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Abstract

Genome wide association studies (GWASs) for complex traits have implicated thousands of

genetic loci. Most GWAS-nominated variants lie in noncoding regions, complicating the sys-

tematic translation of these findings into functional understanding. Here, we leverage convo-

lutional neural networks to assist in this challenge. Our computational framework, peaBrain,

models the transcriptional machinery of a tissue as a two-stage process: first, predicting the

mean tissue specific abundance of all genes and second, incorporating the transcriptomic

consequences of genotype variation to predict individual abundance on a subject-by-subject

basis. We demonstrate that peaBrain accounts for the majority (>50%) of variance observed

in mean transcript abundance across most tissues and outperforms regularized linear mod-

els in predicting the consequences of individual genotype variation. We highlight the validity

of the peaBrain model by calculating non-coding impact scores that correlate with nucleotide

evolutionary constraint that are also predictive of disease-associated variation and allele-

specific transcription factor binding. We further show how these tissue-specific peaBrain

scores can be leveraged to pinpoint functional tissues underlying complex traits, outper-

forming methods that depend on colocalization of eQTL and GWAS signals. We subse-

quently: (a) derive continuous dense embeddings of genes for downstream applications; (b)

highlight the utility of the model in predicting transcriptomic impact of small molecules and

shRNA (on par with in vitro experimental replication of external test sets); (c) explore how

peaBrain can be used to model difficult-to-study processes (such as neural induction); and

(d) identify putatively functional eQTLs that are missed by high-throughput experimental

approaches.

Author summary

High-throughput assays are the cornerstone of modern drug discovery and a useful tool

to translating the hundreds of genetic discoveries associated with human traits and disease
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into functional understanding. All high-throughput assays can be described as empirical

assessments of the activity of biological entities (e.g., genetic variation, DNA sequences,

small molecules) by a standardized output, usually in the form of optically detectable

labels (i.e., reporters), or more rarely, using (scalable) high-dimensional measurements

(e.g., L1000, RNA-seq). Here, we introduce a modular and readily-extensible computa-

tional framework, called peaBrain, that leverages convolutional neural network architec-

ture to enable in silico recapitulation of certain features of these high-throughput assays.

We show that peaBrain can predict the expression of genes in a tissue-specific manner

and outperforms regularized linear models in predicting the consequences of individual

genotype variation. We further highlight the utility of the framework in predicting tran-

scriptomic impact of small molecules and shRNA (on par with in vitro experimental repli-

cation of external test sets), explore how peaBrain can be used to model difficult-to-study

processes (such as neural induction), and finally, identify putatively functional eQTLs that

are missed by high-throughput experimental approaches.

Introduction

Most reported disease-associated variation for complex traits lies in non-coding regions of the

genome [1]. Despite advances in discovery and annotations of functional non-coding elements

across the genome [2–5], characterising the consequences of non-coding variants remains a

major challenge in human genetics. Prediction of the transcriptomic consequences of non-

coding variation represents one solution [6–12], distinct from colocalization-based approaches

that depend on the availability of genome-wide genetic associations [7,13–15], annotation-/

frequency-driven prioritization of “functional” variants [16–19], and the use of non-human

model genomes (so-called ‘cross-species regulatory sequence prediction’) [20]. Current meth-

ods of variant-expression prediction can be broadly divided into two classes: (a) methods that

predict alterations in epigenetic and transcription factor binding sites (TFBS), such as Deep-

SEA [8], Bassenji [11], Enformer [21], and others [10,12]; and (b) methods that directly predict

RNA abundance from genotype or sequence data, such as PrediXcan [6] and TWAS [9]. Meth-

ods in the former category poorly capture differences in transcript expression as a result of

genotypic variation [8,10,11] and are relatively poor predictors of alterations in the histone

code [8]; methods in the latter category are not able to identify which of the variants detected

within an eQTL association locus are functional [6,9]. Recently, there has been development of

a third class of models: ab initio sequence-based predictions using neural network architec-

tures (e.g. ExPecto [22] and Xpecto [23]). While useful in predicting proximal mutations in

promoters, ExPecto has a limited range for eQTL predictions (only 20kb upstream/down-

stream of transcription start sites) and the first step in the algorithm requires transformation

of genomic sequences to epigenomic features (i.e. is not direct-from-sequence prediction and

requires a priori annotation information). Furthermore, ExPecto was not designed with exten-

sibility to other applications in mind (e.g. incorporating small molecule fingerprints or shRNA

sequence to predict transcriptomic perturbations). DeepMind’s Enformer side-steps the dis-

tance barrier by using transformers to incorporate longer sequences [21], but has yet to find

utility in predicting differences between two individuals–likely because transformers lose posi-

tional information necessary for prediction. (Transformers enable modelling relationships

between distant regulatory motifs in a genomic sequence, but does not retain information

about their respective positions.) The final example in this class is Xpecto [23], which uses

much of the code of an earlier version of peaBrain released with the pre-print (and in fact cites
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the pre-print associated with this manuscript), but does not incorporate the modular design/

extensibility to other applications, is also limited by its ability to capture relevant information

from distant regulatory sequences, and cannot predict differences in transcription between

two individuals.

To address these concerns, here, we introduce a single framework, called promoter-and-

enhancer-derived abundance (peaBrain) model, which consolidates these approaches. Within

the peaBrain framework, the transcriptional machinery of a tissue is modelled computationally

as a two-stage process. Stage 1 is a single model in which peaBrain predicts the mean abun-

dance of each gene in a given tissue from DNA sequences, optionally annotated with epige-

netic and genomic annotations. Stage 2 incorporates the transcriptomic consequences of

genotype variation to predict individual abundance of any given gene; that is, it generates a

gene- and tissue-specific model sensitive to individual variation. Stage 2, unlike existing neural

network models, does not depend on the availability of epigenetic and genomic annotations

for training or prediction (i.e. is purely sequence based) and can incorporate 1Mb window

around the TSS for any gene (50x larger than ExPecto [22] and similar models). Either stage is

readily extended for closely-related applications (such as predicting transcriptomic impact of

small molecules and shRNA).

We demonstrate that the convolutional neural networks (CNNs) underlying this frame-

work can capture the majority of variance (cross-validated cv-r2 >50%) in the mean abun-

dance of genes across most GTEx tissues (Stage 1), with utility in a diverse set of tasks (such as

identifying somatic mutations with high-impact consequences or pinpointing the functional

tissues underlying GWAS signal from complex traits). In S1–S3 Text, we highlight a variety of

case (proof-of-concept) applications of the Stage 1 peaBrain model, including but not limited

to: investigating the role of DNA and histone modifications in difficult-to-study processes

(such as neural induction) and incorporating small molecule fingerprints (or shRNA

sequences) to predict the transcriptomic impact of small molecules (or shRNA molecules). We

further show that CNNs–using sequence alone and no genomic/epigenetic annotations–out-

perform linear models and other neural network architectures in predicting the consequences

of genotype variation (Stage 2). In EBV-transformed lymphocytes (LCLs), we demonstrate

that the estimated peaBrain variant effects correlate more strongly with coefficients from the

univariate eQTL analysis, compared to log-skew effect estimates obtained from massively par-

allel reporter assays (MPRAs) [24] and bi-allelic targeted STARR-seq (BiT-STARR-seq) [25],

or log fold changes (logFC) of perturbed epigenetic states from DeepSEA [8]. To highlight the

utility of the Stage 2 models, we identified putatively functional eQTLs in LCLs that are missed

by experimental high-throughput approaches that characterise variant function, such as

MPRAs, BiT-STARR-seq, and high-definition reporter assays (HiDRA) [26].

Results

peaBrain captures >50% of the variance in mean gene abundance

To predict the tissue-specific mean abundance of genes (Stage 1), we leveraged the reference

genome [27]. For each gene, as input, we generated a 1-dimensional (1D) matrix centred on

the region around the annotated transcription start site (TSS). By varying the length of the

input sequence, the 4kbps promoter (2kbps upstream and 2kbps downstream of the annotated

TSS) was determined as the best-performing length for predicting the tissue-specific mean

gene abundance in the GTEx dataset, outperforming 2kbps and 6kbps promoter sequences

(see Methods and S1 Fig). We used one-hot encoding (four channels) to represent the four

DNA letters (A, T, C, G) in the reference genome (4 channels) (see Methods). The model
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output was the corresponding predicted mean RNA abundance of that gene, after rank-trans-

formation to normality.

We applied this framework to all tissues from the GTEx dataset [28], constructing three

classes of models: (a) using DNA sequence alone (class-A); (b) using DNA plus epigenomic

annotations not specific to any tissue or cell type (i.e. non-specific annotations) (class-B); and

(c) using DNA combined with both non-specific and tissue-specific annotations (class-C). For

class-B models (DNA + non-specific epigenomic annotations), we incorporated 28 channels

of binary sequences that represent epigenomic (and related) annotations that are not specific

to any cell type or tissue (curated by the authors of LD Score Regression [29]; see Methods for

details). For class-C models (DNA + tissue-specific epigenomic annotations), we added addi-

tional channels corresponding, for those tissues where such data were available, to the consoli-

dated epigenomes from the Epigenomics Roadmap, including tissue-specific peaks from

H3K4me1, H3K4me3, H3K9ac, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq experi-

ments, and experimentally-derived DNase hotspots [30].

We observed that DNA-only (class-A) models captured nearly a fifth of the variance in

mean gene abundance across all GTEx tissues (10-fold cross-validated median cross-validated-

r2 [cv-r2] values across all tissues = 17%). Addition of non-specific regulatory annotations

(class-B models) markedly improved model performance across all tissues (median cross-vali-

dated cv-r2 = 45%; Fig 1). (We average the cv-r2 across all 10-folds within a tissue and use the

median across all tissues to assess global performance; see Methods.) For example, for EBV-

transformed lymphocytes, the 10-fold cross-validated average cv-r2 is 56% for the class-B

model (DNA + non-specific annotations) compared to the 15% in the corresponding class-A

model (DNA-only). Addition of tissue-specific annotations further improved model perfor-

mance, such that class-C models (DNA + tissue-specific annotations) captured more than half

the variance for almost all GTEx tissues where such data were available (Fig 1).

These results are suggestive that differences in mean abundance between genes are largely

encoded in differences between core promoter elements and interacting regulatory factors

encoded in the model weights, rather than a consequence of non-transcriptional downstream

regulation (e.g. silencing by small non-coding RNAs). This is broadly consistent with anec-

dotal experimental evidence [31]. Explicitly incorporating experimental transcription factor

binding site (TFBS) annotations has limited effect on performance (median cross-validated r2

= 23%), when compared to the complete class B model with epigenetic/histone marks and

chromatin annotations (median cross-validated r2 = 46%; S1 Text). This suggests explicitly

encoding TFBS annotations is largely redundant and that epigenetic and genomic annotations

add information to that contained in the DNA sequence to substantially improve predictive

performance. Importantly, this performance was only accomplished using the convolutional

neural network architecture of peaBrain; experimental models that we generated using regu-

larized linear models (as a simple baseline model) fitted with stochastic gradient descent exhib-

ited poor performance. In fact, for these linear models the 10-fold average cv-r2 was negative,

indicating that the cross-validated predictions of the model fitted on the training data are

worse than predicting the mean of the test set (see Methods and S1 Text). We also describe

comparisons of the peaBrain CNN approach with other methods in S1 Text.

