal.pcbi.1006117.g003
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absence of recombination seems to negatively affect calibration in BadTrIP, but the difference

is not dramatic (from about 90% to about 80%) suggesting that even in the worst case scenario

of complete absence of recombination BadTrIP can still provide meaningful inference and

posterior distributions. Accuracy of all methods seems to decrease with decreasing mutation

rate, as is expected because of the reduced genetic information. However, very high mutation

rates (to the point that about half the genome, of length 5kb, is polymorphic within the out-

break) do not seem to improve inference, probably because of saturation.

Accuracy of BadTrIP seems higher (around 10% difference) in the presence of a strong bot-

tleneck (small inoculum) than a weak bottleneck (large inoculum), while calibration seems

almost unaffected; this probably happens because, with strong bottlenecks, polymorphisms are

unlikely shared between hosts, and so polymorphisms leading to substitutions (see Fig 1B)

become more informative for identifying infectors. An increase in coverage (from 40x to 100x)

does not seem to bring improvement in accuracy or calibration to BadTrIP; on the other hand,

when a single uniform colony is sequenced (which is equivalent to reducing coverage to 1x,

and therefore removing information on within-host genetic variation), accuracy seems moder-

ately reduced (� 10%) but not calibration. Introducing sequencing error (0.2% of mis-called

bases, slightly more than what typical for high-throughput DNA sequencing [45]) accompa-

nied by reduced coverage (20x) and genome length (1kb) still seems to result in elevated accu-

racy (72.5%) and calibration (97.5%). Increasing the PoMo virtual population size (from 15 to

25, while the actual simulated population size remains 1000) showed negligible effects on the

inference.

BadTrIP also infers the time of infection. Calibration seems to increase with recombination,

and to decrease with mutation (Fig 4), probably again an effect of our assumption of no link-

age. Also, very high mutation rates seem to reduce the error in time inference, as do high cov-

erage and virtual population size.

The running time of BadTrIP is affected by the number of genetic variants present in the

alignment and by the number of hosts present in the outbreak (Fig A in S1 Text). The number

of variants affect the number of likelihoods that need to be calculated at each MCMC step,

while the number of hosts affects the size of the transmission/population tree (so both the

computational and statistical complexity of BadTrIP). However, the time required to complete

an analysis is not always a linear function of these two quantities: at low mutation rates Bad-

TrIP requires similar times for different outbreak sizes. The reason is probably that with less

data there is more uncertainty (in particular in the posterior distribution of the mutation rate),

and so it takes longer to explore the the parameter space effectively. Overall, it takes a few

hours to completely investigate an outbreak of moderate size (one or two dozen hosts) with

BadTrIP.

Analysis of the early 2014 Ebola outbreak in Sierra Leone

To demonstrate the applicability of BadTrIP and the advantage of using a model that combines

epidemiological and within-sample genetic variation data, we use BadTrIP to infer transmis-

sion within the early cases of the 2014 Ebola outbreak in Sierra Leone. We use data published

by Gire and colleagues [40] and previously analysed with the SVC method by Worby and col-

leagues [30]. One of the factors that make this dataset important to this study is the presence of

within-host variants shared by multiple hosts, with one genetic variant that was even shared by

eleven hosts [40]. While classical approaches based on consensus sequences would struggle to

accommodate such data, in particular due to their assumption of strong transmission bottle-

neck that would not allow the transmission of variants, BadTrIP can accommodate such fea-

tures, and such shared genomic variants are expected to increase the resolution of our

Transmission reconstruction from genomic variants
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transmission history inference. We investigate a collection of 62 samples with associated time

and location of sampling. As observed by previous researchers, the number of substitutions

(and more generally the number of SNPs) within this partial outbreak is very limited, and as

such we expect to see a lot of uncertainty in the inference [30]; furthermore, all the samples

were collected over a time interval of two months, and we assume transmission from a host to

be possible from three weeks prior to three weeks following the sample collection, so the epide-

miological data are also not very informative. Indeed, we see that most of the cases are inferred

by BadTrIP to have a flat distribution of possible infectors, with highest per-infectee values

generally under 30% posterior probability (Fig 5). However, we also see that BadTrIP identifies

some pairs of infector-infectee with very high posterior probabilities (Fig B in S1 Text). These

pairs not only generally fit with the geographical epidemiological data, with most transmission

with posterior probability > 50% happening within chiefdoms (with two exceptions discussed

later), but also with the SVC inference [30]. Of these, transmission from EM119 to G3770 was

inferred by Worby and colleagues [30] using consensus sequence genetic distance, while trans-

mission from EM096 to G3679, from G3826 to G3827, from G3820 to G3838, from EM110 to

G3809, and from G3729 to G3795 was inferred with the help of shared within-host genetic var-

iants. All highly likely transmission pairs in [30] are also inferred by BadTrIP, but there are

some highly likely transmission events inferred by BadTrIP that were not detected by SVC.

