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Background-—Previous studies assessing the association between body mass index (BMI) and atrial fibrillation (AF) did not account
for time-varying covariates, which may be affected by previous BMI. We illustrate how the g-formula can account for time-varying
confounding.

Methods and Results-—We included 4392 participants from the Framingham Heart Study who were AF free at ages 45 to
55 years, and followed them for up to 20 years. We estimated hazard ratios (HRs) comparing time-varying nonobese versus obese
with Cox models. We used the g-formula to compare nonobese versus obese and 10% annual decrease in BMI (until normal weight
is reached) versus natural course. We estimated HRs and differences in restricted mean survival times, the mean difference in time
alive and AF free. We adjusted for sex, age, and time-varying risk factors. Cox models indicated that nonobese participants had a
decreased rate of AF versus obese participants (HR, 0.83; 95% CI, 0.72–0.97). G-formula analyses comparing everyone had they
been nonobese versus obese yielded stronger associations (HR, 0.73; 95% CI, 0.58–0.91). The restricted mean survival time was
19.22 years had everyone been nonobese and 19.03 years had everyone been obese (difference, 2.25 months; 95% CI, �0.66 to
5.16). When assessing a 10% annual decrease in BMI, the association was weaker (HR 0.96; 95% CI, 0.86–1.08).

Conclusions-—Decreased BMI was associated with a lower rate of AF after accounting for time-varying covariates that depend on
previous exposure using the g-formula, which Cox models cannot accommodate. Absolute measures like the restricted mean
survival time difference offer context to relative measures of association. ( J Am Heart Assoc. 2019;8:e013011. DOI: 10.1161/
JAHA.119.013011.)
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A trial fibrillation (AF) affects about 3 to 6 million Amer-
icans, a number that is expected to rise to 12 to

15 million by 2050.1 AF is associated with increased risks of
myocardial infarction, heart failure, stroke, dementia, and
death; thus, prevention of AF through modifiable risk factors
is key.2,3 Body mass index (BMI) is a known, modifiable risk
factor of AF.4–14 Most previous studies have analyzed the

association between AF and BMI at cohort entry, without
accounting for changes in risk factors over time. One study
examined change in BMI as a time-varying covariate.5

However, changes in BMI may also affect other vascular risk
factors via cardiac remodeling. For instance, increasing BMI
increases the risk of developing hypertension and heart
failure,15,16 both associated with increased risk of AF. Thus,
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vascular risk factors create time-varying confounding, which
depends on past BMI; they are said to be intermediate
variables.

Confounders that are also intermediate variables cannot be
accounted for using traditional statistical methods, such as
the Cox proportional hazards model with time-varying covari-
ates. For example, if obesity increases future risk of heart
failure, which in turn increases future AF risk, adjustment for
heart failure prevents observing the full association between
obesity and AF—the causal pathway between obesity and AF
is considered closed or blocked (Figure 1). Unlike standard
statistical methods, the g-methods (ie, the parametric g-
formula, inverse probability weighting of marginal structural
models, and g-estimation) can account for the fact that BMI
history is associated with other time-varying confounders.17–22

Because the Coxmodel cannot address this, previous results on
the association between BMI and AF may be biased. The
parametric g-formula also allows estimation of the effect of
“interventions” based on real-life scenarios but applied to all
individuals: for example, the difference in AF risk had everyone
been nonobese versus everyone had been obese. G-methods
have not been applied in AF research.

Previous applications of g-methods on topics outside of AF
research have reported relative risks, risk differences, or
hazard ratios (HRs) to measure associations.18,19,23–26

Another measure, the difference in restricted mean survival
times (RMSTs), offers a clinically meaningful interpretation as
the gain or loss in mean lifetime (or mean lifetime alive and
free of the outcome) between exposure groups over a
prespecified time horizon.27–30 Reporting absolute measures
of association, like the risk difference and difference in

RMSTs, alongside relative measures can facilitate interpreta-
tions of associations.31

In this paper, we used the parametric g-formula to estimate
the association of hypothetical BMI interventions on the risk
of AF in the FHS (Framingham Heart Study). We also show
how to derive and interpret the difference in RMSTs.

Methods
We share our statistical code and an example of our analytic
methods with simulated data at github.com/s-conner/afbmi-
gformula. Investigators can request access to FHS data by
submitting a proposal at framinghamheartstudy.org. Boston
University Medical Center’s institutional review board
approved all FHS protocols. Participants signed informed
consent forms.

Study Sample
The FHS longitudinal study began in 1948 in Framingham,MA to
examine cardiovascular health. We included participants from
the FHS Original and Offspring cohorts who were AF free and
attended an examination at age 50 years, plus or minus
5 years. We selected the examination closest to age 50 years.
For the Original cohort, the earliest examination to enter was
Examination 11 (1968–1971).32–36 AF diagnosis, including

BMIk AF

Lk

BMIk-1

Lk-1

Figure 1. Directed acyclic graph of body mass index, other
time-varying covariates, and atrial fibrillation. The directed acyclic
graph displays repeated measures at years k�1 and k. BMIk
denotes the exposure, body mass index (BMI), at year k. Lk
denotes confounders at year k (eg, systolic blood pressure). AF
denotes the outcome, new-onset atrial fibrillation (AF). Arrows
indicate associations (eg, the association of body mass index
[BMI] and incident AF). Adjustment for intermediate variables Lk
(red) in a Cox model will block the path between BMIk�1 and AF
(green), which prevents us from observing the full association.
However, g-methods can accommodate this scenario. If BMIk�1

did not cause AF through Lk (the green arrows were not present),
then Lk would not be an intermediate variable and adjustment for
Lk would not block the association of BMIk�1 and AF.

Clinical Perspective

What Is New?

• Repeated measures in longitudinal cardiovascular studies
present the challenge of time-varying confounding, which
cannot be addressed with traditional statistical methods like
Cox proportional hazards models.

• We applied the g-formula to address the issue of time-
varying confounding and found an association of body mass
index and incident atrial fibrillation.

What Are the Clinical Implications?

• Decreased BMI was associated with a lower rate of atrial
fibrillation, accounting for other atrial fibrillation risk factors
affected by body mass index.