Testing on expression data from microarray platforms and using

orthologous promoters in non-human Hominid primates further validates

performance and generalizability of the peaBrain Stage 1 models

One useful metric in assessing generalizability of any model is its ability to predict on gene

expression measured by other technology platforms (i.e. other than RNA-seq in this case).
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This is a useful benchmark that indicates the model is not inherently biased towards the under-

lying technology from which the training data was derived. We subsequently sought to assess

the performance of the peaBrain DNA-promoter reporter assay on external datasets in three

human tissues (expression measured by microarray; Spearman’s rho between predicted and

external platform = 51%-63%; Fig 2) and on its ability to predict expression of orthologous

promoter sequences in four non-human Hominid primates in two different tissues (rho = 5%-

22%). For the non-human Hominid primates, we used the promoter sequences from their

respective genomes and the human-trained peaBrain models. In other words, the human-

trained peaBrain models were able to capture a large portion of the variance in expression,

which suggests that there is conservation of transcriptional cascades across the evolutionary

clade. Spearman’s rho was used because peaBrain was trained using RNA-seq and the test data

sets were generated on microarray platforms and/or different species. This means that the

magnitude of expression for any given gene is different; however, the ranks of the genes would

be expected to be largely consistent. All together, these results are suggestive that differences in

mean abundance between genes are largely encoded in differences between core promoter ele-

ments and interacting regulatory factors encoded in the model weights. With analyses per-

formed in S1 Text and briefly noted above, these experiments suggest that expression-based

HTAs (e.g. small molecule screens) can be recapitulated by extending this DNA reporter assay;

Fig 1. Incorporating genomic and epigenetic annotations improves the performance of peaBrain to predict the

normalized mean abundance across all GTEx tissues. The 4kbps promoter sequence, when annotated with tissue

specific annotations, is sufficient to predict the majority of variance in mean expression in most tissues, ordered

alphabetically from the x-axis. The boxplots highlight the distribution of the 10-folds used to cross-validate model

performance. Prediction using regularized linear models performs considerably worse (10-fold cross-validated r2 < 0;

S1 Text). Abbreviations: OSS.R2, out-of-sample r2.

https://doi.org/10.1371/journal.pcbi.1010028.g001
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that is, the information regarding the transcriptional machinery of any given tissue or cell type

is encoded in and can be extracted from the promoter sequence (and the corresponding gene

expression).

peaBrain score outperforms existing measures in predicting disease-

associated variants and in predicting allele-specific transcription factor

binding

Having demonstrated the predictive ability of the model (Stage 1), we were interested in using

peaBrain to generate a non-coding impact metric, which captured the impact of each position

in the core promoter sequence on the expression of each gene. We defined the impact of each

position as the absolute difference in abundance between the original promoter sequence and

a modified promoter sequence where all the information for that site (including epigenetic

and genomic annotations) is set to zero (Fig 3). To facilitate comparison across tissues, we per-

formed this analysis using the class-B models, since the non-specific epigenetic and genomic

annotations were, by definition, available for all tissues. Across all GTEx tissues, the non-cod-

ing impact metric correlated with variant-specific conservation scores derived from multiple

alignments of 99 vertebrate genomes to the human genome [27] and represented by phyloge-

netic p-values (phyloP) (see Methods). Briefly, these phyloP nucleotide conservation scores

are based on an alignment and a model of neutral evolution [27]: a more positive value indi-

cates conservation or slower evolution than expected, with the magnitude of the phyloP score

corresponding to the -log p-values under the null hypothesis (i.e. neutral evolution). For every

unit of absolute magnitude increase in impact, we observed an average increase of 8.95 in phy-

loP scores, indicating increased conservation (8.95 order-of-magnitude difference in the–

log10 p-value; S1 Table). Equivalently, for every unit increase in phyloP, we observed an

approximately 0.1 absolute magnitude change in the average normalized expression of the

affected gene (i.e. peaBrain impact score); again indicating that if a site is more conserved, it

has a larger impact on expression. While this positive trend between conservation and impact

on expression was consistent across most GTEx tissues, there were exceptions: in the nucleus

accumbens (basal ganglia), noncoding transcriptomic impact was correlated with accelerated

evolution (S1 Table). These results were consistent, albeit weaker, after rank-normalization of

both the phyloP and peaBrain scores (S1 Table).

Fig 2. Boxplots of the cross-validated peaBrain models when trained on human GTEx RNA-seq data and tested

on microarray expression data from the Hominid lineage (including humans). The performance on non-human

hominid species suggests that the peaBrain model–when trained exclusively on human–can also shed insight the

transcriptional machinery of related species (both extant and extinct). This could be useful, for instance, when tracing

the evolution of regulatory cascades in the Hominid lineage.

https://doi.org/10.1371/journal.pcbi.1010028.g002
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This overall positive correlation between peaBrain impact and phyloP represents a direct

equivalence between evolutionary conservation and impact on gene abundance. Most well-

established non-coding impact measures (e.g. CADD [16] and Eigen [17]) indirectly capture

transcriptomic consequences by modelling evolutionary conservation measures, allele fre-

quency, and/or functional non-coding consequence annotations. However, the peaBrain-

derived impact metric directly assesses the contribution of a genomic position on mean

expression. Importantly, since the metric is independent of curated consequence and disease

annotation databases–as it is trained solely on expression from “healthy” tissues–it provides an

unbiased estimate of the information content and deleterious impact of variation at any geno-

mic position in the core 4kbps promoter sequence.

Having established the correlation between peaBrain impact and evolutionary constraint,

we were interested in assessing the utility of peaBrain-derived scores to interrogate disease-

associated variants. We compared the performance of the non-tissue-specific peaBrain score

(see Methods) to two other non-coding metrics (CADD [16] and Eigen [17]) across a series of

tasks (tasks A-C; all tasks are summarized in S2 Table).

First, we made use of data on disease-related variation from the Catalogue of Somatic Muta-

tions in Cancer [COSMIC] [32], limited to the census gene set which defines a set of genes

with somatic mutations causally implicated in human cancer (see Methods). In task A, we

assessed the predictive capacity of the non-coding metric to identify positions with non-zero

incidence of cancer-associated somatic mutation (n = 5268), among all genomic positions

within the 4kbps core promoter sequences of COSMIC census genes (approximately 2.15 mil-

lion positions), using a simple logistic model. The logistic coefficients give the change in the

log odds of the outcome (i.e., presence or absence of somatic mutation) for a one-unit increase

in the non-coding score. In task B, we similarly assessed the predictive capacity of the non-

coding metric to identify, using the same COSMIC data set, positions with recurrent cancer-

associated somatic mutations (n = 544) when contrasted to positions with non-recurrent can-

cer-associated somatic mutations (n = 4724). The focus on cancer-associated somatic muta-

tions allowed us to circumvent linkage disequilibrium (LD) confounding. Patterns of

recurrent non-coding somatic mutations, across all tumours in these genes, provide a coarse

Fig 3. Schematic illustration of how the non-coding impact score was calculated.

https://doi.org/10.1371/journal.pcbi.1010028.g003
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indicator of the functional transcriptomic impact of non-coding genomic positions. Both tasks

were modelled with the allele frequency and phyloP conservation incorporated as covariates

(see Methods). We subsequently assessed the significance of the logistic model coefficients for

each of the non-coding metrics across the two tasks (Table 1). Only the non-specific-peaBrain

score, derived from scores across all GTEx tissues (average across all tissues and positions),

was positively and significantly predictive for both tasks (Table 1). Significance was assessed

using the default two-tailed p-value corresponding to the z ratio based on the Normal refer-

ence distribution (Table 1; see Methods). The non-specific peaBrain-derived metric was useful

in isolating genomic positions with non-zero incidence of somatic mutations across all posi-

tions in the promoters of COSMIC consensus genes (task A; coefficient point estimate =

29.36; 95% confidence interval [ci] (16.63, 41.97)), and could further delimit positions with

recurrent somatic mutations (task B; coefficient = 102.96 [64.58, 140.72]). Eigen was signifi-

cantly predictive for task A (coefficient = 0.10 [0.08, 0.12]), but not for task B (0.08 [-0.01,

0.17]). CADD exhibited the opposite trend between tasks A and B: negatively predictive of

genomic positions with non-zero incidence of somatic mutations (coefficient = -0.05 [-0.08,

-0.02]), but positively predictive of positions with recurrent somatic mutations (coeffi-

cient = 0.17 [0.06, 0.28]; Table 1). Thus, the non-coding peaBrain-derived metric appears to

better characterize the pathogenicity and putative functionality of non-coding variants with

transcriptomic consequences in the core-promoter sequences, providing additional informa-

tion to that found in allele frequency or evolutionary constraint metrics and with performance

better than other established non-coding impact scores.

DNA sequence, annotated with experimentally-derived TFBS, from core promoter

sequences are insufficient to predict mean abundance with high accuracy–epigenetic/his-

tone markers contain the bulk of the information and are not readily accessible from the

DNA sequence alone. We were interested in determining the contribution of epigenetic/his-

tone makers, alongside more general genomic annotations (such as coding sequences), in pre-

dicting the mean abundance of genes. In particular, we wanted to explore whether the DNA

Table 1. Tabulated statistics (to two decimal places) from the logistic models for the three non-coding metrics from tasks A-C.

Metric Task Logistic Coefficient L Bound U Bound p-value

peaBrain A 29.36 16.63 41.97 5.56 x10-6

B 104.50 66.05 142.31 7.66 x10-8

C 35.39 12.00 58.67 2.95 x10-3

CADD A -0.05 -0.08 -0.02 1.57 x10-3

B 0.17 0.06 0.28 2.83 x10-3

C 0.06 -0.03 0.16 0.20

Eigen A 0.10 0.08 0.12 < 2 x10-16

B 0.06 -0.003 0.12 6.65 x10-2

C 0.04 -0.002 0.08 0.07

Task A assesses the predictive capacity of the non-coding metric to identify positions with non-zero incidence of cancer-associated somatic mutations in the core

promoter regions. Task B assesses the predictive capacity of the non-coding metric to identify positions with recurrent cancer-associated somatic mutations, among all

positions with at least one somatic mutation. Task C assesses the predictive capacity of the non-coding metric to identify variants within the 4kbps core promoter with

allele-specific binding (for a subset of positions for which data was available). All three tasks were assessed using simple logistic models, with the allele frequency and

phyloP incorporated as covariates. Positions without a phyloP score were excluded from model fitting (see Methods). peaBrain is the only non-coding metric with

significant coefficients for all three tasks; we used a non-tissue-specific peaBrain score to facilitate comparison with the tissue-agnostic CADD and Eigen scores (see

Main Text). The bounds for the 95% confidence interval, obtained by profiling the likelihood function, are tabulated, with significant coefficients denoted in bold.

peaBrain’s impact score has the same “units” as normalized expression. Eigen and CADD are on arbitrarily-normalized scales (hence the difference in coefficient

magnitudes); normalizing Eigen and CADD resulted in loss of significance for most tasks. Abbreviations: L, lower; U, upper.

https://doi.org/10.1371/journal.pcbi.1010028.t001
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sequence alone was sufficient to predict expression. We noted that increasing the number of

convolutional layers or the number of filters did not improve model performance (Fig 4).

Explicitly incorporating TFBS into the model (i.e. annotating the DNA only and explicitly

with TFBS) only improved performance slightly (cv-r2 = 23%), and was still considerably

worse than the full class B model with epigenetic/histone marker annotations (cv-r2 = 46%;

Fig 4). (Class-A DNA-only models had an average cv-r2 of 16% for skeletal muscle; class-C

models annotated with tissue-specific information had an average cv-r2 of 57%.) The TFBS

were collected from the Gene Transcription Regulation Database (GTRD) v17.4 with data on

476 human transcription factors and included peak calling with four different software

(MACS, SISSRs, GEM, and PICS). In addition to including the processed peak calls, we also

incorporated clusters (i.e. peaks merged for the same transcription factor but under different

experimental conditions) and meta-clusters (i.e. non-redundant peaks synthesized from all

four methods). This absence of improvement suggests that peaBrain model already recognizes

many of the TFBS; identified by the convolutional filters inherent to the model architecture.