For example, transmission from G3834 to G3817 is inferred by BadTrIP and is supported by a

3% frequency variant within G3834 that becomes fixed in G3817; however, such a variant fixa-

tion, attributable to the transmission dynamics described in Fig 1B, is not informative in the

SVC method [30] and was further ignored due to the imposition of a 5% variant frequency

Fig 4. Error and calibration of BadTrIP inferring infection time from simulated data. A) Error (root mean square error) of the inferred median

times of infection with BadTrIP. The time unit is days, with a simulated transmission rate of 0.1 per day, and a recovery rate of 0.07 per day (mean

duration of infection� 14.3 days). B) Calibration (the percentage with which the true time of infection is within the inferred 95% credible interval) for

the time of infection with BadTrIP. Simulation scenarios are as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1006117.g004
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threshold that we could avoid thanks to our explicit model of sequence evolution and sequenc-

ing error. Other cases similar to the latter are the inferred transmissions from EM110 to

G3856, from EM110 to G3822, and from EM111 to G3724.

Cross-chiefdom transmissions inferred by BadTrIP with elevated posterior distributions

are from EM110 in the chiefdom of Jawie, district of Kailahun, to G3856 in the chiefdom of

Nongowa, district of Kenema; and from G3834 in the chiefdom of Kpeje to G3817 in the chief-

dom of Jawie, both in the district of Kailahun. Neither of them had a high probability in [30],

but they are both supported by low-frequency variants becoming fixed in the recipient.

Our inference of the sequencing error rate � is extremely low (2 � 10−7 < � < 7 � 10−7) con-

sistent with the thorough filtering steps adopted by Gire and colleagues [40] prior to within-

host variant calling.

Fig 5. Inference of transmission in the early 2014 Ebola outbreak in Sierra Leone. A) Transmission events with posterior probability higher than

15% as inferred by BadTrIP. Circles represent hosts, while arrows are transmission events between hosts. Only hosts connected to any other host are

represented. The numbers next to arrows represent their posterior probability (between 0.0 and 1.0), as does their shade of red (from pale to dark red)

and arrow thickness. Numbers within circles represent the inferred (posterior median) time of infection of the respective host, as also does the shade of

green (from pale to dark green) of the circle. Time is expressed in days from the date of the first availability of the first host.

https://doi.org/10.1371/journal.pcbi.1006117.g005
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Discussion

Methods to infer transmission histories within outbreaks are important to determine the

causes of transmission, and to limit and prevent future outbreaks. Genomic pathogen data

from an outbreak reveals in detail the genetic relatedness of pathogens from different cases.

Most methods to infer transmission from pathogen genetic data require full haplotypes, but it

is often not possible to reconstruct haplotypes due to pathogen recombination and short or

inaccurate reads. This leads in many cases to discarding information regarding within-sample

genetic diversity, and only use a sample consensus.

In recent years two methods have been proposed to infer transmission from genetic dis-

tances between samples and shared within-sample variants [30, 32]. Here we presented Bad-

TrIP, a Bayesian approach to transmission inference that makes use of within-sample variants

and allows inference of transmission direction and time. Compared to other similar methods

[30, 32], our approach has the advantage of implementing an explicit model of pathogen popu-

lation evolution, transmission and sequencing, of allowing the inclusion of epidemiological

data (sampling times and host exposure times), of not requiring minimum thresholds for

within-host variant frequencies, of accounting for sequencing errors, and of being imple-

mented as part of an open source phylogenetic package (BEAST2 [39]). These aspects can

result in more applicability, but also, as we have seen in our simulations, in greater accuracy.

Compared to existing methods based on the coalescent (e.g. [13, 24, 25, 28]) BadTrIP does not

require the reconstruction of haplotypes and consensus sequences, but instead uses data of

within-sample genetic variability, therefore having access to important information that can

reveal otherwise cryptic transmission events.

Using simulations, we show that our approach achieves higher accuracy and calibration

than SVC [30], has more accuracy than the coalescent-based method SCOTTI [13] used on

consensus sequences of pathogen population genetic data, and can reliably identify likely

transmission histories. The comparison between BadTrIP and SCOTTI is particularly interest-

ing, because it shows us that reducing the genetic data of a within-host pathogen population to

a single consensus sequence leads not only to the loss of within-host genetic diversity informa-

tion, but can also lead to errors by ignoring recombination and weak transmission bottlenecks.