• Unlike traditional methods, g-methods such as the g-
formula can account for time-varying confounders that are
also intermediate variables, which commonly exist in
cardiovascular research.
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atrial flutter, was adjudicated by 2 cardiologists using exami-
nation records,medical records, ECGs, and hospital contacts. In
our analyses, follow-up continued until the earliest of first
diagnosed AF, death, last FHS examination or medical contact,
or end of follow-up (December 31, 2015, or 10 and 20 years
since age 50 years, plus or minus 5 years). Our final sample
consisted of 4392 AF-free participants.

The exposure of interest was BMI over time. We adjusted
analyses on sex, baseline age, and the following time-varying
covariates: smoking status (current versus former/never),
systolic blood pressure, diastolic blood pressure, antihyperten-
sive treatment, history of diabetes mellitus, heart failure, and
myocardial infarction. We selected these covariates in align-
ment with the CHARGE-AF (Cohorts for Heart and Aging
Research in Epidemiology–Atrial Fibrillation) simple risk score,
and we added sex.4,37 We also conducted analyses stratified by
sex.

Conventional Approaches
We first fit 6 conventional Cox proportional hazard models,
each at 10 and 20 years of follow-up. We estimated HRs for
BMI at baseline adjusting for the aforementioned covariates at
baseline, time-varying BMI adjusting for covariates at base-
line, and time-varying BMI adjusting for time-varying covari-
ates. BMI associations were calculated for a 5 kg/m2

decrease in BMI. Similarly, we repeated these models with
BMI dichotomized as nonobese (BMI <30 kg/m2) and obese
(BMI ≥30 kg/m2).

G-Formula Method
To account for time-varying covariates that depend on
previous BMI, we estimated the associations of BMI interven-
tions and incident AF using the parametric g-formula
method.18–22 This method adjusts for time-varying covariates
that depend on previous exposure by leveraging the past
value of covariates. The method works in 2 steps.18–22 First,
we estimated the joint density of time-varying covariates
given the covariate history through parametric models.
Second, we conducted Monte Carlo simulation to estimate
the risk of incident AF under a given BMI intervention, defined
by specific BMI profiles. For example, we simulated partici-
pants maintaining BMI <30 kg/m2 and maintaining BMI at
least 30 kg/m2 over a prespecified time period. By contrast-
ing the counterfactual outcomes, we estimated the associa-
tion for obesity and the risk of incident AF.

BMI interventions of interest

We examined BMI interventions with regard to incident AF via
the following comparisons: (1) maintaining BMI between 18.5
and 29.9 kg/m2 at all years (nonobese) versus maintaining

BMI between 30 and 41 kg/m2 at all years (obese); (2)
maintaining BMI between 18.5 and 29.9 kg/m2 at all years
(nonobese) versus the natural course; and (3) a 10% decrease
in BMI each year in participants with BMI >25.0 kg/m2 at a
given time versus the natural course (Table S1). These
interventions and comparisons are fashioned to emulate real-
life weight management strategies, such as bariatric surgery
or more gradual weight management.38–40 The interventions
are maintained until the prespecified time period, AF, or
death. The natural course consists of simulating the risk of
incident AF under the observed empirical distribution of time-
varying BMI in the absence of loss to follow-up.41

Causal structure and covariate history

In Figure 1, we present a directed acyclic graph to illustrate
the pathways between BMI, other covariates, and AF over
time. Directed acyclic graphs are a popular tool in epidemi-
ology to visualize confounding and causal relationships.
Figure 1 illustrates the causal structure between time-varying
BMI, time-varying confounder L, and the risk of AF. Time goes
from left to right, and thus BMI and L occur before AF;
measures at time k�1 occur before those at time k. Arrows
from one variable to another indicate that we make the
assumption of a direct causal effect from the first variable to
the second (not mediated by other variables in the graph).
Adjustment for Lk as a time-varying covariate in a Cox
proportional hazards model would block the path between
BMIk�1 and subsequent AF, preventing one from observing
the full association between BMIk�1 and AF. However, g-
methods such as the parametric g-formula can accommodate
this causal structure.

In our analyses, we incorporated the covariate history with a
lag of 3 years. At year k, the associations between BMI history
(BMIk�1) and Lk indicate how a participant’s other risk factors
may be affected by his or her previous BMI at years k�3, k�2,
and k�1. The risk of incident AF at year k may be influenced by
their current BMI (BMIk), their BMI history (BMIk�3;

BMIk�2; BMIk�1), and their risk factors (Lk�3; Lk�2; Lk�1; Lk).

Parametric models for time-varying covariates and AF

We fit models to predict covariates in the following sequence:
smoking, BMI, systolic blood pressure, diastolic blood pres-
sure, antihypertensive treatment, diabetes mellitus, heart
failure, and myocardial infarction. We predict covariates in a
given year according to the lagged values for all covariates,
plus current values for the preceding variable in the sequence.
We fit logistic models for dichotomous covariates and linear
models for continuous covariates. Then, we fit pooled logistic
models to estimate an individual’s probability of AF at each
year conditional on the covariate history.42–45 On the basis of
the individual probabilities, we estimated survival probabilities
at each year.41 Additional details are provided in Data S1.
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Monte Carlo simulation for association of BMI
interventions

For each BMI intervention, we used the previously estimated
parametric models to generate a pseudo-population of size
n=10 000 participants. Beginning with the observed covariate
values, we generated covariates at each year using the
estimated regression coefficients from the covariate models.
Throughout the process, generated BMI values were modified
to match an assigned intervention and used in generating
subsequent covariate values. For example, if participants
maintain a BMI <30 kg/m2 over time, any simulated BMI
value ≥30.0 kg/m2 is updated to 29.9 kg/m2. We give an
example of this process in Figure S1. The risk at each time
point conditional on the covariate history was also estimated
using the estimated regression coefficients from the AF
pooled logistic model.

Using the g-formula, we first estimated HR and risk ratio at
10 and 20 years. We then derived the absolute risk difference
and difference in RMST.

Difference in RMSTs
The RMST is the area under the survival function until a given time
point, s, given by l s ¼

R s
0 S tð Þdt.28 We considered 2 time

horizons: s=10 and s=20 years. We used rectangular area
approximation with equally spaced intervals to estimate the
adjustedRMSTby summing the survival probabilities at each year.