These results indicate that experimentally-derived epigenetic and genomic annotations add

information to that contained in the DNA sequence alone. This is broadly consistent with the

observation that other convolutional neural networks models like DeepSEA are better at pre-

dicting TFBS (median AUC = 0.958) than at predicting histone modifications (median

AUC = 0.856) [8].

peaBrain score out-performs existing measures in predicting allele-specific transcrip-

tion factor binding. As with tasks A and B, we compared the performance of the non-tis-

sue-specific peaBrain score to predictions by CADD and EIGEN in predicting allele-specific

binding, after accounting for allele frequency and evolutionary conservation. We assessed per-

formance of the three non-coding metrics across 6675 sites in core promoter regions after fil-

tering for duplicate sites [33]; 1896 of which exhibited allele-specific binding at an unadjusted

binomial p< 0.05 (see Methods). We noted that only peaBrain impact score was significantly

predictive of allele-specific binding sites (coefficient = 35.38 [12.00, 58.67]; p = 0.003; see

Table 1); relaxing the binomial p-value threshold (i.e., increasing the number of sites consid-

ered as allele-specific) brings the other non-coding metrics to significance. peaBrain’s discrim-

inative ability to identify allele-specific binding sites is consistent with our earlier observation

Fig 4. Boxplots of 10-fold cross-validated cv-r2, as assessed in skeletal muscle. Performance as assessed for class A

models (labelled as “class A peaBrain–DNA only”), class A with TFBS annotations (labelled as “class A peaBrain–DNA

+TFBS”), class B models with tissue-agnostic annotations (“class B peaBrain–CNNs”), fully connected neural networks

(“class B–fully-connected”), class B models with linear activation functions (“class B peaBrain–linear activations”),

class B models with increased number of layers (“class B peaBrain–more layers”), class B models with increased

number of filters (“class B peaBrain–more filters”), and class C models with tissue-specific annotations (“class C

peaBrain”).

https://doi.org/10.1371/journal.pcbi.1010028.g004
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that explicitly adding TFBS annotations did not improve the model. Notably, peaBrain’s ability

indicates that average expression of all genes in a single tissue and the reference genome is suf-

ficient to learn both TFBS and allele-specific binding.

To further investigate peaBrain’s ability to identify allele-specific binding sites, we com-

pared peaBrain impact scores to predictions by methods specifically designed to predict TFBS,

including two neural-network methods (DeepBind [34] and DeepSEA [8]), two kmer-based

variant scoring methods (gkmSVM [35] and GERV [36]), and three position-weighted matri-

ces (PWM)-related methods [33]. These methods depend on modelling TF ChIP-seq data in

various ways and may have multiple models for the same TF. After confirming the predictive

ability of these methods to identify allele-specific binding sites, we noted that peaBrain scores

positively correlated only with GERV measures, a kmer-based variant scoring algorithm (Fig

5). Unlike the other methods, peaBrain (and GERV) do not assume the existence of canonical

motifs and learn TFBS by modelling sequences (or kmers) directly (i.e. not simply by model-

ling the absence or presence of a ChIP-seq peak). In contrast, for both DeepBind and Deep-

SEA, we noted positive correlation with at least one PWM-method. These methods generally

assume the existence of canonical TF binding sites and predictions are based on the extent of

perturbation of those motifs. While this comparison is limited to variants for which data was

available, the peaBrain results suggest that explicitly characterizing TF motifs is not necessary

to understand the consequences of sequence variation on TF binding and transcriptional

dysregulation.

Fig 5. Rank correlation plot for TF-binding algorithms and the peaBrain impact score. JASPAR, MEME_1 and

MEME_2 are PWM-approaches.

https://doi.org/10.1371/journal.pcbi.1010028.g005
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Tissue-specific peaBrain scores can identify the functional tissues

underlying GWAS signals from complex traits

For tasks A-C, we have used the non-tissue-specific peaBrain score (average of score, per posi-

tion, across all tissues) to facilitate comparison with the other tissue-agnostic impact metrics.

However, we sought to investigate advantages of tissue-specific impact scores. In particular,

we wanted to highlight how tissue-specific scores could allow us to identify functional tissues

associated with GWAS signal from complex traits (task D). We hypothesized that the “true”

functional gene(s) downstream of a GWAS locus (“hit”) would have, on average, higher peaB-

rain impact scores for the tissue in which the gene is likely to act, given that >50% of the vari-

ance in mean gene abundance can be explained by the promoter sequence. In other words, we

hypothesized that genes associated with a given phenotype (e.g. total cholesterol) are also likely

to be transcriptionally perturbed in the underlying functional tissue (e.g. liver), which we can

detect with tissue-specific peaBrain scores.

For brevity, we selected 4 quantitative traits [37] (total cholesterol, LDL, HDL, and triglyc-

erides) for which the (primary) putatively causal tissue is well-established and included in the

GTEx dataset. Using HESS [38], we calculated the local SNP-heritability from the relevant

GWAS summary statistics, while accounting for linkage disequilibrium. For European popula-

tions, HESS partitions the genome into 1703 approximately-independent LD blocks (average

length = 1.6Mb) [38]. For each block (or “locus”), we calculated the tissue-specific peaBrain

impact score for each GTEx tissue; the locus peaBrain score is defined as the average of the tis-

sue-specific peaBrain scores at all positions (with a score) within that locus. We subsequently

performed a regression of the rank-transformed local SNP-heritabilities as a function of the

rank-transformed peaBrain locus scores to minimize bias caused by outlying loci and assessed

significance for the linear model coefficient (n = 45 tests for each GTEx tissue per phenotype;

see Methods). As a baseline benchmark, we compared our results to tissue predictions made

using the tissue trait concordance (RTC) score [39], which was adapted to calculate the proba-

bility that a GWAS-associated variant and an eQTL are co-localized and weighted by the

extent of tissue sharing for the given eQTL to obtain tissue-causality profiles for each trait.

Across all tested traits, we noted the peaBrain framework was better at identifying putatively

causal tissues than simply using the RTC-/eQTL-based method (S3 and S4 Tables). For LDL,

using the peaBrain framework, the top five tissues (ranked by nominal p-value) were: EBV-

transformed lymphocytes, visceral adipose, fibroblasts, liver, and terminal ileum (small intes-

tine); all were significant after Bonferroni adjustment with p-values tabulated in S3 Table. In

contrast, with the RTC-based method, the top five tissues were: sun-exposed skin (from lower

leg), pancreas, fibroblasts, tibial nerve, and cerebellar hemisphere (brain). This was consistent

across all tested traits (e.g. for HDL, liver ranked 3rd using the peaBrain framework and 32nd

using the RTC-based method; S3 and S4 Tables). The superior peaBrain performance suggests

inherent limitations to eQTL-based methods that are sidestepped by the Stage 1 peaBrain

framework, which depends only on the average expression of all genes in a single tissue and

the reference genome. Notably, peaBrain is independent from the number of eQTLs identified

per tissue and the number of genome-wide significant hits for a given trait, which are both lim-

itations for eQTL-GWAS co-localization methods (such as the RTC-based framework). Fur-

ther confirming this hypothesis, we observe that GenoSkyline-Plus [15], a tool that uses

expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single

tissue annotations (rather than eQTLs alone), identifies that all 4 lipid traits shared a similar

enrichment pattern in liver, adipose, and monocyte tissue (S4 Table), consistent with the

causal relationship among these traits observed with the peaBrain analysis. Interestingly, both

peaBrain and GenoSkyline identified liver, monocytes, adipose, and gastrointestinal tissue as
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the primary tissues for total cholesterol, in the same rank order (S4 Table)–further supporting

the validity of this approach.

Having validated the peaBrain Stage 1 approach and its utility in a diverse set of tasks, in S1

Text, we highlight how activations of the penultimate layer of the peaBrain model can be used

as a continuous and compressed representation (i.e. embedding) of genes. These embeddings,

or equivalently, neural activations, capture both the annotated DNA (input) and its additive

contributions to tissue-specific abundance (output) in a compressed form amenable to down-

stream analyses (such as network-based analyses). These embeddings display interesting prop-

erties (see S1 Text), including the encoding of correlation information and membership to

pathways/curated gene sets. Importantly, these embeddings are in a linear space, such that the

pairwise cosine similarity between these dense gene representations is proportional to the

measured RNA-seq correlation between the gene pair. In other words, co-regulation and co-

expression may be discovered by leveraging linear structure within the embeddings (e.g. add-

ing embeddings of two genes to discover their co-expression with a third).

Stage 1 peaBrain model is designed with extensibility in mind and can be

applied to a diverse set of applications

To further highlight the utility and extensibility of the Stage 1 peaBrain models, we provide

two case (proof-of-concept) studies.

In S2 Text, we demonstrate the utility of this peaBrain DNA reporter model in investigating

the role of DNA and histone modifications in difficult-to-study processes, such as neural

induction. By modelling the transitions between consecutive neural progenitor cell stages, we

identified the subset of genes in each stage-specific differentiation whose expression is directly

altered by epigenetic modifications in their promoter sequences. Among the genes identified

in the differentiation of neuro-epithelial and mid-radial glial cells, we note significant enrich-

ment of genes implicated in schizophrenia, autism, bipolar, and depression (1.5–2.6 fold

enrichment; Fisher’s exact p< 0.05); a trend that becomes more pronounced when limited to

genes implicated using genetic associations alone. With nearly 5–10% labelled as transcription

factors (1.53–3.24 fold enrichment), this cross-disease enrichment provides a putatively causal

mechanism early in neural development for the shared genetic correlation between these psy-

chiatric phenotypes–an observation that is difficult to extract from GWAS data alone and is

missed by differential peak/gene expression analyses.

In S3 Text, we show, with a small extension to this in silico DNA reporter model to incor-

porate small molecule fingerprints, this network architecture can also be used to predict the

transcriptomic impact of small molecules in cell lines, with as few as 600 molecules (24 hours

post-exposure). Predictive performance of this small molecule screen is on par with in vitro
experimental replication of external test sets, allowing us to impute expression for all clinically

approved molecules in the ChEMBL database. By training on the imputed expression profiles

for all molecules first approved prior to the year 2000, we are able to retrospectively identify

molecules that would later be assigned to the corresponding indications (post-2000), with 64–

86% increase in F1-scores (i.e., the harmonic mean of precision and recall, a measure of model

performance and accuracy that is robust to class imbalance), 22–63% increase in precision,

75–94% increase in recall, and 13–19% increase in area under precision-recall curve

(AUPRC), compared to current chemoinformatic/molecule structure-based approaches.

Using a nearly identical model and with better performance, we can also predict the tran-

scriptomic consequences of shRNA olgio-sequences (i.e. gene knockdowns). We use this

shRNA peaBrain model to predict the consequences of 330,617 unique shRNA oligo-

sequences (targeting 19,992 human genes) to enable the inference of regulatory networks, at a
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precision of 66–77% (AUROC = 87–93%, AUPRC = 39–52%, F1-score = 14–45%). We lever-

age these models to identify 212 new transcription factor-target interactions, of which 83% are

supported by experimental ChIP-seq evidence.

peaBrain model architecture can be leveraged to predict the transcriptomic

consequences of individual variation

Having shown the utility of the Stage 1 peaBrain model, we extended the peaBrain model to

incorporate the transcriptomic consequences of individual genotype variation (Stage 2).

Given whole genome sequencing data of a group of individuals (such as GTEx participants),

we sought to assess the ability of this extended peaBrain model to predict the tissue-specific

expression profile of each individual, and to identify putatively functional variants within the

sequence (Fig 6).