Also, using a dataset of the early 2014 Ebola outbreak in Sierra Leone, and making use of infor-

mation of within-sample variation and an explicit population evolution model, BadTrIP could

infer previously unidentified likely transmission events, including transmissions between dif-

ferent geographic locations.

BadTrIP infers transmission from both epidemiological time data and pathogen genetic

data. In most circumstances, both types of data are extremely useful, and we see in our simula-

tions that removing genetic data information leads to a loss of� 30% accuracy, and similarly

the epidemiological data is expected to provide� 40% accuracy (the baseline accuracy without

any data is expected to be around 10% in our simulations). However, the contribution of the

two types of data will be extremely dependent on the particular context at hand. As we showed

in our simulations, BadTrIP can account for uninformative genetic data, with which it still

provides meaningful inference. Our approach can however also account for uninformative

epidemiological data: in the absence of exact dates, the user can specify arbitrarily large expo-

sure intervals, allowing hosts to be infected any time by any host; as with the lack of genetic

data, in this case we would also expect a significant drop in the accuracy of our method.

Despite these results, BadTrIP also has limitations, for example its model of genetic linkage.

By assuming that all sites are unlinked, our model could be poorly calibrated in cases where

there is no within-host recombination but high within-host mutation, causing strong correla-

tions between inherited variants that are not expected in our model. However, we show in our
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simulations that our method is robust in a large variety of scenarios, including in the absence

of recombination and with reads coming from few pathogen units. Another limitation is that

our approach is generally not fast enough to deal with very large datasets, and, at the current

stage, application is recommended to outbreaks with fewer than 100 cases. Also, BadTrIP is

only applicable to the case where all hosts in the outbreak have been observed. In fact, our cur-

rent implementation does not allow to infer the number of non-observed hosts (hosts for

which there is no sample or epidemiological data). However, BadTrIP does allow to model

non-sampled hosts with epidemiological data, or a fixed number of non-observed hosts (such

hosts could be given uninformative epidemiological data, such as exposure intervals without

ends). The assumption that all cases are observed or sampled is very common among trans-

mission inference methods [11, 14–20, 23–26, 28], but it limits their applicability. Extending

our method to infer the presence of possible non-sampled and non-observed intermediate

hosts would be relatively straightforward and would increase the method’s applicability, but it

would also lead to a significant increase in the statistical complexity and computational

demand (but see [13, 27]).

Another scenario that is not accounted for in our model is multiple infections of the same

host (one host being infected by multiple sources, or by the same source multiple times). This

scenario can be relatively frequent in many viruses, for example HIV [46], but it is very hard to

model in our context as it would require the use of a population network (see e.g. [47]) instead

of a population phylogeny, which would make likelihood calculation more computationally

demanding. Another similarly looking and equally concerning problem is sample contamina-

tion. We recommend sequencing data to be tested for possible contaminations and multiple

infections using methods such as PHYLOSCANNER [48] prior to being investigated with Bad-

TRiP. In our Ebola dataset we found no obvious pattern of mixed infection or contamination

(like an excess of similar frequency SNPs in one sample). However, none of these approaches

would detect multiple infections from closely related cases. BadTrIP uses a very simple model

of sequencing error, only accounting for the two most common nucleotides at a given position

and sample. This sequencing error model would probably have sub-optimal performance

when sequencing error rate is high (e.g. with Nanopore sequencing technologies) and coverage

is high or mutation rate is elevated. In these circumstances, a more realistic and computation-

ally demanding model of sequencing error might be preferable. Similarly, our model of evolu-

tion only allows 2 alleles for one genome position in one host at one time. If mutation rates are

so high that more than 2 alleles are frequently present simultaneously in the same host, time

and position, then our model could have sub-optimal performance. However, our approach

can still account for the more common scenario where a site has more than 2 alleles but not all

in the same host: for example if at a certain position host 1 has a fixed A, host 2 has a polymor-

phism with A and C, and host 3 has a polymorphism with C and G.

BadTrIP does not account for selective pressure, which could sometimes cause errors, for

example by creating homoplasies due to the same mutation appearing multiple times in differ-

ent hosts, or by the same polymorphism being maintained by balancing selection. However,

our approach weighs information from both fixed substitutions and polymorphic variants, so

the same mutation appearing in different genetic backgrounds will not be as nearly as mislead-

ing as for the SVC method (which gives much more weight to shared variants than to genetic

distances). We assume that within-host population sizes are constant after an initial expansion.