To estimate the adjusted RMST, we computed the survival
probabilities with equally spaced intervals incrementing by
1 year in simulated data sets without loss to follow-up. The
difference in RMSTs is then given from the difference in
RMSTs under different BMI interventions. We obtained
standard errors using the nonparametric bootstrap with 500
samples. We repeated this process in 30 imputed data sets.

Multiple Imputation and Interpolation Process
FHS participants have clinic examinations every 2 to 8 years;
16% to 45% did not attend specific exams. In addition, some
covariates may be missing at an attended examination. We
used multiple imputation46,47 and linear interpolation to
generate data with complete covariate information available
each year (Figure 2). The interpolation allows estimating the
survival probabilities at each year and thus the RMSTs.

First, we performed sequential multiple imputation to
account for temporality of covariates across successive
examination cycles, while removing participants from the
imputation process at death.46,47 We used data beginning at
Examination 9 in the Original cohort and Examination 1 in the
Offspring cohort. We imputed missing covariate values at entry
examination and both missing covariate values and nonat-
tended examinations throughout the follow-up period. Imputed

data sets were generated within each cohort and then
combined. We repeated this process for 30 imputed data sets.

Second, we updated the yearly covariate values between
exams using interpolation methods. For continuous covari-
ates, we filled in values using linear interpolation. For
dichotomous covariates, we used midpoint interpolation to
identify the year of the change in covariate, if any. Among
participants who experienced AF or died after their last in-
clinic examination, we carried forward covariate values from
the last examination (attended or imputed) until incident AF or
death. We performed analyses in each of the 30 imputed data
sets and combined results according to Rubin’s rule.48

Sensitivity Analyses
We performed sensitivity analyses under 3 different scenarios
at 20 years of follow-up. Weight loss may be attributable to
severe illness and associated with greater risk of morbidity,
including AF.17,18 Therefore, in our first sensitivity analysis, we
excluded participants diagnosed with cancer at entry exam-
ination, and we censored participants upon cancer diagnosis.

In a second sensitivity analysis, we restricted to participants
who attended at least 3 consecutive examinations with nonmiss-
ing covariates in the Original cohort or 2 consecutive examina-
tions with nonmissing covariates in the Offspring cohort because
of the need for lagged information (covariate history). We
performed sequential multiple imputation for any missing covari-
ate values during follow-up, as previously described.

Third, we considered a later entry age of 55 to 65 years.
Finally, following a reviewer’s suggestion, we fit pooled negative
binomial models for the hazard of AF instead of pooled logistic
models. Additional details are provided in Data S1.

Software
All analyses were performed in SAS 9.4. We used the
GFORMULA SAS macros and made modifications to accom-
modate multiple imputation and a pooled negative binomial
model.41 To provide guidance on preparing the analytic data
set and using the parametric g-formula to estimate RMST, we
share our SAS code and a working example. Our SAS program
is available at github.com/s-conner/afbmi-gformula.

Results

Participant Characteristics
Among the 4392 AF-free participants at ages 45 to 55 years,
53.4% were women (Table 1). The mean age at entry was
50.7 years. The mean BMI was 27.1 kg/m2, and 20.4% were
obese. The flow of participant selection is outlined in
Figure S2. Additional participant characteristics by study
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cohort are available in Table S2. With a median follow-up of
23.8 years (Q1, Q3: 16.7, 30.2), there were 847 total AF
events, with 489 in men and 358 in women. At 20 years,
there were 389 total AF events, with 259 in men and 130 in
women. For brevity, we present results for 20 years of follow-
up. Results for 10 years of follow-up are available in Tables 2
through 4.

Relative Measures of Associations by
Conventional Approaches and the g-Formula
At 20 years of follow-up, Cox proportional hazards models
with all covariates time varying indicated that nonobese
participants had a 17% decreased hazard of AF compared
with obese participants (HR, 0.83; 95% CI, 0.72–0.97;
Table 2). When considering continuous BMI, on average the
hazard of AF decreased by 12% per 5 kg/m2 decrease in
BMI (HR, 0.88–95% CI, 0.82–0.95; Table 2). We clarify that
this represents a 5 kg/m2 shift in BMI, and not necessarily
an individual’s change over time. The HRs comparing
nonobese versus obese changed slightly in magnitude when
adjusting for all covariates at baseline, obesity as time
varying and other covariates at baseline, and both obesity
and all covariates time varying. However, the analogous
HRs for continuous BMI were nearly identical across
models.

Using the g-formula, the hazard of AF was 27% lower had
everyone been nonobese versus obese (HR, 0.73; 95% CI,
0.58–0.91). The risk ratio (RR) was similar (RR, 0.75; 95% CI,
0.63–0.89). Comparisons of BMI interventions with the
natural course showed a small but not significant benefit in
favor of the BMI intervention. When comparing nonobese

with the natural course, the HR and RR of AF both decreased
by 8% (HR, 0.92; 95% CI, 0.78–1.08 and RR, 0.92; 95% CI,
0.83–1.02). When comparing the 10% BMI decrease per year
intervention to the natural course, the HR and RR of AF both
decreased by 4% (HR, 0.96; 95% CI, 0.86–1.08 and RR, 0.96;
95% CI, 0.92–1.00).

In g-formula analyses performed in subgroups by sex, HRs
and RRs comparing nonobese and obese interventions were
greater in magnitude for men than women, though most 95%
CIs contained the null value of 1 (Table S3). HRs and RRs for
the other comparisons were similar by sex.

Absolute Measures of Associations by the
g-Formula
At 20 years of follow-up, the absolute risk of AF was 9.94%
(95% CI, 8.48%–11.40%) had everyone been nonobese and
13.27% had everyone been obese (95% CI, 11.26%–15.28%),
with a difference of �3.33% (95% CI, �5.48% to �1.18%). The
mean AF-free lifetime was 19.22 years (95% CI, 19.01–19.43)
had everyone been nonobese and 19.03 years (95% CI,
18.86–19.20) had everyone been obese over 20 years, with a
difference in RMST of 2.25 months (95% CI, �0.66 to 5.16).
The risk difference was significant, while the difference in
RMSTs was not. However, the directions of associations were
consistent.