To do this, we constructed, for each gene and in each tissue, an extended peaBrain model

that takes individual genome sequence as input and predicts the tissue-specific expression of

the corresponding gene as output. (For stage 2 analyses, we did not make use of individual

level epigenomic and regulatory annotations as these were not available.) More concretely,

unlike stage 1 models, for a single gene, stage 2 models predict the difference between the

expression of two individuals as a function of the difference in the sequences between the two

individuals (for the given gene; see Methods). By jointly modelling the input “difference”

sequence in a non-linear manner (as a result of the activation function of the CNN), we

hypothesized that we would capture information relevant to cis-heritability missed by linear

models (such as distance to TSS sites and the pairwise relationships between variants), and be

able to prioritize functional variants with transcriptomic consequences solely from the DNA

sequence. This additional information is modelled by using the “difference” sequence as input,

rather than the dosage in variation. (Stage 2 peaBrain models were trained separately from

Stage 1 models, but share similar architectures; see Methods.)

Consistent with evidence from eQTL studies [40], we noted the 4kbps core promoter used

in Stage 1 did not capture enough cis-heritability as estimated by constrained GCTA [41] and

thus was not sufficiently informative for this predictive task. In LCLs, for example, using the

Fig 6. Schematic illustration comparing Stage 1 and Stage 2 peaBrain models.

https://doi.org/10.1371/journal.pcbi.1010028.g006
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4kbps core promoter, genes with significant non-zero heritability (p< 0.01; n = 1066) had a

median heritability of 0.136. We selected a 1Mbps input length, centred on the annotated TSS

(0.5Mbps upstream and 0.5Mbps downstream), as a compromise between computational trac-

tability (extending the sequence entails more computational expense) and biological relevance

(the potential to capture additional narrow-sense heritability with extended intervals). Using

the 1Mbps input sequence, genes with significant non-zero heritability (p< 0.01; n = 816) had

a median heritability of 0.270; nearly twice the heritability captured with the core promoter

4kbps sequence. Importantly, our symmetric 1Mbps window likely contained >95% of cis-

eQTLs; in the GTEx dataset, the 95th percentile for absolute distance of cis-eQTLs from their

target transcript TSS was 441,698bps [28]. Complete analysis of a 1Mbps interval (including 5

different train/test splits) for a single gene in a single tissue and 94 individuals, if run sequen-

tially on a CPU, required 15 days with 14 GB of memory. Limited to the genes with significant

non-zero heritability in LCLs (n = 816), on 600 cores, the complete analysis took approxi-

mately a month. (Stage 1 peaBrain models only required several hours.) Prior to training, for

each individual, we re-constructed the 1Mbps input sequence from the variants called from

whole genome sequence (WGS) data (see Methods). Exploring the peaBrain architecture,

fine-tuning the model parameters, and deploying the models was conducted on NVidia’s P100

GPUs (see Methods for details); the bulk of the training, however, was run on CPUs.

To assess peaBrain’s performance in predicting individual variation in RNA expression lev-

els in comparison to other widely-used in silico methods and experimental assays (elastic net

[6], DeepSEA [8], MPRA [24], BiT-STARR-seq [25], and HiDRA [26]), we designed four tasks

(tasks E-H; described below and summarized in S2 Table). For the comparison with elastic

net, in line with other recent studies in the field [9], we restricted performance analyses to a set

of genes with significant non-zero narrow-sense cis-heritability (henceforth, simply referred to

as heritability) in LCLs as estimated by constrained GCTA [41] (limited to the 1Mbps input

sequence; p<0.01; see Methods). By limiting analysis to genes with detectable cis-heritability,

we can make more meaningful conclusions about the comparative performance of the differ-

ent methodologies. We restricted analysis to LCLs to enable comparisons with empirical data

(tasks F-H) and to reduce the compute burden. (We do not perform transcriptome-wide case-

control analyses due to the compute resources required as highlighted above.)

peaBrain identifies functional architecture that is inaccessible with current

high-throughput experimental assays

First (task E), we compared the predictive performance of peaBrain to that of a regularized lin-

ear model (an implementation of elastic net identical to that used in PrediXcan). RNA-seq

samples from the GTEx dataset (n = 94 individuals after filtering) were pre-processed, residua-

lised to account for cryptic relatedness, biological confounders, and technical variance, and

rank transformed to normality (see Methods) before modelling. Model performance for both

linear models and peaBrain was assessed by generating cv-r2 for 5% of individuals randomly

withheld from training and unrelated to individuals in the training set (repeated 10 times; see

Methods). For each of the 816 genes with non-zero heritability (GCTA p< 0.01), we calcu-

lated the 95% confidence interval for the cv-r2, defining a gene as successfully predicted if the

entire cv-r2 confidence interval exceeded zero to ensure we only consider genes with high-con-

fidence models. Whilst regularized linear models were able to capture cis-heritability for 28 of

the 816 genes, the equivalent number for peaBrain was 113 (explanation for difference in per-

formance is discussed below). Cis-heritability for 3 genes was captured by both models, with

the cv-r2 confidence interval largely overlapping (S5 Table). S5 Table also tabulates the perfor-

mance metrics (confidence and point estimates for cv-r2 from both classes of models) and
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estimated GCTA heritability for all genes. This preliminary analysis highlights one key differ-

ence between linear models (e.g., elastic net) and peaBrain–peaBrain trades increased compu-

tational cost for better predictive performance on smaller to medium-sized datasets. As we will

discuss further, this stems primarily from two key factors: (a) the way training is performed,

and (b) the fact that peaBrain retains sequence information. Elastic net models only leverage

the SNP dosage to predict expression in an individual. As highlighted above and in Methods,

as peaBrain leverages differences between individuals (rather than prediction from the

sequence directly, see Methods for implementation details), it is trained on a combinatorically

larger dataset (
94
2 = 4371 pairs of individuals). This allows peaBrain to learn more meaningful

sequence information from a smaller number of individuals (assuming no relatedness). As a

consequence, this training approach is prohibitively expensive with a larger number of individ-

uals. However, by leveraging differences in the sequences between individuals to predict differ-

ences in expression (i.e., the sequence arrays are subtracted from each other), the resultant

“difference sequence” captures how shifted the two sequences are and the differences in alleles.

Thus, the distance information encoded implicitly by modelling the sequence is important to

peaBrain performance. Without the sequence difference, peaBrain would simply be modelling

SNP dosage (i.e., conceptually no different from existing [linear] models) and that is not suffi-

cient for prediction of putatively functional variants in a relatively small dataset as observed.

Having established the predictive ability of peaBrain, we were interested in whether we can

use the best-performing peaBrain models to measure the impact of single variants, compared

to DeepSEA log fold change (logFC) estimates and experimental log skew estimates from

MPRA and BiT-STARR-seq (Task F). For all “captured” genes (n = 113), we selected all vari-

ants identified as significant eQTLs in the GTEx v6p univariate eQTL analysis (n = 16,019 vari-

ants; see Methods) and replicated the analysis with the Geuvadis dataset [42] (n = 17,279

variants for the EU population and n = 1601 variants for the YRI [Yoruba from Ibadan, Nige-

ria] population). Unlike GTEx v7, eQTLs from GTEx v6p were derived from genotyping arrays

(Illumina OMNI 5M or 2.5M) and thus did not include WGS used to train the peaBrain

model. The Geuvdais dataset (both EU and YRI populations) were eQTLs derived from WGS

from a set of non-overlapping subjects. For each eQTL (including indels), we created pairs of

artificial sequences that only differed at the corresponding snp/indel position and predicted

the difference in expression between the alternate and reference alleles from the difference

between the two artificial sequences. (We used only a single model of the those several trained

during cross-validation for simplicity, but incorporating results from additional models may

improve results; see Methods.)

peaBrain predictions significantly and positively correlated with the univariate eQTL coeffi-

cients from the GTEx analysis (Spearman’s rho = 0.09; p = 3.02 x10-32; S2 Fig), from the

EU-Geuvadis analysis (rho = 0.10; p = 9.60 x10-38; S3 Fig), and from the YRI-Geuvadis analysis

(rho = 0.18; p = 8.64 x10-13; S4 Fig). Results were consistent across all datasets when we relaxed

our heritability to include genes with GCTA p< 0.05: Spearman’s rho equal to 0.08 (p = 3.02

x10-25), 0.07 (p = 3.65 x10-25), and 0.18 (p = 1.68 x10-13) for the GTEx, EU-Geuvadis, and

YRI-Geuvdais univariately-significant eQTLs, respectively. Alongside this positive correlation,

we observed that many variants with large coefficients across all three datasets had small peaB-

rain predictions (S2–S4 Figs). This shrinkage in peaBrain estimates is consistent with the

appreciable LD between eQTL-associated variants at any given locus, such that only a subset of

significantly-associated variants are actually functional. Whilst univariate linear models are

not capable of distinguishing between functional versus “hitchhiker” variants, the joint model-

ling of the input sequence in Stage 2 peaBrain allows a more direct assessment of the function

of each variant. In comparison, we noted that the MPRA log skew estimates did not correlate
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with the univariate eQTL coefficients in the GTEx (rho = 0.014; p = 0.60), the EU-Geuvadis

(rho = -0.018; p = 0.58), or the YRI- Geuvadis (rho = 0.011; p = 0.82) eQTL analyses. The BiT-

STARR-seq log skew estimates also did not correlate with the univariate eQTL coefficients in

the GTEx (rho = -0.031; p = 0.50), the EU-Geuvadis (rho = 0.035; p = 0.44), or the YRI-Geuva-

dis (rho = -0.112; p = 0.32) eQTL analyses. Both the MPRA and BiT-STARR-seq experimental

assays were run in lymphoblastoid cell lines. Similarly, for GM12878 (LCL) annotations, we

noted that the maximum log fold changes from DeepSEA did not correlate with the magnitude

of the eQTL coefficients in the GTEx analysis (rho = -0.001; p = 0.92), the EU-Geuvadis analy-

sis (rho = -0.010; p = 0.18), and the YRI-Geuvadis (rho = 0.016; p = 0.52). The DeepSEA results

suggest that simply predicting chromatin effects and TFBS is not sufficient for predicting the

transcriptomic consequences of sequence variation for this set of selected genes. This is consis-

tent with experimental evidence suggesting that most genetic variants in DNase footprinted

(and other annotated) regulatory regions are silent [43], and the fact that histone modifications

(e.g. methylation) alone are frequently insufficient to transcriptionally perturb promoters [44].

However, it is important to note that DeepSEA was trained on the reference genome (i.e., not

exposed to genotype variation), while Stage 2 peaBrain was trained to predict differences in

expression as a function of differences in sequence between any pair of individuals. Finally,

and most importantly, we did not have any variant-level filters for any of the methods (e.g.,

using a p-value threshold for the experimental assays or any significance cut-off for the peaB-

rain estimates); thus, our comparison was not biased towards any method and assessed the

utility of the method estimate across the range of variant effects.