Size fluctuations in all hosts are unlikely to cause problems, as the PoMo drift rate would in

this case represent the average drift rate in hosts. On the other hand, if fluctuations only hap-

pen in certain hosts, so that different hosts have different average drift rates, it might have

averse effects on the estimate of infection times.
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As our model is implemented in BEAST2, it is possible to specify a broad range of models

of genomic variation in substitution rates which could at least partly account for the effects of

selection. An additional feature that could be added to BadTrIP is indel evolution. For exam-

ple, by assuming an infinite sites mutation model, indel data could be reduced to 0–1 states,

and a PoMo matrix with two alleles instead of 4 nucleotides could be used. This approach

could be useful to complement SNP data, but would only work at relatively low indel rates.

Finally, it is possible that errors in the bioinformatic processing of reads, for example map-

ping errors, cause the identification of the same spurious genetic variants in multiple hosts.

We therefore encourage the investigations of genetic variants shared by many hosts to assess

their biological plausibility. In the future we will work to solve some of the limitations of Bad-

TrIP, in particular to reduce its computational demand and to model non-sampled non-

observed hosts.

In conclusion, we have presented a new method that addresses the urgent need for software

to efficiently and accurately analyse genomic and epidemiological data, in particular taking

advantage of within-sample genetic variants to identify transmission pairs and reconstruct

direction and time of infection. BadTrIP can be used in a broad range of outbreaks, and will be

important for devising effective strategies to fight the spread of infectious disease.

Materials and methods

Model of transmission

We model each host as a deme d 2 D that can be colonised by a pathogen population, with

total number of hosts-demes being nD. Each deme d is associated with an exposure interval

limited by an introduction time id 2 (−1, +1] and a removal time rd 2 [−1, +1), with rd <

id (we consider time backward as typical in coalescent theory); the host only contributes to the

outbreak within this interval, which is determined by the epidemiological data. In the least

informative scenario where no information on host d exposure is provided, it is assumed that

d is exposed for the whole outbreak (id = +1 and rd = −1). We will denote as X the collection

of exposure times.

Each host-deme starts off as non-colonised and is colonised (infected) at some time td

between id and the time that the first sample is collected from d (if no sample is collected from

d, then we require only td > rd). Also, unless d is the first host to be infected in the outbreak, d
is infected by another host in the outbreak Id 6¼ d, such that rId

< td < tId
, that is, d is infected

after Id is infected, but before Id reaches its removal time. If d is indeed the first case of the out-

break, then Id is assigned the ; (we assume ; =2 D). We assume for simplicity that transmission

between any pair of hosts and at any time is equally likely, as long as it is consistent with the

epidemiological data. A transmission event of host d at time td is inconsistent with the epide-

miological data if td is outside the exposure interval of d or its infector Id, or if d is sampled,

infects another host, before td. Given the epidemiological data, some infector-infectee pairs are

a priori more likely than others, depending on the length of time that a transmission between

them is allowed.

Each host is also provided with a (possibly empty) set of samples, Sd. Each sample s consists

of a sampling time ts and genetic data Gs. Each sample s in Sd has to be collected after d is

infected (ts < td) and before d is removed (ts > rd). Assuming that the genome is L bases long,

then the genetic data Gs of every sample s has to be in the form of a list of L quadruples, with

for example the quadruple for genome position i being Gsi = (ai, ci, gi, ti), the four positive natu-

ral values being the numbers of A’s, C’s, G’s and T’s observed at position i in the sample. If

there is no read mapping to position i in sample s, then its quadruple is simply Gsi = (0, 0, 0, 0).

We denote the set of all sequencing data as G.
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All hosts share a common parameter B (with real positive values) describing the intensity of

the transmission bottlenecks associated with transmission events. Generally, the value of B can

be inferred jointly with other model parameters, however its interpretation in terms of the size

of the transmission inoculum is not straightforward. T denotes the transmission-population

tree consisting of all sampling times, all infection times and all infectors of each host, and μ
denotes the pathogen evolution model (described below). An example of tree T and of model

parameters is given in Fig C in S1 Text.

We aim to sample from the following joint posterior distribution with a Monte Carlo Mar-

kov Chain approach:

PðT;μ;BjG;XÞ / PðGjT; μ;BÞPðTjXÞPðμÞPðBÞ: ð1Þ

P(μ) and P(B) are the prior probabilities for respectively the substitution model and the bot-

tleneck size, which can be chosen arbitrarily by the user. We ignore the prior for the transmis-

sion tree P(T|X) as in [13]. P(G|T, μ, B) is the likelihood of the sequences given the genealogy

and substitution model, and is calculated as described below, using an adaptation of [36–38] to

transmission trees. So once we calculate the likelihood P(G|T, μ, B), we can use Eq 1 with an

MCMC to infer a posterior distribution of infection times, infectors, bottleneck size and sub-

stitution model parameters.