When comparing nonobese and 10% decrease in BMI per
year while overweight interventions to the natural course,
differences favored the BMI intervention but were smaller in
magnitude (Table 2). The nonobese intervention decreased
risk by 0.90% points (95% CI, �1.97 to 0.18) and increased
mean AF-free lifetime by 0.30 months (95% CI, �1.96 to

Exam 11
Age 55

Exam 12
Age 57

Exam 13
Age 59

Exam 14
Age 61

Exam 15
Age 63

Exam 16
Age 65

Covariates X X

Imputed 
covariates X X

Covariates at 
a given age 
(in years)

Age 
55

Age 
56

Age 
57

Age 
58

Age 
59

Age 
60

Age 
61

Age 
62

Age 
63

Age 
64

Age 
65

X X

Time (years)

Multiple
Imputation

Linear
Interpolation

AF

AF

Figure 2. Multiple imputation and interpolation process. X completely measured, ▲ incomplete
covariates, ▼ unattended examination, ● covariates multiply imputed, ■ covariates linearly interpolated.
Examinations took place approximately every 2 years in the Original cohort and every 4 to 8 years in the
Offspring. Covariates of interest include body mass index, smoking, systolic blood pressure, diastolic blood
pressure, antihypertensive treatment, diabetes mellitus, heart failure, and myocardial infarction. [Correction
added on 12 August 2019, after first online publication: The bottom panel of Figure 2 was removed.]
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2.55), while the 10% decrease in BMI per year while
overweight intervention decreased risk by 0.43 percentage
points (95% CI, �0.86 to 0.00) and increased AF-free lifetime
by 0.23 months (95% CI, �0.11 to 0.57). Figure 3 depicts the
g-formula Kaplan–Meier curves over 20 years for all inter-
vention comparisons.

In analyses stratified by sex, the magnitude of association
was again greater in men than women (Table S3). The risk

difference was �3.30% (95% CI, �6.89% to 0.30%) in men and
�2.69% (95% CI, �5.37 to �0.02%) in women, while the gain
in mean AF-free lifetime over 20 years between nonobese and
obese was 1.89 months (95% CI, �3.67 to 7.44) in men and
1.19 months (95% CI, �2.34 to 4.71) in women. Risks and
mean AF-free lifetimes were similar between the nonobese
intervention, 10% BMI decrease per year intervention, and the
natural course. Though the measures of association were
close to the null value, the direction of risk differences and
differences in RMSTs disagreed when comparing nonobese to
the natural course in both men and women. In Figure S3, we
plot the Kaplan–Meier curves for men and women to illustrate
how measures of association may disagree when curves cross
or overlap. In this case, the difference in risks focuses on
20 years, while the difference in RMSTs reflects the entire
time horizon.

Sensitivity Analyses
In additional sensitivity analyses, results were overall similar
to our main findings. In cancer-free participants (1825 men
and 2045 women), both relative and absolute associations
were consistent with original analyses (Table S4). For the
complete-case setting, 155 Original cohort participants and
2947 Offspring cohort participants had complete information
at entry and lagged examinations. When comparing nonobese
versus obese, all associations at 20 years were consistent
with our main approach but slightly greater in magnitude,
while comparisons of 10% decrease in BMI per year to the
natural course were nearly identical (Table S5). Nonobese
versus natural course associations disagreed in direction,
though very small and close to the null. Our sensitivity

Table 1. Characteristics of FHS Participants at Entry
(n=4392)

Overall
(n=4392)

Men
(n=2047)

Women
(n=2345)

Age, y 50.7�2.2 50.7�2.2 50.8�2.2

Women 2345 (53.4) ��� ���
BMI, kg/m2 27.1�5 27.9�4.2 26.3�5.6

SBP, mm Hg 125�17 128�17 123�18

DBP, mm Hg 80�10 82�10 77�10

Current smoker 1184 (29.5) 557 (29.8) 627 (29.3)

Use of hypertension
medication

579 (13.2) 304 (14.9) 275 (11.7)

Diabetes mellitus 198 (5.1) 113 (6.1) 85 (4.1)

Heart failure 13 (0.3) 10 (0.5) 3 (0.1)

Myocardial infarction 95 (2.2) 81 (4) 14 (0.6)

Values are mean�SD or n (%). BMI indicates body mass index; DBP, diastolic blood
pressure; FHA, Framingham Heart Study; SBP, systolic blood pressure.

Table 2. Hazard Ratios of Associations Between BMI and
Atrial Fibrillation Estimated With Conventional Cox Models

Model
Nonobese vs
Obese

5 kg/m2

Decrease in BMI

10 y

All covariates at baseline 0.85 (0.72–1.00) 0.93 (0.86–1.00)

Time-varying obesity/BMI
and other covariates at
baseline

0.83 (0.71–0.97) 0.90 (0.84–0.97)

All time-varying covariates 0.82 (0.70–0.96) 0.90 (0.84–0.96)

20 y

All covariates at baseline 0.75 (0.63–0.88) 0.88 (0.81–0.95)

Time-varying obesity/BMI
and other covariates at
baseline

0.82 (0.71–0.95) 0.88 (0.82–0.94)

All time-varying covariates 0.83 (0.72–0.97) 0.88 (0.82–0.95)

Data are adjusted hazard ratios and 95% CIs. Cox models are adjusted for SBP, DBP,
current smoking status, use of hypertension medication, diabetes mellitus status, history
of heart failure, and history of myocardial infarction. We note that results for a 5 kg/m2

decrease in BMI represent average results for a shift in BMI, and not necessarily an
individual’s change over time. BMI indicates body mass index; DBP, diastolic blood
pressure; SBP, systolic blood pressure.

Table 3. Relative Measures of Association Between BMI and
Atrial Fibrillation Estimated With the g-Formula

Hazard Ratio Risk Ratio

10 y

Nonobese vs obese 0.77 (0.49–1.21) 0.77 (0.51–1.16)

Nonobese vs natural course 0.98 (0.70–1.39) 0.98 (0.74–1.30)

10% decrease in BMI per
year vs natural course

1.00 (0.81–1.25) 0.99 (0.94–1.04)

20 y

Nonobese vs obese 0.73 (0.58–0.91) 0.75 (0.63–0.89)

Nonobese vs natural course 0.92 (0.78–1.08) 0.92 (0.83–1.02)

10% decrease in BMI per
year vs natural course

0.96 (0.86–1.08) 0.96 (0.92–1.00)

Numbers are estimates and 95% CIs, obtained with 500 bootstrap samples. Analyses are
adjusted for SBP, DBP, current smoking status, use of hypertension medication, diabetes
mellitus status, history of heart failure, and history of myocardial infarction. BMI
indicates body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure.
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analysis examining entry at age 60 years, plus or minus
5 years, included 3350 women and 2799 men. Both relative
and absolute measures of association were similar to our
main analyses but slightly smaller in magnitude (Table S6).
Under all interventions, AF risks were higher while mean AF-
free lifetimes were lower (20.65% and 18.33 years under the
natural course; Table S6). Finally, when fitting pooled negative
binomial models instead of pooled logistic models for the
hazard of AF, results were nearly identical (Table S7).