Next, we sought to evaluate the performance of peaBrain at identifying putatively-func-

tional eQTLs against empirical data from MPRA, BiT-STARR-seq, and HiDRA (Task G). Like

MPRA, HiDRA is an extension of the classical reporter gene assay, adapted for sequence con-

structs derived from accessible DNA regions via ATAC-seq [26]; MPRAs leverage shorter syn-

thesized DNA sequences [45]. BiT-STARR-seq is an extension of self-transcribing active

regulatory region sequencing (STARR-seq), which like HiDRA involves fragmenting the

genome and cloning fragments 3’ of a reporter gene. We considered whether variants with the

larger estimated effects from each of the three experimental approaches and peaBrain were

preferentially located in sequences with known functional relevance (e.g. accessible DNA or

transcriptionally active chromatin) and depleted from quiescent or repressed regions. The

sequence annotations were derived from the Roadmap’s GM12878 lymphoblastoid cell line

15-state ChromHMM model; the same GM12878 cell line was also used for both experimental

assays (MPRA and HiDRA). BiT-STARR-seq was also performed in a lymphoblastoid cell line,

but the exact cell line was not specified [25]. For each chromatin annotation, we assessed sig-

nificance using a simple logistic model after rank-transformation of all estimates to normality

(to ensure coefficients were comparable; see Methods). (It is important to note that our analy-

ses are limited to the utility of these approaches in identifying and prioritizing putatively func-

tional eQTLs; all of these experimental and in silico assays have other applications beyond

functional eQTL discovery.) The coefficient of the model corresponded to the extent to which

each approach was predictive of chromatin states/accessibility. More concretely, the logistic

coefficients give the change in the log odds of the annotation overlap for a one-unit increase in

the normalized score.

For peaBrain, as opposed to analysing the consequences of all possible variants/indels

within 1Mbps input sequences for the “captured” 113 genes (which is computationally expen-

sive), we focussed our analysis on all 23,595 univariately-significant eQTLs (from either the

GTEx or Geuvadis datasets). We noted that variants with higher peaBrain estimates were sig-

nificantly enriched in DNase accessible sites and transcriptionally active regions, and signifi-

cantly depleted from heterochromatin and repressed sequences (Table 2). In contrast, the
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magnitudes of the MPRA log skew estimates were not significantly associated with any chro-

matin state or accessibility annotation after Bonferroni correction (Table 2). This absence of

enrichment/depletion was consistent whether we analysed all variants assessed on the platform

(n = 26,986 variants after excluding those with no match in Ensembl’s VEP database; see

Methods) or limited our analysis to the subset of variants also present in the peaBrain analysis

(n = 1589 MPRA variants; i.e. univariately-significant eQTLs for the 113 “captured” genes). It

is important to note that variants assessed on the MPRA platform were already selected, in

part, because their eQTL status in the Geuvadis dataset; that is, excluding negative controls

and LD-based selection, all variants assessed on the MPRA assays were univariately-significant

eQTLs.

Similarly, variants with high magnitudes of the BiT-STARR-seq log skew estimates were

not significantly enriched in transcriptionally active chromatin (or depleted from repressed/

quiescent intervals), irrespective of whether we assessed performance on all variants assessed

on the platform (n = 43,494) or limited to univariately-significant eQTLs for the 113 “cap-

tured” genes (n = 621). Using nominal p-value thresholds, HiDRA performed better than

either MPRA or BiT-STARR-seq when looking at all variants assessed on the platform

(n = 32,906 variants), but no annotation reached significance after multiple testing correction.

Even when limited to the variants present in the peaBrain analysis (n = 199 univariately-signif-

icant eQTLs for the 113 “captured” genes), no significant enrichment or depletion was discov-

ered for any annotation.

Table 2. In the 113 “captured” genes, eQTL variants with higher peaBrain estimates (i.e. more likely to be functional and with larger predicted transcriptomic

impact) tended to fall in DNase accessible sites and transcriptionally active regions, and were similarly depleted from quiescent and repressed sequences (Task G).

peaBrain MPRA log-skew HiDRA BiT-STARR-seq log-skew

all shared all shared all shared

DNase accessibility 0:12 ð3:76 x10� 5Þ 0.01 (0.463) 0.21 (2.64 x10-2) 0.01 (0.352) -0.05 (0.732) � 0:05 ð2:92 x10� 13Þ 0.09 (0.438)

TssA 0:32 ð< 2 x10� 16Þ 0.03 (0.218) 0.25 (2.05 x10-2) -0.02 (0.140) 0.01 (0.934) 0.00 (0.965) 0.09 (0.360)

TssAFlnk 0.10 (1.55 x10-2) 0.06 (4.72 x10-2) 0.29 (2.17 x10-2) 0.03 (4.01 x10-2) 0.61 (4.23 x10-3) -0.02 (1.28 x10-2) 0.03 (0.788)

TxFlnk -0.13 (7.69 x10-2) -0.01 (0.81) -0.16 (0.672) 0.08 (0.141) 1.61 (5.59 x10-2) -0.02 (0.424) -0.06 (0.787)

Tx -0.02 (0.297) -0.04 (4.91 x10-2) -0.05 (0.471) -0.14 (6.13 x10-3) -0.80 (9.58 x10-2) 0.01 (0.571) -0.07 (0.325)

TxWk 0.04 (1.42 x10-2) -0.01 (0.662) -0.01 (0.923) 0.01 (0.630) 0.48 (0.136) 0.03 (4.66 x10-4) 0.00 (0.973)

EnhG 0.04 (0.547) -0.12 (6.97 x10-3) -0.26 (0.167) 0.04 (0.529) -0.91 (4.35 x10-2) -0.05 (1.85 x10-2) -0.21 (0.349)

Enh 0.03 (0.345) 0.01 (0.693) -0.04 (0.757) 0.00 (0.910) -0.71 (3.23 x10-2) � 0:03 ð1:39 x10� 3Þ 0.03 (0.872)

ZNFRpts -0.07 (0.176) 0.05 (0.310) 0.03 (0.858) -0.01 (0.910) -0.06 (0.869) -0.01 (0.724) 0.16 (0.137)

Het � 0:14 ð3:00 x10� 7Þ 0.04 (0.223) -0.22 (0.169) 0.05 (0.303) -0.17 (0.816) 0.01 (0.761) 0.24 (0.101)

TssBiv 0.66 (0.14) -0.04 (0.881) 1.10 (0.277) -0.01 (0.958) NA -0.05 (0.381) -0.18 (0.812)

BivFlnk 0.19 (0.549) -0.22 (0.293) -0.52 (0.605) -0.24 (9.80 x10-3) 0.15 (0.839) -0.05 (0.356) -0.19 (0.800)

EnhBiv 0.40 (0.117) 0.08 (0.701) -0.46 (0.426) 0.13 (0.306) NA -0.05 (0.302) NA

ReprPC 0.20 (0.129) -0.21 (3.80 x10-2) NA -0.05 (0.653) -0.81 (0.440) -0.03 (0.230) -0.26 (0.735)

ReprPCWk -0:25 ð< 2 x10� 16Þ -0.033 (0.133) NA -0.05 (3.73 x10-2) -1.00 (6.80 x10-2) -0.02 (2.45 x10-2) -0.19 (0.159)

Quies 0.01 (0.342) 0.02 (0.192) -0.02 (0.667) 0.00 (0.718) -0.13 (0.564) 0:02 ð4:22 x10� 4Þ -0.01 (0.896)

This trend was not observed for variants with large MPRA or BiT-STARR-seq log skew magnitudes, irrespective of whether we assessed performance on all variants on

the platform or limited to univariately-significant eQTLs for the 113 “captured” genes. HiDRA performed better than MPRA and BiT-STARR-seq when using all

variants assessed on the assay (all; n = 32,906 variants); performance further dropped when limited to the variants present in the peaBrain analysis (shared; n = 199).

Point estimates were derived from fitting a simple logistic model with the scores from each assay rank-transformed to normality (i.e. model coefficients are directly

comparable). Nominal p-value is presented in parentheses, but only entries that are significant after Bonferroni correction are shown in bold. (Green denoting

enrichment; orange denoting depletion.) It is important to note that we did not filter based on the significance of the estimate for any of the methods (see Main Text).

By comparing across all variants (without any significance filtering), we are able to show that peaBrain predictions from a single gene model are more informative

(across the entire range of variant effects) than allelic log skew estimates from any of the experimental assays.

https://doi.org/10.1371/journal.pcbi.1010028.t002
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For all four methods, we did not apply any (significance) filter at the variant-level; that is, to

ensure a fair comparison between all four methods, we did not select significantly active vari-

ants/fragments. Selecting the subset of variants significant for each method (e.g. using DESeq2

for HiDRA, QuSAR-MPRA for MPRA/BiT-STARR-seq, or a simple one-sample t-test across

the peaBrain model repeats) would improve the results for the corresponding method (poten-

tially biasing the test). It is important to note that we can generate confidence intervals/test-sta-

tistics for peaBrain estimates by assessing the prediction in each of the model replicates

(trained and tested on different subsets of individuals); an idea conceptually similar to biologi-

cal replicates in the experimental assays. However, the performance of a single cross-validated

peaBrain model was deemed sufficient and thus, this assessment was not conducted. We

should also note that the authors of the three experimental assays have convincingly shown

that the methods, when limited to active fragments or significant variants (specific to each

method), are able to identify functional variants enriched in transcriptionally active regions

and depleted from heterochromatin [24–26]. However, this enrichment/depletion is limited to

the subset of variants labelled as significant by the respective methods, i.e. the allelic log skew

estimates are not insightful outside this limited subset. By comparing across all variants (with-

out any significance filtering), we are able to show that peaBrain predictions from a single

gene model are more informative (across the entire range of variant effects) than allelic log

skew estimates from any of the experimental assays. In other words, peaBrain estimates can

side step the noise inherent in assessing variant impact with experimental assays–suggesting

that framework is useful in identifying putatively functional variants.

Having established that variants with higher peaBrain estimates are enriched in transcription-

ally active chromatin (irrespective of any variant-level filtering), we sought to subsequently evalu-

ate the four aforementioned methods on a more granular level using RegulomeDB [46] (Task H).

The chromatin states and DNA accessibility assessed in Task G are only coarse indicators of vari-

ant function. RegulomeDB annotates variants in intergenic regions with known and predicted

regulatory elements and categorizes each variant based on the evidence supporting regulatory

function of the variant [46]. As RegulomeDB contains annotations from multiple tissues, we

selected variants with well-established regulatory function in the GM12878 cell line (“Category

1”), which includes variants matched to known TF binding with matched TF motif and matched

DNase footprint. For peaBrain and the three experimental assays (MPRA, BiT-STARR-seq, and

HiDRA), we assessed significance using a simple logistic model after rank-transformation of all

method estimates to normality (to ensure coefficients were comparable; see Methods). Similar to

Task G (with chromatin states and accessibility), the coefficient of the model corresponded to the

extent that each approach was predictive of variants with established regulatory function. In other

words, larger coefficients indicate that the method is better able to delineate established regulatory

variants from variants with minimal evidence for regulatory function. We note that only peaBrain

had a significant and positive coefficient; with larger peaBrain estimates indicating variants with

well-established and stronger evidence for predicted regulatory function (coefficient = 0.15 [0.04,

0.28]; Table 3). None of the three experimental assays had significantly positive coefficients (for

all variants tested on the respective platforms and limited to the subset of eQTLs for the 113 “cap-

tured” genes). Overall, on the post-selective 113 genes, Tasks F-H suggest that the modelling

undertaken by Stage 2 peaBrain (derived from sequence data alone) detects functional architec-

ture that is not readily accessible with the latest high-throughput empirical approaches.

Discussion

Here, we have introduced a two-stage computational framework for predicting the transcrip-

tomic consequences of non-coding variation. Using Stage 1 class-C (tissue-specific annotated)
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models, we observed that the majority of variance (>50%) in the mean abundance of genes

across most GTEx tissues is encoded in the annotated 4kbps core promoter sequences. Thus,

the difference in mean abundance between genes appears to be largely encoded in invariant

differences between core promoter elements and the interacting tissue-specific regulatory fac-

tors encoded in the model weights, rather than a consequence of transcriptional regulation by

more distal sequences or non-transcriptional downstream regulation (e.g. silencing by small

non-coding RNAs). Furthermore, we note that the average expression of all genes in a single

tissue and the reference genome is sufficient to learn both TFBS and allele-specific binding

(see S1 Text). Taken together, this is broadly consistent with anecdotal experimental evidence

[31] and suggests that non-transcriptional downstream processes play a secondary role in reg-

ulating mean expression.