Model of pathogen evolution

Here, we make use of a phylogenetic model for population evolution, PoMo [36–38], to model

mutation and drift in the within-host pathogen populations; also, we extend the model to

include transmission bottlenecks and sequencing errors. Sequence evolution is usually mod-

elled along phylogenetic trees, which can differ from the transmission tree [13]. However,

PoMo describes evolution along species (or population) trees, and the population tree of a

pathogen within an outbreak corresponds to the transmission tree T described in the previous

section. If we consider the pathogen community within a host d as a population, we see that

this population exists from time of infection td, when it originates from a split with the popula-

tion of its infector Id. So, transmission events corresponds to timed splits in the population

tree, similar to the bifurcations of a species tree. However, one difference is that the split is

asymmetrical, as we assume that the pathogen population size is not affected at td in Id, but at

the start of the branch leading to d it undergoes a bottleneck of intensity B. All events in the

tree are timed in real time (e.g., days) with some values fixed (for samples) and some values

inferred in the MCMC (infection times).

We use a procedure very similar to the Felsenstein pruning algorithm [49] to calculate the

likelihood of the genetic data over the tree. First of all, the substitution process along the

branches of the transmission-population tree is not a simple DNA substitution process, but is

similar to a 4-allelic Moran model [41] with mutation. We assume we have a continuous-time

Markov process along each branch of the tree, where the state space is not made by the four

nucleotides, as is typical, but by all 1- and 2-allelic states possible for a population of N units.

Typical values of N that we use here are 15 or 25, that is, we describe evolution of a large

within-host pathogen population (possibly with billions of units) with a small virtual within-

host population of N units. Such an approximation generally leads to reasonably good results

as long as we rescale the mutation rates between the real and the virtual population [36–38]. N
here is not estimated, but is fixed by the user. Lower values of N are expected to reduce the

computational demand of the method, but can result in lower accuracy. The states of our Mar-

kov process always include the four fixed states, where only one nucleotide is present in the

population. In addition, they also include six groups of polymorphic states, where two
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nucleotides are present in the virtual population at the same site at the same time. Each group

corresponds to one of the six unordered pairs of nucleotides ({A, C}, {A, G}, {A, T}, {C, G}, {C,

T}, {G, T}) and contains N − 1 states: if the two nucleotides present in the population are n1

and n2, then such N − 1 states are the ones in which the population contains i times nucleotide

n1 and N − i times nucleotide n2, for 0< i< N. So in total our state space is of size 4 + 6(N −
1). Our substitution rate matrix is sparse, in that we only allow one unit in the virtual popula-

tion to change at the time. So, from a fixed state with nucleotide n1, a instantaneous move is

only possible to one of the three states with N − 1 times nucleotide n1 and one time any other

nucleotide n2 different from n1. Such moves correspond to mutation events, and we represent

their rates as mn1 ;n2
. Instead, if we are already in a polymorphic state with i times nucleotide n1

and N − i times nucleotide n2, we only allow nucleotide counts to instantaneously change by

one, so an instantaneous move is only possible to the state with i + 1 times nucleotide n1 and

N − i − 1 times nucleotide n2, or to state i − 1 times nucleotide n1 and N + 1 − i times nucleo-

tide n2 (one of these two latter states might be a fixed state). The instantaneous rate at which

such changes happen is
iðN � iÞ

N2
R which corresponds to the rate of genetic drift; here R scales

the rate of drift in the virtual population in units of real time; the rate of drift in the virtual pop-

ulation also depends on N, and it represents the rate of drift in a real pathogen population,

which in turn depends on the pathogen effective population size, the pathogen generation

time, and the time unit. All other non-diagonal substitution rates are set to 0. All these states

and rates constitute the substitution process E. The rate matrix is further described in Fig D in

S1 Text. Our model only allows 2 alleles to be present in one host at one time at one position.

This can be unrealistic where mutation rates are extremely high, or selection favours several

variants at the same site.