Discussion
In summary, we found that decreased BMI was associated
with a lower rate of AF in men and women after accounting for
time-varying covariates, which depend on previous BMI. We
demonstrated how g-methods can account for time-varying
covariates, which are also intermediate variables, unlike
conventional statistical methods.

If a variable is associated with both the exposure and
outcome, the association between exposure and outcome
may be biased unless confounding is addressed. In

longitudinal studies, confounding is commonly addressed
by adjusting for time-varying covariates. However, if a time-
varying covariate is also an intermediate variable between
exposure and outcome, it gives rise to time-varying
confounding. Adjustment for the time-varying covariate with
traditional methods will preclude observing the full associ-
ation between exposure and outcome, leading to biased
estimates, and statistical methods like the g-methods are
needed.

Time-varying confounding may commonly occur in longitu-
dinal cardiovascular studies with repeated measurements of
risk factors over time. For example, when studying the
association of isolated systolic hypertension and cardiovas-
cular death, one would account for confounding by adjusting
for arterial rigidity.19 However, isolated systolic hypertension
may lead to arterial rigidity, which in turn leads to negative
health outcomes. The association between isolated systolic
hypertension and cardiovascular death may be due to
increased arterial rigidity that developed in between, induced
by hypertension. Therefore, standard adjustment for arterial
rigidity would block the association between isolated systolic
hypertension and cardiovascular death. Instead, g-methods

Table 4. Absolute Measures of Association Between BMI and Atrial Fibrillation Using Parametric g-Formula

Intervention Comparator Difference in Risk (%) or RMST (Months)

10 y

Nonobese vs obese

Risk, % 2.69 (1.35–4.03) 3.49 (1.97–5.02) �0.81 (�2.21 to 0.59)

RMST, y 9.88 (9.79–9.96) 9.86 (9.78–9.93) 0.24 (�0.94 to 1.42)

Nonobese vs natural course

Risk, % 2.69 (1.34–4.04) 2.74 (1.65–3.83) �0.05 (�0.92 to 0.82)

RMST, y 9.88 (9.78–9.97) 9.88 (9.83–9.93) �0.09 (�1.00 to 0.82)

10% decrease in BMI per year vs natural course

Risk, % 2.71 (1.63–3.79) 2.75 (1.66–3.84) �0.04 (�0.19 to 0.11)

RMST, y 9.88 (9.83–9.93) 9.88 (9.83–9.93) 0.01 (�0.06 to 0.07)

20 y

Nonobese vs obese

Risk, % 9.94 (8.48–11.40) 13.27 (11.26–15.28) �3.33 (�5.48 to �1.18)

RMST, y 19.22 (19.01–19.43) 19.03 (18.86–19.20) 2.25 (�0.66 to 5.16)

Nonobese vs natural course

Risk, % 9.95 (8.50–11.40) 10.84 (9.73–11.96) �0.90 (�1.97 to 0.18)

RMST, y 19.22 (19.01–19.43) 19.20 (19.10–19.29) 0.30 (�1.96 to 2.55)

10% decrease in BMI per year vs natural course

Risk, % 10.45 (9.31–11.60) 10.88 (9.75–12.00) �0.43 (�0.86 to 0.00)

RMST, y 19.21 (19.12–19.31) 19.19 (19.10–19.29) 0.23 (�0.11 to 0.57)

Numbers are estimates and 95% CIs, obtained with 500 bootstrap samples. Analyses are adjusted for SBP, DBP, current smoking status, use of hypertension medication, diabetes mellitus
status, history of heart failure, and history of myocardial infarction. BMI indicates body mass index; DBP, diastolic blood pressure; RMST, restricted mean survival time; SBP, systolic blood
pressure.
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like the g-formula studied here can address time-varying
confounding.

In this paper, we quantified the association both on the
relative scale and on the absolute scale. Similar to prior
works, we observed large associations on the relative scale
when comparing nonobese and obese interventions. However,
associations on the absolute scale provide important context,
as the absolute risk of AF in individuals 45 to 55 years of age
are relatively small at 10 and 20 years of follow-up (2.74% and
10.84% under the natural course; Table 3).

Using the g-formula, we observed a decrease in AF risk and
a gain in mean AF-free lifetime if participants had been
nonobese compared with obese, which is consistent with the
literature.12,38 The magnitude of this difference was larger at
20 years than 10 years. However, contrasts of nonobese and
10% decrease in BMI per year to the natural course yielded
weaker associations. The smaller magnitude is somewhat
expected because of the different reference group between
comparisons: The first comparison contrasted maximally
different groups, while the second and third comparisons
contrasted groups that were relatively more similar.

While conventional Cox proportional hazards models can
accommodate time-dependent covariates, they do not permit
time-dependent confounders that depend on BMI history.
Therefore, the parametric g-formula allows us to examine a
different contrast of interest, that is, the difference in mean-
time free of AF had participants been obese versus nonobese
over 20 years. In fact, allowing covariates to vary over time
when they are actually mediated by the exposure of interest
can prevent observing the association between exposure and
outcome (Figure 1). Overall, HRs estimated with the g-formula
comparing nonobese versus obese were greater in magnitude
than HRs estimated with the Cox model. In fact, at 20 years,
the Cox HR with all covariates and obesity measured at
baseline was closer in magnitude to the g-formula estimate,

while including covariates as time varying reduced the
magnitude. This is likely attributable to the covariates’ role
as intermediate variables between obesity and incident AF:
The causal pathway between obesity and AF is blocked when
adjusting for the intermediate covariates (Figure 1). However,
we note that the Cox model and g-formula HR do not measure
the same thing: the Cox model compares nonobese versus
obese individuals, while the g-formula compares everyone had
they been nonobese versus everyone had they been obese.
Additionally, we simulated nonobese as 18.5 to 25.0 in BMI
and obese as 30 to 41 in BMI to avoid BMIs out of range in
our sample.