The predictive ability of Stage 1 peaBrain models allowed us to calculate a non-coding

impact score for all genomic positions in the core promoter sequences, a useful metric for anal-

ysis of both common rare variants. Unlike other non-coding metrics that incorporate external

consequence annotations (e.g. from Ensembl’s variant effect predictor [VEP], ClinVar, and

other curated databases), peaBrain impact score is derived directly from predicting expression

and does not depend on curated variant annotations. The tissue-specific nature of the peaBrain

impact score is useful for identifying putatively functional tissues underlying GWAS signal for

complex traits, which are not readily accessible through current methods that rely on eQTL-G-

WAS-hit co-localization.

To incorporate the consequences of individual variation on gene abundance in Stage 2 of

the framework, we extended the Stage 1 model to capture a 1Mbps window, a balance between

computational tractability and biological “signal”. Unlike Stage 1 models, Stage 2 peaBrain

leverages differences in the sequences between individuals to predict differences in expression

(rather than prediction from the sequence directly, see Methods for implementation details);

that is, the sequence arrays are subtracted from each other and the resultant “difference

sequence” captures how shifted the two sequences are and the differences in alleles. Without

the sequence, peaBrain would simply be modelling SNP dosage (i.e. conceptually no different

from existing [linear] models) and that is not sufficient for prediction of putatively functional

variants as observed. Thus, the distance information encoded implicitly by modelling the

sequence appears important to peaBrain performance. However, peaBrain is a black-

box approach and we must be cautious in attempting to elucidate scientific rationales for the

apparent improved performance. Existing methods for peering into “black-box” approaches

Table 3. In the 113 “captured” genes, peaBrain estimates can significantly delineate variants with established regulatory function (Task H).

Method Variants Logistic Coefficient L Bound U Bound p-value

peaBrain 0.16 0.04 0.28 7.99 x10-3

MPRA all 0.10 -0.002 0.19 5.46 x10-2

shared 0.25 -0.06 0.56 0.119

BiT-STARR-seq all -0.03 -0.11 0.04 0.371

shared 0.09 -0.16 0.34 0.461

HiDRA all 0.09 -0.02 0.20 0.107

shared 0.11 -0.30 0.51 0.603

The log-skew estimates from the experimental assays, both across all variants assessed on each platform (“all”) and limited to eQTLs for the 113 “captured” genes

(“shared”), are uninformative. Both the peaBrain estimates and log-skew for the experimental assays were rank-transformed to normality to facilitate comparison

between the methods. The bounds for the 95% confidence interval, obtained by profiling the likelihood function, are tabulated, with significant coefficients denoted in

bold. Abbreviations: L, lower; U, upper.

https://doi.org/10.1371/journal.pcbi.1010028.t003
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are not particularly useful for peaBrain as it leverages differences between individual sequences

aligned to the annotated TSS, rather than conventional (reference) sequences, that are mod-

elled with “conjoined” neural networks (see S7 Table). In other words, we cannot readily

extract meaningful motif sequences from the input data. Reconstruction of the individual

sequences to generate the difference input required that we use a quality controlled VCF to

reconstruct individual sequences (see Methods), as opposed to directly using the originally

“noisy” sequence reads. However, by leveraging differences in “TSS-aligned” sequences, peaB-

rain learns to map differences at each genomic position of an individual (relative to the fixed

TSS landmark) to predict difference in expression. The advantage of this approach is that

peaBrain must learn to pinpoint important features regardless of where they occur in the

sequence and that may eschew the overfitting concern associated with a priori identification of

eQTLs. Importantly, Stage 2 peaBrain does not directly depend on eQTLs/variation dosage,

but rather focusses on how differences at each genomic position (because of differences in

alleles or because of shifts due to upstream/downstream indels) perturb expression.

At this conjecture, it is important to note that, unlike many methods with similar concep-

tual origins, peaBrain was not designed with the sole intent of predicting gene expression

abundance. Rather, one of the primary goals of Stage 2 peaBrain models is identifying puta-

tively functional eQTLs. As a first approximation, we note that peaBrain variant effect esti-

mates positively and significantly correlate with the coefficients from the univariate eQTL

analysis on the post-selective 113 “captured” genes. In contrast, MPRA and BiT-STARR-seq

allelic log skew estimates did not correlate with the corresponding univariate eQTL coeffi-

cients. Furthermore, variants with large peaBrain estimates were significantly enriched in

DNase-accessible DNA and transcriptionally active chromatin, and depleted from quiescent

and repressed states. Log skew estimates, for both MPRA and BiT-STARR-seq for variants

were uninformative of chromatin state for the subset of variants investigated. The poor perfor-

mance of MPRA may reflect the fact that it is an episomal assay so variants are not being

assessed in their regular chromatin context. Variants with large HiDRA estimates were nomi-

nally enriched in transcriptionally active regions, but did not reach significance after Bonfer-

roni correction. Notably, however, both the MPRA and HiDRA assays were performed in the

GM12878 cell line from which the chromatin and DNA accessibility annotations were also

derived, i.e. there is a possibility that the results for the experimental assays are biased over-

estimates of true performance. It is important to note that when limited to the subset of signifi-

cant variants (as labelled by each method), the experimental assays can identify regulatory vari-

ants enriched in transcriptionally active chromatin. The log-skew estimates from any of the

three experimental assays, however, cannot delineate functional variants outside this limited

“significant” subset. In Tasks F-H, by comparing across all variants (without any significance

filtering), we show that peaBrain variant predictions are more informative (across the entire

range of variant effects) than allelic log skew estimates from the experimental assays. More

concretely, as described above, peaBrain estimates can side step the noise inherent in variant-

level measurements using in vitro empirical assays.

Our initial explorations, using peaBrain, have demonstrated that regulatory activity up to

1Mbp away from TSS can predict differences between individuals for a subset of genes. The

next stage of this work is design more efficient and computationally inexpensive models.

Transformers, which are at the heart of DeepMind’s Enformer, provide one option: modelling

relationships between genomic positions regardless of their respective position. However, as

we have shown, the position of the variants also encodes valuable observation. As such, trans-

formers provide only part of the solution; new methods must both model the influence of

enhancers and distant regulatory regions as well as retain their positional information (which

is necessary to identify person-to-person differences).
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As with other deep learning approaches, there are limitations to peaBrain analysis; notably,

that despite our best efforts for the rigorous quality control, unbiased error estimation, and

model regularization, there may be some information that is biasing performance results in an

intricate way (i.e. the generic problem of using black-box neural network models). To mitigate

the risk of bias, we implemented dropout regularization, out-of-sample testing on unrelated

individuals (after conservatively filtering for cryptic relatedness), comparison with high

throughput assays (such as MPRAs and HiDRA), and validation using chromatin, TF-binding,

and DNA accessibility annotations. However, without an explicit model, there is always a pos-

sibility for bias. For peaBrain, the ability of the Stage 2 analyses to identify putatively functional

variants that are enriched in transcriptionally active chromatin and depleted from heterochro-

matin/repressed sequences is encouraging evidence of model generalizability. Similarly, the

correlation of the impact scores from Stage 1 analyses with evolutionary constraint and their

utility in predicting disease-associated mutations and allele-specific binding sites further

underscores the true performance of peaBrain framework.

Altogether, the results from the Stage 1 and Stage 2 of the peaBrain framework suggest that

models for understanding the effects of non-coding variation on RNA abundance (and possi-

bly more complex traits) can be built by relying more on automated machine learning, rather

than hand-designed or selected features. Furthermore, the results highlight the variant sensi-

tivity of the Stage 2 peaBrain model and its ability to identify putatively functional variants

underlying cis-eQTL signals. More generally, peaBrain’s performance in predicting mean

abundance and individual variation further implicates the importance of the invariant geno-

mic context and distance to the annotated TSS for interpreting the effects of non-coding varia-

tion in a tissue-specific manner.

Methods

RPKM and gene count data, for Stage 1 and Stage 2 peaBrain models, was downloaded from

GTEx (v7; see URLS in S4 Text) [28]. To prepare the data for Stage 1 of peaBrain, the mean

abundance of each gene was obtained by averaging the RPKM across all subjects. The values

were then rank transformed to normality using the rntransfrom function from GenABEL

v1.8–0. The GRCh37 (hg19) reference genome was downloaded from UCSC [27]. We used the

default Ensembl gene definitions to define gene borders; an Ensembl gene is defined as the col-

lection of all spliced transcripts with overlapping coding sequences but excluding manually

annotated readthrough genes. The gene start and end coordinates (from which the core pro-

moter sequences are defined) correspond to the outermost transcript start and end coordi-

nates. We accounted for gene strand-ness while extracting the core promoter sequences; start

coordinates corresponding to the TSS for genes on the positive strand and the end coordinate

corresponding to the TSS for genes on the negative strand. We further limited our analysis to

protein-coding genes (n = 19,820 genes) and to autosomal chromosomes for simplicity. For all

Stage 1 models, the DNA promoter sequence for each gene was one-hot encoded (also known

as a one-of-k scheme); each letter represented as separate channel. One-hot encoding is a tech-

nique commonly used in natural language processing to encode categorical integer features

with each channel indicating the presence (1) or absence (0) of the corresponding DNA letter.

Processed genomic annotations and epigenetic markers were obtained from the LDSC [29]

(see URLS in S4 Text) and similarly processed. For Stage 1 class B models and using the LDSC

annotations, we incorporated an additional 28 channels of binary sequences for each base-

pair, that are not specific to any cell type or tissue, highlighting: coding basepairs, conserved

sites [47], CTCF sites, DGF peaks [2], DHS peaks [3], enhancers [4,48], fetal DHS peaks [3],

H3K27ac peaks [5,30], H3K4me1 peaks [3], H3K3me3 peaks [3], H3K9ac peaks [3], introns
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[27], promoters [27], promoter flanking sequences [4], repressed sites [4], super enhancers [5],

transcription factor binding sites (TFBS) [2], transcribed sequences [4], TSS [4], untranslated

3’ regions (UTR3) [27], untranslated 3’ regions (UTR5) [27], and weak enhancers [4]. Stage 1

class C models included additional binary channels, corresponding to the consolidated epigen-

omes from Roadmap (see URLS in S4 Text), as described in the main text. Transcription fac-

tor processed ChIP-seq data were also downloaded from the gene transcription regulation

database (GTRD v17.04; see URLS in S4 Text). GTRD is a database of human transcription

factor binding sites identified from ChIP-seq experiments and uniformly processed. As

described in S1 Text, for a subset of Stage 1 models, transcription factor binding sites identi-

fied using four different peak callers (MACS, SISSR, GEM and PICS) and clusters of peaks for

each method (defined as overlapping peak called using the protocol, but in different tissues or

under different conditions) were included as separate binary channels.