The likelihood of T is calculated starting from the hosts in the outbreaks who don’t infect

others (the leaves of the transmission tree). For such leaves, the likelihood is first calculated

from the latest sample (if no sample is present, then the likelihood of such leaf at time of their

transmission is 1 for every state). Given any state of our substitution process with nucleotides

n1 and n2 with respectively abundances i and N − i in the virtual population (here for generality

i can also be 0), given a sample and site at which the nucleotides with the highest coverage are

x1 with coverage c1, and x2 with coverage c2 (we ignore the nucleotides with lower counts for

numerical stability, and in case of a tie random nucleotides are selected from the tying ones),

then the likelihood of this state at this sample and site is approximated as:

Pðc1; x1; c2; x2ji; n1;N � i; n2; �Þ ¼

¼ ðIx1¼n1
ð
ið1 � �Þ

N
þ
ðN � iÞ�

3N
Þ þ Ix1¼n2

ð
ðN � iÞð1 � �Þ

N
þ

i�
3N
Þ þ Ix1 6¼n1 ;x1 6¼n2

�
�

3
Þ

c1 �

�ðIx2¼n1
ð
ið1 � �Þ

N
þ
ðN � iÞ�

3N
Þ þ Ix2¼n2

ð
ðN � iÞð1 � �Þ

N
þ

i�
3N
Þ þ Ix2 6¼n1 ;x2 6¼n2

�
�

3
Þ

c2 �

�
c1 þ c2

c1

 !

ð2Þ

Where � is a parameter describing the sequencing error rate. Here, due to sequencing errors

and to random sampling of reads from the pathogen population, the observed alleles c1 and c2

are allowed be different from the alleles n1 and n2 in the virtual population. We assume that

each read has the same probability to represent any of the individuals in the virtual population,

and that there is a probability � that the considered position of the read is a sequencing error

(in which case any of the three wrong nucleotides is equally likely to be on the read).
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ð
ið1 � �Þ

N
þ
ðN � iÞ�

3N
Þ is the probability to see a n1 nucleotide: the first part is the probability

that the read comes from an individual in the virtual population with nucleotide n1 at the

given position and that no sequencing error happened; the right end part represents the proba-

bility that the virtual individual had a different nucleotide but there was a sequencing error. �

can be estimated with the other model parameters as we do with the real data and with the sim-

ulations including sequencing error. For all other simulations we set � = 0. This sequencing

model assumes that there are at most 2 alleles in the reads data for one sample at one position.

If more than 2 alleles are observed, then only the counts from the 2 most common alleles are

retained.

Along branches of T, the likelihood is updated using the matrix exponential of E. At bifur-

cations (corresponding either to internal samples or transmission events) the likelihood is also

updated according to the classical pruning algorithm, but at transmission events an extra step

is added. A new drift-only substitution matrix ED is defined by setting the mutation rates in E
to 0. Then, we describe a bottleneck as a branch of length B along which the population evolves

under drift alone, that is, under ED. The length B does not count toward the branch lengths in

real time, so that changing the intensity of the bottleneck does not affect the timing of the

events in T. Under this model, a more intense bottleneck, corresponding to a small transmis-

sion inoculum, will be represented by a longer bottleneck branch, so a larger B. If we have a

transmission event from Id to d at time td, we first calculate the likelihood within population Id

up to right before time td (likelihoods are updated backward in time), then within population

d up to right before time td, then we update the likelihood within d using the bottleneck

branch, and finally we multiply the two likelihoods in d and Id to obtain the likelihood in Id

right after td (again backward in time). This backward-in-time likelihood update process is ter-

minated after the transmission event of the index case, and before its bottleneck we assume

state equilibrium frequencies. We now describe an example of likelihood calculation in Fig E

in S1 Text.

MCMC proposals

We use typical BEAST2 scalar proposals for B, � and E, which, given a constant s and a random

uniform real number 0< u< 1, propose to scale the given parameter by a factor of s + (1/s −
s)u; the reciprocal of this factor is the Hastings ratio of the proposal. We also define below five

new operators (proposals) for updating our transmission-population tree.

• The first operator picks a random host d uniformly, then picks its new transmission time td

uniformly within the time interval allowed by id, rd, the first sampling time of d (if any is

present), the first time d infects another host (if any), and the exposure interval of the infec-

tor of d, Id. This operator does not modify any other parameter, not even Id. The Hastings

ratio is 1.

• The second operator picks a random non-index case d and, without modifying its infection

time td, picks a random new infector Id among the ones compatible with infection time td.

The Hastings ratio is 1.

• The third operator is similar to the second, but first picks a new infection time t0d for d
among those allowed by id, rd, first sample time of d and the first time d infects another host

(but not based on the current infector Id), and then picks a new infector I 0d of d uniformly

among those compatible with t0d (if any is present, otherwise the proposal is rejected). The

Hastings ratio is calculated taking the number of possible infectors of d compatible with the
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new infection time t0d, and dividing it by the number of possible infectors of d compatible

with the old infection time td.