Many studies have demonstrated that obesity is an AF risk
factor.4–14,49 We fit conventional Cox proportional hazards
models, with and without time-varying covariates, to demon-
strate that our data produce results consistent with the
literature. Conventional HRs estimated with Cox models with
all risk factors measured at baseline were fairly consistent with
the literature. In large meta-analyses of 51 and 25 studies,
respectively, Wong et al13 and Aune et al14 demonstrated that
increases in BMI were associated with increased risk of AF.
Wong et al reported a 19% to 29% increase in AF odds per 5 kg/
m2 increase in BMI, while Aune et al reported a 28% increase in
AF risk. Both of these results are greater in magnitude than the
HRs we report at 20 years of follow-up (14% increase in hazard
considering all risk factors at baseline; Table 3). However, our
results were similar in magnitude to Schnabel et al37 findings in
the Cardiovascular Health Study white subpopulation (14%
increase in AF odds per 5 kg/m2 increase in BMI),13 which may
be comparable to FHS participants.

While obesity is a known risk factor for AF, our results were
sometimes small on the absolute scale. Similar findings exist
in the literature. For instance, in a large randomized trial of
overweight and obese individuals with type 2 diabetes
mellitus, the Look AHEAD (Action for Health in Diabetes)

Figure 3. Kaplan–Meier curves of g-formula survival probabilities comparing simulated populations under body mass index (BMI)
interventions. AF indicates atrial fibrillation.
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study found that rates of AF were not affected by a lifestyle
intervention that included weight loss.50 However, the weight
loss of the intervention was modest (6.0% mean weight loss
from baseline). Additionally, in the SOS (Swedish Obese
Subjects) matched cohort study, the risk of new-onset AF
over a median follow-up of 19 years was 12.4% among those
who underwent bariatric surgery versus 16.8% among
matched referents in usual care.51 However, matching was
imperfect in this study.

Differences in RMSTs have an appealing interpretation and
provide a magnitude of association that relative measures,
such as the HR and RR, cannot provide. An advantage of a
measure in the time domain is the ease in interpretation.
Unlike the HR, the difference in RMSTs does not depend on
the proportional hazards assumption. The median survival
time is an alternative measure but cannot be estimated if the
survival probability never decreases to 0.5 in the time horizon,
which is common in cardiovascular outcomes. In our data, the
median AF-free survival time cannot be estimated as the
probability of AF-free survival never decreases to 0.5 over
20 years. However, the restricted mean survival time can
always be estimated. To our knowledge, the difference in
RMSTs using g-formula methods has only been reported
once.24 Some previous applications of the parametric g-
formula assessed examination cycles with approximately
equal intervals.17–19,52–58

There are several limitations to our findings. First, we do
not know reasons for weight loss in FHS participants and
major weight loss is observed infrequently. Previous trajectory
analyses in FHS and the ARIC (Atherosclerosis Risk in
Communities) study have identified relatively flat longitudinal
patterns in weight.9,10 Although we measure weight, varia-
tions in weight over time could be attributable to many things,
including severe illness. However, a sensitivity analysis
restricted to cancer-free participants showed consistent
findings. Weight loss can occur with aging, yet AF typically
occurs in older ages.

Second, our statistical methods make several assumptions.
As we included 7 time-dependent confounders measured at
examinations, our analytic data set was fairly high dimensional
and prone to missingness, which motivated our decision to
perform multiple imputation. We chose sequential multiple
imputation to capture the longitudinal nature of the data and
exclude participants after death.46,48 Multiple imputation may
not be appropriate if our data were missing not at random.
Additionally, while time intervals should be approximately equal
in a pooled logistic model, they must be equal to calculate the
restricted mean survival time. However, FHS examinations are
not equally spaced across participants. We chose linear
interpolation to obtain covariate values at the yearly level,
which assumes that covariate values change linearly between
examinations.59 In addition, methods for causal inference

including the parametric g-formula assume consistency, and in
consequence exchangeability (lack of confounding) and posi-
tivity (positive conditional probability of exposure), to make
causal inference.22,60 Consistency requires that interventions
be well defined and does not typically hold for interventions
based on BMI measurements.22,60 This is because we do not
know the underlying reasons for BMI changes in FHS partic-
ipants. We also do not account for the semi-competing risk of
death, in which death may preclude incident AF.

Finally, the FHS participants are mostly of European
ancestry; therefore, our results may not be generalizable to all
populations.

In conclusion, decreased BMI was associated with a lower
rate of new-onset AF after accounting for time-varying
covariates that depend on previous BMI, which conventional
approaches cannot do. The parametric g-formula is a flexible
method to account for time-varying covariates that are also
intermediate variables, which may commonly occur when
assessing vascular risk factors. Furthermore, we illustrate
how to derive and interpret absolute measures of association,
including the difference in RMST. Absolute measures of
association offer additional insight into the data and can
improve our understanding of associations.

Directed acyclic graphs allow visualizing pathways between
exposures, other covariates, and outcomes. Directed acyclic
graphs can also help identifying time-varying confounding.
Unlike Cox models, g-methods such as the parametric g-
formula, marginal structural models with inverse probability
weighting, and g-estimation, can adjust for time-dependent
confounding (if any) when analyzing data from longitudinal
cardiovascular studies. Marginal structural models can be
used to assess fixed interventions, while the g-formula can
also be used to assess dynamic interventions.61 SAS macros
and R functions are readily available to implement these
methods. Furthermore, we recommend the reporting of
absolute measures of association, such as the difference in
absolute risk and RMST, to give additional context to relative
measures of association.
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Supplemental Methods

Parametric models for time-varying covariates 

We estimated the joint density of covariates at each year as the product of conditional 

densities given the covariate history by fitting parametric models for each covariate in the 

following order: smoking, BMI, SBP, DBP, antihypertensive treatment, diabetes, heart 

failure, and myocardial infarction. We fit logistic models for dichotomous covariates and 

linear models for continuous covariates. We checked the functional form for time and all 

covariates by assessing the differences between the natural course and observed data, 

and then fit the model with the most adequate transformation. Our final results included 

restricted cubic splines for time, BMI, SBP, and DBP. 