Stage 1 peaBrain model was constructed using Theano 0.9.0 and Lasagne 0.1. For a single

tissue, peaBrain takes in the core promoter sequence as input and predicts the normalised

mean abundance of the corresponding gene (Fig 1). The core promoter sequence was deter-

mined by varying the length of the promoter sequence (± 1kbps, ± 2kbps, and ± 3kbps). As

highlighted in S1 Fig, ± 2kbps (i.e. the 4kbps core promoter sequence) was the optimal length

for predictive ability as assessed using a 10-fold cross-validation scheme. The input sequence is

a 1D vector with 4 channels encoding the DNA sequence and when appropriate, additional

channels as binary representations of various genomic annotations and epigenetic markers

(described above). The Stage 1 peaBrain model is a series of 1D convolutions and max pooling

layers (S6 Table). In practice, a 1D convolution is implemented as a 2D convolution with

width set to 1 (effectively dropping the unused dimension). Each convolutional layer was set

with 11 filters of size 5 and a leaky rectify non-linearity activation function. The leaky rectify

activation function for all convolutional layers has a nonzero gradient for negative input,

which is useful for convergence [49]:

f ðxÞ ¼
x ifx > 0

0:01x ifx � 0

(

The 0.01 corresponds to the “leakiness” of the activation function, with larger values denot-

ing increased “leakiness”. The input to the first convolutional layer is 4000 x 1 x r sequence,

where 4000 corresponds to the length of the core promoter sequence and r denotes the num-

ber of channels (minimum of 4 DNA letter channels). The first convolutional layer has 11 fil-

ters (or equivalently, kernels) of size 5 x 1 x 11, where 5 denotes the sequence length of the

filter and 11 denotes the number of channels for that filter. The output of each filter is a locally

connected structure, convolved with the sequence, to produce 11 feature maps that are then

max pooled with the output of other filters from the layer, before serving as input for the sub-

sequent layer. Prior to the penultimate embedding layer (from which we extract the continu-

ous vector gene representations), we placed a dropout layer with p = 0.5 of setting values to

zero. The dropout layer is a regularizer that randomly zeros input values (i.e. randomly drop-

ping units and their connections), limiting co-adaptation and improving model generalizabil-

ity [50,51]. The number of units in the penultimate embedding layer determines the size (or

the number of components) in the vector and was set to 1001. The last layer is a single output

neuron that outputs the mean abundance of the corresponding gene (for which the promoter

was input). The last two dense layers (including the final output neuron) have linear activa-

tions, ensuring that the normalized mean abundance is a linear combination of the embedding

components or equivalently, the neural activations of the penultimate layer. The objective was

defined using the mean squared difference (between predictions and observed mean
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abundances) and model weights were updated using Adam with the learning rate = 0.001,

beta1 = 0.9, beta2 = 0.999, and epsilon = 1 x10-8. Adam is an algorithm for gradient-based opti-

mization of (stochastic) objective functions [52]; beta1 corresponds to the exponential decay

rate for the first moment estimates and beta2 is the decay rate for the second moment esti-

mates. The model was trained for a minimum of 100 epochs, before exiting early using a vali-

dation set (defined as 10% of the training). As is typical in neural networks, the number of

layers and other explicitly-specified model variables, above, are referred to as hyperparameters;

they are variables that set prior to optimization of the models parameters.

Pre-processing for heritability and variant-sensitive regression for the Stage 2 peaBrain

model was performed as recommended by the authors of QTLTools [53]. For each tissue, we

selected genes with non-zero RPKM values for at least 50% of samples. Per gene, RPKM values

were residualised using linear regression to account for autolysis score, date of nucleic acid iso-

lation, date of genotype isolation, RIN, total ischemic time, time spent in paxgene fixative, sex,

age, Hardy score, interval of onset to death for last underlying cause, number of hours in

refrigeration, ischemic time, temperature, donor status (post-mortem, surgical or organ

donor), three genotype PCs and enough expression matrix PCs to explain 55% of the variance

(to account for unexplained technical and biological variance). The residuals were then rank-

transformed to normality using GenABEL’s rntransform function. As with Stage 1 peaBrain

analyses, we further limited our analysis to protein-coding genes (number of genes differed

between tissues) and to autosomal chromosomes for simplicity. For each protein-encoding

gene on an autosomal chromosome, we defined the input sequence as 0.5 Mbps upstream and

0.5Mbps downstream of the TSS using default GRCh37 Ensembl gene definitions (total 1Mbps

centred on the TSS). As highlighted in the main text and, the 1Mbps was selected as a balance

between computational tractability and biological relevance. Increasing the length of the input

sequence beyond the 1Mbps increases both the compute time and memory footprint. Impor-

tantly, our symmetric 1Mbps window likely contained >95% of cis-eQTLs; in the GTEx data-

set, the 95th percentile for absolute distance of cis-eQTLs from their target transcript TSS was

441,698bps [28]. Incidentally, the 1Mb interval have also used by other approaches in imputing

RNA expression from genotype (namely, TWAS) [9]. Using the unphased whole genome

sequencing GTEx data, we reconstructed the individual’s sequence from the quality controlled

VCF. In other words, we generated the individual variation by substituting each individual’s

non-reference alleles into the reference sequence. Variants in the WGS GTEx VCF were qual-

ity controlled by GTEx LDACC at the Broad Institute. As stated in the corresponding

README file, quality control was conducted using GATK, Hail, and PLINK. Notably, a vari-

ant was removed if it didn’t “pass Variant Quality Score Recalibration (VQSR), had low

Inbreeding Coefficient or low Quality Score, was within a Low Complexity Region (LCR),

became monomorphic after applying genotype quality score (GQ)<20 or allele balance (AB)

>0.8 or AB<0.2 filters or assigning male heterozygous calls in chrX nonPAR regions to miss-

ing, had missingness rate > = 15%, did not pass Hardy-Weinberg Equilibrium testing in Afri-

can American or European subpopulations for autosomes or in European females for chr X,

showed significant association with sequencing technology or library construction batch, or

showed significant non-random missing of reference alleles.” [28] For each individual, we gen-

erated two copies of the gene 1Mbps input sequence; phasing did not matter as the sequences

were combined prior to modelling.

Stage 2 peaBrain models for heritability analysis and variant-sensitive prediction were

similarly constructed as described for the Stage 1 models. Stage 2 models, however, are three

separate convolutional neural networks, connected by a dense fully-connected layer prior to

the output neuron (S7 Table). The input 1Mbps sequence is split into three inputs: 0.48Mbps

upstream, 4kbps core promoter, and 0.48Mbps downstream sequences. The 4kbp core
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promoter is the input to a CNN with identical structure and hyperparameters as described for

Stage 1 peaBrain model (described above in detail). The upstream and downstream sequences

are input to networks with identical architecture, but different pooling hyperparameters: a

pool size of 100 for the first pooling layer, 50 for the second, and 10 for the last. Number of fil-

ters was consistent between all networks (n = 11). The fully connected output from each

sequence is concatenated, before one penultimate fully-connected layer and a single output

node. Unlike the Stage 1 peaBrain models, Stage 2 models are trained to predict the differences

between individuals (rather than direct prediction of expression). As humans are diploid, for

each individual, the input sequence was the sum of the one-hot encoding of each of the 1Mbps

sequences corresponding to the “maternal” and “paternal” sequences; phasing did not matter

because the sum was consistent. A separate Stage 2 model was constructed for each gene with

significant non-zero heritability (see text). For any pair of individuals, A and B, the input

sequence was defined as the difference between the one-hot encoded sequences, with the cor-

responding output as the difference between the two individuals. We included both differ-

ences, (A–B) and (B–A), during training. After removing individuals with cryptic relatedness

(see GCTA analysis below), the GTEx dataset was randomly split into train and test individuals

(95% of subjects for training and 5% for testing), with the model trained on all the pairwise dif-

ferences between train individuals and tested on all pairwise differences between test individu-

als. The training set was further sub-divided into training and validation sets, with the latter

used to exit early after a minimum 100-epoch training. As described below, overall model per-

formance was assessed using the cv-r2 on five to ten random repetitions of 95/5 train/test splits;

the number of repetitions was dependent on how quickly each model reached exit criteria.

Elastic net (regularized linear) models. We used an additive genetic model as our base-

line comparison as described elsewhere [6]. Briefly, for each gene, an elastic net model was

used to model expression (alpha = 0.5; selected to match PrediXcan [6]). As with peaBrain, the

models were trained to predict the difference in expression as a function of the difference in

dosages among the variants within the 1Mb input sequence (rather than the expression

directly). For a linear model, this is no different from simply predicting the expression; the

constant term in this case is expected to be close to 0. The lambda (regularization) parameter

was 3-fold cross-validated on the training dataset, using cv.glmnet function from glmnet

v2.0–10 [54].

Model performance, for all peaBrain and linear models, was assessed using the cross-

validated-r2 (cv-r2), a classical machine learning metric to assessing performing of regression

models (often just called r2) [55]. cv-r2 is defined as:

cv� r2 � 1 �

P
iðyi � f iÞ

2

P
iðyi � �ytestÞ

2

where fi denotes the predicted value using the model fitted on the training data, yi denotes the

true value for, and �ytest is the mean value for all items in the test set. The denominator of the

cv-r2 is the total sum of squares (proportional to the variance of the data) and the numerator

of the cv-r2 is the explained sum of squares (also called the regression sum of squares). When

the explained sum of squares (numerator) is larger than the total sum of squares (denomina-

tor), cv-r2 is below zero and indicates the model does not have any predictive ability. Regres-

sion models with some predictive capacity have cv-r2 values in the range (0, 1]. Stage 1

peaBrain model performance was assessed using 10-fold cross validation (10% of genes were

withheld from the algorithm during training). Stage 2 peaBrain models and elastic net linear

models were assessed using repeated random splits of 95% of subjects for training and 5% of

subjects for testing. Individuals with cryptic relatedness were removed prior to the training/
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test split, using GCTA grm-cutoff of 0.025 (see below). 5–10 random training/test splits were

used to assess model performance; 95% confidence interval was estimated using the mean and

standard error, assuming the distribution of cv-r2 was normal.

Tissue-specific peaBrain impact score for any given genomic position, as described in

text, was defined as the absolute difference in abundance between the original promoter

sequence and a modified promoter sequence where all the sequence and epigenetic/genomic

annotations for that site were set to zero. The impact score is proportional to the contribution

of the genomic position to the average expression of the gene; genomic positions are readily

mapped to genes by virtue of the promoter definitions. If the genomic position overlapped

with the promoter of multiple genes, the maximum impact across all overlapping genes was

taken. Tissue-specific peaBrain impact scores were compared to phylogenetic p-values (phy-

loP) using simple linear models (lm base function in R). As briefly described in the main text,

phyloP are nucleotide conservation scores derived from multiple alignments of 99 vertebrate

genomes to the human genome phyloP scores are based on an alignment and a model of neu-

tral evolution [27]. A more positive value indicates conservation or slower evolution than

expected; magnitude of the phyloP score corresponds to the -log p-values under the null

hypothesis (i.e. neutral evolution). phyloP scores were downloaded from the UCSC genome

browser (see URLS in S4 Text). To compare peaBrain to other non-coding metrics, a non-tis-

sue-specific peaBrain score was used; defined as the average impact of each position across all

tissues. Non-coding impact scores (combined annotation dependent depletion [CADD] v1.3,

and Eigen v1.1) were downloaded from their respective webpages (see URLS in S4 Text).

CADD is a single meta-score derived from analysis of multiple annotations for variants that

survived natural selection, compared to simulated mutations [16]. Eigen is an unsupervised

score that synthesizes a combination of functional annotations into one meta-score [17]. The

non-coding somatic mutations used to assess metric performance were downloaded from the

COSMIC v82 (see URLS in S4 Text). Allele frequency was derived from gnomAD release

170228. For each genomic position, we counted the number of overlapping somatic mutations.

We further limited our analysis to COSMIC census genes (as a positive gene set); COSMIC

census genes possess mutations that have been causally implicated in cancer. For each task

used to compare the non-coding metrics (see text), a logistic model was used (fitted using the

glm function in R, family = “binomial”) with the allele frequency and phyloP as covariates.