• The fourth operator swaps infector-infectee. First, a random non-tip host (a host with some

infectees) d is uniformly chosen; we call its first infectee c. Given infection times tc and td, if

the swap is legal (d has no samples collected before tc, and td is within the exposure interval

of c) then Id (possibly ;) becomes the infector I 0c of c at time t0c ¼ td, and c becomes the infec-

tor I 0d of d at time t0d ¼ tc. The Hastings ratio is 1.

• The last operator picks a random case d uniformly, selects a new infection time t0d as in oper-

ator three, then picks a random new infector I 0d uniformly within the set of infectors compat-

ible with t0d and within the epidemiological upper neighbourhood of d (the grandparent IId
,

its infectees, and the infectees of Id different from d); if no compatible infector is found, the

move is rejected. The Hastings ratio is calculated like in operator three, but counting only

compatible infectors within epidemiological upper neighbourhoods.

We will now give a very informal intuition of why the above proposals make an irreducible

MCMC. We will focus on the transmission history, and not on B, � or E, but the extension is

trivial. We will discuss intuitively how it is possible to move from any given tree T to a specific

tree ~T (the tree we use as a starting point of the MCMC). As proposals are reversible, this is

sufficient to have irreducibility. ~T is defined as the tree where the host with the earliest intro-

duction time is the index case; each non-index host d in ~T is infected by the host Id with the

earliest introduction time iId
among those with an exposure overlap to d; in ~T infection time td

of any host d is set to id (for a more formal proof an infinitesimal interval after id might be con-

sidered). Starting from T, we first approach ~T by moving host h, the index case in ~T , up from

its starting position in T by using repeatedly operator four. At each step, before applying opera-

tor four, we use operator one to move th up to make sure it is the first infectee of its infector,

and that it is infected before the first sample of its infector is collected. Repeating these two

steps long enough, h is guaranteed to become the root, at which point we can apply operator

one to make sure its infection time is the same as in ~T . We then proceed to apply a similar

strategy iteratively on all other hosts in order based on their introduction time (from earlier to

latest). We stop when we obtain ~T .

Simulations of pathogen evolution

To test the accuracy of our new method BadTrIP in inferring transmission events, and to com-

pare it with the SVC method [30], we simulated pathogen evolution within outbreaks and sam-

ple sequencing, and we used different methods to reconstruct the transmission history from

sequencing and epidemiological data. To simulate pathogen evolution, first we simulated an

outbreak using SEEDY [42] with a host population of 15 hosts and an infection rate of 0.1 per

day, a recovery rate 0.07 per day, and conditionally accepting only outbreaks that achieve a

minimum total of 10 infected cases. Given these parameters, SEEDY will start at time 0 with

one infected individual in the community of 15 hosts. Each day every infected host has a 0.1

chance of infecting any other host, and a 0.07 chance of recovering (recovered hosts are no

more infectious or infectable). If the outbreak runs out of infected hosts before a total of 10

hosts are infected, the simulation is repeated. We then took the outbreak simulated by SEEDY

and translated the transmission history into a population history, assuming a within-host path-

ogen population size of 1000 and using fastsimcoal2 [43] to simulate pathogen coalescent,

recombination and mutation with scenario-dependent parameters. fastSimCoal2 is an approx-

imate coalescent simulator implementing the sequential Markov coalescent model [50, 51]
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with cross-over recombination. This model describes viral recombination more appropriately

than bacterial recombination, for which a coalescent simulation software modeling gene

conversion is preferable [52, 53]. The use of a coalescent simulator with recombination is also

the main difference with the simulations made by [30], where within-host recombination was

not allowed. Within each infection we assume that the population size is constantly 1000 indi-

viduals, but at the time of transmission we assume an instantaneous population bottleneck

(founding population size either 1 or 5 individuals depending on the scenario). At the time of

a transmission (simulated by SEEDY) the whole infectee population is, backward in time,

merged with the infector population. We observed that some times, in particular at high

recombination rates, fastSimCoal can crash: if this happens we simply repeat the fastSimCoal2

simulation with a different seed. Throughout all simulations each host was sampled exactly

once.

We define a basic group of simulations (called “base”), and nine variants, in each of which

one or two aspects of the base group of simulations is modified. In “base” we simulated about

300–500 SNPs (counting also variants present at very low frequency in just one host) or 45

substitutions per outbreak (which might be typical for HIV but high for many other patho-

gens), recombination rate 10 times higher than the mutation rate, complete bottlenecks (no

transmission of within-host genetic variants), homogeneous read coverage of 40x, no sequenc-

ing error, PoMo virtual population size of 15, all equal mutation rates, and genome size of 5

kb. The eleven variant settings are:

• no recombination—the recombination rate is set to 0.