Pooled logistic models for hazard of atrial fibrillation 

We estimated the hazard of AF each year, conditional on the covariate history, with a 

pooled logistic model.42-45 For an individual 𝑖𝑖, the probability of AF at year 𝑗𝑗 is given by 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙�𝑝𝑝𝑖𝑖𝑖𝑖� = 𝛽𝛽0 + 𝑌𝑌𝑖𝑖(𝑙𝑙𝑘𝑘)𝑇𝑇𝜸𝜸 + 𝑋𝑋𝑖𝑖𝑇𝑇𝜶𝜶 + 𝑟𝑟(𝑙𝑙𝑘𝑘)𝜽𝜽 

in which 𝑌𝑌𝑖𝑖�𝑙𝑙𝑖𝑖� denotes all observed time-varying covariates at year 𝑗𝑗, 𝑋𝑋𝑖𝑖 denotes time-

invariant covariates (sex), and 𝑟𝑟�𝑙𝑙𝑖𝑖� den otes a r es tricted cub ic spl ine fun ction. The 

estimated survival probabilities at year 𝑘𝑘 are then given by �̂�𝑆(𝑙𝑙𝑘𝑘) =  1
𝑛𝑛
∑ �∏ (1 −𝑖𝑖: 𝑡𝑡𝑗𝑗≤𝑡𝑡𝑘𝑘
𝑛𝑛
𝑖𝑖=1

𝑝𝑝𝚤𝚤𝚤𝚤�)�, in which 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the probability of AF for individual 𝑖𝑖 at year 𝑗𝑗. 41 

In a sensitivity analysis, we estimated the hazard of AF with a pooled negative 

binomial model instead of a logistic model: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝜇𝜇𝑖𝑖𝑖𝑖� =  𝛽𝛽0 + 𝑌𝑌𝑖𝑖(𝑙𝑙𝑘𝑘)𝑇𝑇𝜸𝜸 + 𝑋𝑋𝑖𝑖𝑇𝑇𝜶𝜶 + 𝑟𝑟(𝑙𝑙𝑘𝑘)𝜽𝜽 

where 𝜇𝜇𝑖𝑖𝑖𝑖 denotes the expected AF event count for individual 𝑖𝑖 at year 𝑗𝑗. 

Data S1.



Table S1. Body mass index interventions and comparisons assessed with the g-formula. 

Intervention Reference 
Non-obese at all times, BMI [18.5, 29.9] Obese at all times, BMI [30, 40] 
Non-obese at all times, BMI [18.5, 29.9] Natural course 
10% decrease in BMI per year when BMI>=25 Natural course 



Table S2. Characteristics of participants by Framingham Heart Study cohort (n=4,392). 
Original (n=841) Offspring (n=3,551) 

Age (years)  52.8 ± 1.7 50.3 ± 2 

Women 468 (55.6) 1,877 (52.9) 

BMI (kg/m2) 26.3 ± 4.3 27.2 ± 5.1 

SBP (mm Hg) 132 ± 19 124 ± 17 

DBP (mm Hg) 83 ± 11 79 ± 10 

Current smoker 191 (41.4) 993 (28) 

Use of hypertension medication 75 (8.9) 504 (14.2) 

Diabetes 17 (2.8) 181 (5.5) 

Heart failure 3 (0.4) 10 (0.3) 

Myocardial infarction 25 (3.0) 70 (2.0) 

Values are mean ± SD or n (%). 



Table S3. G-formula associations per body mass index intervention group and contrasts between intervention groups by 
sex at 20 years of follow-up. 

Men (n=2,047) Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.81 (0.63, 1.04) 
Risk, % 14.81 (12.33, 17.29) 18.11 (14.79, 21.42) Risk ratio 0.82 (0.66, 1.01) 

Risk difference -3.30 (-6.89, 0.30)
RMST, years 18.78 (18.41, 19.14) 18.62 (18.25, 18.98) Difference in RMSTs, mos. 1.89 (-3.67, 7.44) 

Non-obese vs. natural course 
Hazard ratio 0.96 (0.82, 1.14) 

Risk, % 14.87 (12.37, 17.37) 15.51 (13.63, 17.39) Risk ratio 0.96 (0.85, 1.08) 
Risk difference -0.64 (-2.48, 1.20)

RMST, years 18.77 (18.40, 19.14) 18.82 (18.66, 18.98) Difference in RMSTs, mos. -0.61 (-4.70, 3.48)

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.97 (0.87, 1.07) 

Risk, % 14.97 (13.02, 16.93) 15.49 (13.64, 17.34) Risk ratio 0.97 (0.92, 1.02) 
Risk difference -0.52 (-1.30, 0.26)

RMST, years 18.84 (18.68, 19.01) 18.82 (18.66, 18.98) Difference in RMSTs, mos. 0.28 (-0.37, 0.93) 
Women (n=2,345) Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.69 (0.48, 1.01) 
Risk, % 6.24 (4.52, 7.97) 8.94 (6.45, 11.42) Risk ratio 0.70 (0.50, 0.98) 

Risk difference -2.69 (-5.37, -0.02)
RMST, years 19.48 (19.21, 19.76) 19.38 (19.18, 19.59) Difference in RMSTs, mos. 1.19 (-2.34, 4.71) 

Non-obese vs. natural course 
Hazard ratio 0.93 (0.72, 1.21) 

Risk, % 6.24 (4.50, 7.98) 6.63 (5.46, 7.81) Risk ratio 0.94 (0.76, 1.16) 
Risk difference -0.39 (-1.80, 1.01)

RMST, years 19.48 (19.20, 19.76) 19.53 (19.44, 19.63) Difference in RMSTs, mos. -0.58 (-3.74, 2.58)

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.97 (0.82, 1.14) 

Risk, % 6.37 (5.20, 7.53) 6.63 (5.46, 7.81) Risk ratio 0.96 (0.91, 1.01) 
Risk difference -0.27 (-0.62, 0.08)

RMST, years 19.54 (19.45, 19.64) 19.53 (19.44, 19.63) Difference in RMSTs, mos. 0.11 (-0.13, 0.35) 
Numbers are estimates and 95% confidence intervals, obtained with 500 bootstrap samples. 



Table S4. G-formula associations per body mass index intervention group and contrasts between intervention groups at 
20 years of follow-up in cancer-free participants. (n=3,870).

Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.73 (0.55, 0.97) 
Risk, % 10.10 (8.01, 12.19) 13.60 (10.73, 16.46) Risk ratio 0.74 (0.58, 0.95) 

Risk difference -3.49 (-6.45, -0.54)
RMST, years 19.22 (18.94, 19.50) 19.05 (18.84, 19.27) Difference in RMSTs, mos. 1.95 (-2.03, 5.92) 

Non-obese vs. natural course 
Hazard ratio 0.92 (0.76, 1.12) 

Risk, % 10.09 (8.00, 12.17) 10.93 (9.24, 12.62) Risk ratio 0.92 (0.80, 1.07) 
Risk difference -0.85 (-2.34, 0.65)

RMST, years 19.22 (18.94, 19.49) 19.23 (19.11, 19.34) Difference in RMSTs, mos. -0.11 (-3.23, 3.01)

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.95 (0.85, 1.07) 

Risk, % 10.41 (8.72, 12.11) 10.93 (9.25, 12.61) Risk ratio 0.95 (0.90, 1.00) 
Risk difference -0.51 (-1.07, 0.04)

RMST, years 19.25 (19.14, 19.36) 19.23 (19.11, 19.34) Difference in RMSTs, mos. 0.30 (-0.12, 0.71) 
Numbers are estimates and 95% confidence intervals, obtained with 500 bootstrap samples. 



Table S5. G-formula associations per body mass index intervention group and contrasts between intervention groups at 
20 years of follow-up, with complete case data at entry. (n=3,102) 

Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.71 (0.51, 0.98) 
Risk, % 9.76 (7.64, 11.87) 13.58 (9.81, 17.34) Risk ratio 0.72 (0.54, 0.96) 

Risk difference -3.82 (-7.69, 0.05)
RMST, years 19.21 (18.84, 19.57) 19.00 (18.44, 19.55) Difference in RMSTs, mos. 2.52 (-4.49, 9.54) 

Non-obese vs. natural course 
Hazard ratio 0.97 (0.78, 1.20) 

Risk, % 9.77 (7.65, 11.90) 10.15 (8.89, 11.42) Risk ratio 0.96 (0.81, 1.14) 
Risk difference -0.38 (-2.15, 1.39)

RMST, years 19.20 (18.84, 19.56) 19.25 (19.15, 19.36) Difference in RMSTs, mos. -0.62 (-4.74, 3.49)

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.96 (0.84, 1.10) 

Risk, % 9.64 (8.25, 11.03) 10.14 (8.86, 11.43) Risk ratio 0.95 (0.88, 1.02) 
Risk difference -0.51 (-1.19, 0.17)

RMST, years 19.27 (19.16, 19.39) 19.26 (19.15, 19.36) Difference in RMSTs, mos. 0.23 (-0.32, 0.78) 
Numbers are estimates and 95% confidence intervals, obtained with 500 bootstrap samples. 



Table S6. G-formula associations per body mass index intervention group and contrasts between intervention groups at 
20 years of follow-up, entry at age 60 plus or minus five years (n=6,149). 

Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.87 (0.77, 0.99) 
Risk, % 19.90 (18.35, 21.45) 22.66 (20.33, 25.00) Risk ratio 0.88 (0.80, 0.97) 

Risk difference -2.76 (-4.89, -0.63)
RMST, years 18.35 (18.18, 18.52) 18.22 (18.02, 18.42) Difference in RMSTs, mos. 1.56 (-0.88, 4.01) 

Non-obese vs. natural course 
Hazard ratio 0.96 (0.87, 1.06) 

Risk, % 19.92 (18.36, 21.47) 20.65 (19.21, 22.09) Risk ratio 0.96 (0.93, 1.00) 
Risk difference -0.73 (-1.50, 0.03)

RMST, years 18.35 (18.18, 18.51) 18.33 (18.21, 18.46) Difference in RMSTs, mos. 0.17 (-1.17, 1.52) 

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.99 (0.90, 1.08) 

Risk, % 20.44 (18.98, 21.89) 20.64 (19.18, 22.09) Risk ratio 0.99 (0.97, 1.01) 
Risk difference -0.20 (-0.62, 0.23)

RMST, years 18.34 (18.21, 18.46) 18.33 (18.21, 18.46) Difference in RMSTs, mos. 0.01 (-0.35, 0.37) 
Numbers are estimates and 95% confidence intervals, obtained with 500 bootstrap samples. 



Table S7. G-formula associations per body mass index intervention group and contrasts between intervention groups at 
20 years of follow-up, negative binomial model for atrial fibrillation (n=4,392). 

Intervention Comparator Measure of Association 
Non-obese vs. obese 

Hazard ratio 0.72 (0.58, 0.89) 
Risk, % 9.78 (8.40, 11.16) 13.18 (11.22, 15.14) Risk ratio 0.74 (0.63, 0.88) 

Risk difference -3.40 (-5.45, -1.34)
RMST, years 19.24 (19.05, 19.43) 19.04 (18.87, 19.20) Difference in RMSTs, mos. 2.39 (-0.28, 5.06) 

Non-obese vs. natural course 
Hazard ratio 0.91 (0.78, 1.07) 

Risk, % 9.79 (8.41, 11.17) 10.74 (9.64, 11.84) Risk ratio 0.91 (0.83, 1.00) 
Risk difference -0.95 (-1.93, 0.04)

RMST, years 19.24 (19.05, 19.43) 19.20 (19.11, 19.29) Difference in RMSTs, mos. 0.44 (-1.58, 2.46) 

10% decrease in BMI per year vs. natural course 
Hazard ratio 0.97 (0.86, 1.09) 

Risk, % 10.35 (9.15, 11.54) 10.77 (9.59, 11.95) Risk ratio 0.96 (0.92, 1.00) 
Risk difference -0.42 (-0.84, -0.01)

RMST, years 19.22 (19.12, 19.32) 19.20 (19.10, 19.30) Difference in RMSTs, mos. 0.23 (-0.10, 0.56) 
Numbers are estimates and 95% confidence intervals, obtained with 500 bootstrap samples. 



Figure S1. Diagram of g-formula Monte Carlo simulation. 



Figure S2. Flow diagram of study participants. 



Figure S3. Kaplan Meier curves of g-formula survival probabilities comparing simulated populations under BMI 
interventions in men and women. 
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