• high recombination—the recombination rate is increased 10-fold.

• high mutation—the mutation rate is 10-fold higher resulting in 2000–3000 SNPs and about

385 substitutions per outbreak.

• low mutation—the mutation rate is 10-fold lower resulting in 30–50 SNPs and about 4–5

substitutions per outbreak.

• very low mutation—the mutation rate is 1000-fold lower, resulting in 0–1 SNPs and 0 sub-

stitutions per outbreak.

• weak bottleneck—at transmission, 5 pathogen particles from the infector colonise the

infected host, instead of just 1.

• high recombination and weak bottleneck—the recombination rate is 10-fold higher and

the founding population at transmission is made of 5 pathogen particles.

• high coverage—read coverage is higher (100x instead of 40x).

• 1x coverage—read coverage is extremely low (1x instead of 40x).

• sequencing error—read coverage is lower (20x instead of 40x), genome size is reduced (1kb

instead of 5kb) and read bases are randomly modified to simulate sequencing error (0.2% of

bases in reads are wrong).

• high N—the PoMo virtual population size is 25 instead of 15 (this only affects the BADTRIP

inference and not the simulation itself).

We ran 10 replicates for all scenarios, and 20 for “base”, “weak bottleneck” and “no recom-

bination” (some scenarios are more computationally demanding due to the effect of recombi-

nation on coalescent simulations and of genetic diversity on transmission inference). For each

repeat in each scenario we ran a completely different simulation with different seeds resulting
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in different transmission and coalescent histories, even when outrbeak or coalescent parame-

ters do not change across scenarios. We ran the BadTrIP MCMC for 5 � 105 steps for each rep-

licate, sampled from the posterior every 100 steps and with a 20% burn-in. We specified in

BadTrIP the true simulated sampling time and removal time of each host, while we specified

as introduction time of each host its infection time minus one quarter of the mean duration of

infection (so that the true infection time is contained within the exposure time of the host).

For SCOTTI we used the same epidemiological data and options as for BadTrIP, except that

we ran the MCMC for 2 � 106 steps for each replicate. We did not allow unobserved cases in

SCOTTI. We measured accuracy as the frequency with which the correct transmission source

of each host is inferred by a method to be the most likely a posteriori. We also measured cali-

bration as how often the correct transmission source is the the 95% posterior credible set (the

minimum set of sources with cumulative probability� 95% such that all sources in the set

have higher posterior probability than all sources outside of it).

We also used the SVC method [30] to infer transmission from simulated data. This method

consists of selecting, for each host d, the set of possible infectors as those cases with most

shared variants with d, or, if d does not share variants with other hosts, the cases with the

smallest consensus genetic distance from d. If a single possible infector is found, it is assigned

100% posterior probability, otherwise if multiple possible infectors are found they are assigned

the same posterior probability. For example, if 4 cases all have 2 shared genetic variants with d,

and all other cases have fewer than 2, than each of those 4 cases is assigned a posterior proba-

bility of 25% of infecting d. This is very different from BadTrIP, which always weighs the infor-

mation from shared variants, genetic distances, and epidemiological data simultaneously from

all cases. So, the 4 cases sharing 2 genetic variants with d can have very different posterior

probabilities in BadTrIP of being infectors of d, depending on the other data. For example, if

one of these 4 cases has very high genetic distance from d, or epidemiological data incompati-

ble with a transmission to d, BadTrIP would infer very low (or null) probability of it being the

infector of d.

The 2014 Sierra Leone Ebola dataset

We use sequencing and epidemiological data published by Gire and colleagues [40] and ana-

lysed by Worby and colleagues [30]. In particular, we use information from sampling dates,

nucleotide frequencies and sequencing coverage. We specify the introduction date (removal

date) of each host as its sampling date minus (plus) 21 days. This means that we allow each

host to be infected at most 21 days before it being sampled, and to infect others at most 21

days after being sampled. We ran the BadTrIP MCMC until an effective sample size of 1000

was reached for each parameter and for the posterior probability (requiring� 3.5 million

MCMC steps). to reduce the computational time required we subsampled the reads from each

sample to obtain a per-base coverage of at most 100.

Software availability

BadTrIP is distributed as an open source package for the Bayesian phylogenetic software

BEAST2 [39]. It can be downloaded from https://bitbucket.org/nicofmay/badtrip/ or via the

BEAUti interface [54] of BEAST2.
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