Allele frequency and evolutionary conservation scores were included to assess whether the

non-coding impact score adds any additional information to the model, besides that derived

from allele frequency or evolutionary constraint. Positions without a phyloP conservation

score were excluded from model fitting. The confidence interval was obtained using the con-

fint function (derived from profiling the likelihood function). For the analysis of recurrent

somatic mutations, we were interested in the global performance of each metric at each auto-

somal chromosome and thus a simple model sufficed–isolating genes or promoters with

“mutation hotspots” would require more sophisticated approaches to avoid false positives (e.g.

it would be necessary to incorporate tumour type, the proportion of each tumour [sub]type,

the background mutation rate at each position/tumour, and more technical variables such as

sequence coverage). The published non-coding impact scores (CADD and Eigen) depend on

curated non-coding annotations and indirectly predict transcriptomic consequences; that is,

there is potential risk of overestimating the performance of these scores in the three tasks (see

Main Text). Allele-specific binding site data and prediction scores for TF binding prediction

algorithms were downloaded from the Supplemental Table appended to Wagih et al. [33] (see

URLS in S4 Text). For the comparison between non-coding impact metrics, duplicate sites

were filtered (selecting the one with lowest nominal p-value). For the analysis of causal tissues,

we downloaded the summary statistics for the four lipid traits from the webpage of the Global
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Lipids Genetics Consortium (see URLS in S4 Text). Local SNP-heritability for each trait was

calculated using HESS (Heritability Estimation from Summary Statistics). The linear models

of local heritability as a function of average peaBrain score per locus were fitted using the base

function lm in R.

Constrained GCTA heritability analyses. We converted the GTEx whole genome

sequencing VCF to PLINK binary bed file (using Plink v1.9). Using GCTA v1.24.4 [41], we cal-

culated the genetic relationship matrix (GRM) from all the autosomal SNPs and excluded indi-

viduals with grm-cutoff of 0.025. GCTA was used to calculate heritability for similar methods,

including predixcan [6] and TWAS [9]. For each gene, we subsequently limited the GRM to

variants within the 1Mb input sequence (centred on the TSS) and performed constrained

GCTA-GREML analysis. Genes with a significant non-zero heritability (p< 0.01) were

included for subsequent analyses.

Predicative ability of gene embeddings was assessed using a 10-fold cross validation

scheme. The hallmark curated gene sets were downloaded from Molecular Signatures Data-

base v6.0 [56]. Hallmark gene sets represent an aggregation of many gene sets and are thought

to represent coherent biological states or processes. For each set, genes were assigned a binary

label (1 denoting membership). We subsequently trained a multi-layer perceptron classifier

from scikit-learn v0.19.0, with three hidden layers (200, 100, and 50 neurons), to predict gene-

set membership using the gene’s embedding. We used a rectified linear unit function as the

activation for our hidden layers, and lbfgs for weight optimization. Lbfgs is an optimizer that

belongs to the family of quasi-Newton methods. Cosine similarity between any pair of embed-

dings was assessed using eponymous function from scikit-learn, defined as:

similarity �
X � Y
kXkkYk

where X and Y denote the embeddings for genes X and Y, respectively. Correlation between

the RNA-seq arrays for genes X and Y were calculated using the base cor function in R.

Correlation with univariate GTEx/Geuvadis eQTL analysis, DeepSEA, and MPRA &

BiT-STARR-seq log skew estimates. To calculate the effects of single variants, artificial

sequences were constructed that differed only at the genomic position of the corresponding

variant; with one sequence containing the reference (ref) allele and one sequence containing

the alternate (alt) allele. As Stage 2 peaBrain model predicts the difference between two

sequences, we used the (alt–ref) configuration to estimate an effect size for each variant. Uni-

variate eQTL coefficients were obtained from the GTEx and Geuvadis datasets (see URLS in

S4 Text). Significance of spearman (rank) correlation between the peaBrain estimate and

eQTL coefficient was assessed using the cor.test function in R. Both the univariate eQTL analy-

sis and peaBrain were obtained using expression data that was rank transformed to normality

and thus are comparable in magnitude (despite slightly different pre-processing protocols).

MPRA variant results were obtained from Supplemental Table 1 of Tewhey et al. [24] (see

URLS in S4 Text); snp rs ids were translated to chromosome_position_ref_alt_build nomen-

clature using Ensembl’s GRCh37 biomaRt and a simple python script. Any variant that inter-

sected with the peaBrain final variant set was included in the analysis, that is, variants in the

1Mbps input sequence for genes/models with the 95% confidence interval for the cv-r2 entirely

above zero. The LogSkew.Comb column, corresponding to the log2 allelic skew from the com-

bined MPRA LCL analysis (alt/ref), was used as the MPRA log skew estimate. The BiT-

STARR-seq data was similarly processed (see URLS in S4 Text). As with the peaBrain and

eQTL analysis, significance of the spearman (rank) correlation between each of the experimen-

tal assays allelic log skews and the univariate eQTL coefficients was assessed using the cor.test
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function. To obtain the logFC for GM12878 annotations, a vcf file of the corresponding eQTLs

was uploaded to the DeepSEA platform (see URLS in S4 Text).

Comparison of peaBrain, MPRA, BiT-STARR-seq and HiDRA. The core 15-state

model and DNAse accessibility annotations for the GM12878 EBV-transformed lymphoblas-

toid cell line (LCLs) were downloaded from the Roadmap project (see URLS in S4 Text).

HiDRA data was downloaded from the GEO series GSE104001 (see URLS in S4 Text). HiDRA

estimate was defined as the log fold change in average counts between the alternate and refer-

ence group (after normalizing for DNA count); direction did not matter as only the magnitude

was used in this analysis. The MPRA and BiT-STARR-seq data was downloaded and pre-pro-

cessed as described above. Notably, the chromatin states/DNA accessibility annotations, the

HiDRA, and MPRA estimates were derived from the same cell line; that is, there is possibility

of overestimating the performance of either method. For any given annotation, we assessed

the predictive ability of the magnitude of the variant estimate (from any of the three

approaches) to predict whether the variant overlapped with the annotation. The magnitude of

the variant estimate for each approach (peaBrain, HiDRA, BiT-STARR-seq, and MPRA) corre-

sponded to either the transcriptomic impact or activity of that variant. Only the absolute mag-

nitude, after rank-transformation to normality, of each variant was used in modelling. For

each approach and for each annotation, a logistic model was used (fitted using the glm func-

tion in R, family = “binomial”) and the confidence interval was obtained using the confint

function (derived from profiling the likelihood function). For the granular variant-level assess-

ment, annotations were downloaded from RegulomeDB (dbSNP 141; see URLS in S4 Text).

Supporting information

S1 Table. Tabulated summary of coefficients of the linear function modelling phyloP con-

servation scores as a function of tissue-specific peaBrain noncoding impact metric. Gener-

ally, across most tissues and chromosomes, the larger the impact a position has on the mean

abundance of the gene (as indicated by a higher peaBrain impact metric), the more evolution-

ary conserved it is (i.e. a positive coefficient). The notable exception is the nucleus accumbens

(basal ganglia), where the opposite trend is noted (negative coefficients; in bold). All coeffi-

cients are significant (p< 10−16). The results were also consistent with the rank-normalized

phyloP and peaBrain scores. Abbreviations: L, lower; U, upper.

(DOCX)

S2 Table. Tabulated summary of all tasks used to assess peaBrain performance, for both

Stage 1 and Stage 2 models.

(DOCX)

S3 Table. Tabulated p-values for the top five putatively functional tissues per trait (ranked

in ascending order by p-value), as predicted by the peaBrain framework and the RTC

(eQTL)-based methodology (Task D). peaBrain p-values have been Bonferroni-corrected for

multiple testing; results for all tissues are available in S4 Table. Nominal p-values are shown

for the RTC (eQTL)-methodology; obtained from S8 Table of the corresponding manuscript

[39]. Across all tested traits, the peaBrain framework identifies more relevant functional tissues

per trait than the RTC-based method. Abbreviations: LDL, low-density lipoprotein; HDL,

high-density lipoprotein; RTC, regulatory trait concordance.

(DOCX)

S4 Table. Causal tissue profiles for all lipid traits.

(XLSX)
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S5 Table. Performance metrics (confidence and point estimates for cv-r2 from both classes

of models) and estimated GCTA heritability for all genes with significant heritability

(GCTA p < 0.01).

(XLSX)

S6 Table. Schematic of the Stage 1 peaBrain model. The number of channels, r, is deter-

mined by the number of epigenetic and genomic annotations included in the model (mini-

mum of 4 corresponding to the 4 DNA letter channels in class A models). The Stage 1 class B

models have 32 channels, corresponding to 4 DNA sequence channels and 28 annotation

channels (see Methods for details).

(DOCX)

S7 Table. Schematic of the Stage 2 peaBrain model, which is composed of three separate

networks connected by a dense layer prior to prediction. Values in red denote layers with

differing values between the three networks. The network for the centre split is identical to the

Stage 1 peaBrain model for the core promoter region; the networks for the upstream and

downstream splits are identical to the Stage 1 peaBrain model for distal sequences. Thus, Stage

2 peaBrain can be thought of as a consolidation of the separate Stage 1 models.

(DOCX)

S1 Fig. Using the class-B peaBrain model for MuscleSkeletal (largest tissue by sample

count in GTEx), the 4kbps promoter sequence (+/– 2kbps of annotated TSS) outperforms

both 2kbps (+/– 1kbps) and 6kbps (+/– 3kbps) promoter sequences in predicting mean

gene abundance.

(PNG)

S2 Fig. Scatter (right) and hexa-bin (left) plots of variant-expression effects as estimated in

LCLs by peaBrain (limited to genes whose 95% confidence interval for the cv-r2 is entirely

above 0; n = 113 genes; Task F). Each point corresponds to a variant that is univariately significant

in the GTEx eQTL analysis (n = 16,019 eQTLs). The y-axis is the magnitude of the univariate GTEx

eQTL coefficient for the corresponding variant. The correlation between the GTEx coefficient and

the peaBrain prediction is positive and significant (Spearman’s rho = 0.09; p = 3.02 x10-32).

(PNG)

S3 Fig. Scatter (right) and hexa-bin (left) plots of variant-expression effects as estimated in

LCLs by peaBrain (limited to genes whose 95% confidence interval for the cv-r2 is entirely

above 0; n = 113 genes; Task F). Each point corresponds to a variant that is univariately signif-

icant in the EU-Geuvadis eQTL analysis (n = 17,279 eQTLs). The y-axis is the magnitude of

the univariate EU-Geuvadis eQTL coefficient for the corresponding variant. The correlation

between the EU-Geuvadis coefficient and the peaBrain prediction is positive and significant

(Spearman’s rho = 0.10; p = 9.60 x10-38).

(PNG)

S4 Fig. Scatter (right) and hexa-bin (left) plots of variant-expression effects as estimated in

LCLs by peaBrain (limited to genes whose 95% confidence interval for the cv-r2 is entirely

above 0; n = 113 genes; Task F). Each point corresponds to a variant that is univariately signif-

icant in the YRI-Geuvadis eQTL analysis (n = 1601 eQTLs). The y-axis is the magnitude of the

univariate YRI-Geuvadis eQTL coefficient for the corresponding variant. The correlation

between the YRI-Geuvadis coefficient and the peaBrain prediction is positive and significant

(Spearman’s rho = 0.18; p = 8.64 x10-13).

(PNG)
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S1 Text. Validation of peaBrain Stage 1 and its utility in diverse set of tasks. The note also

highlights how activations of the penultimate layer of the peaBrain model can be used as a con-

tinuous and compressed representation (i.e. embedding) of genes. These embeddings, or

equivalently, neural activations, capture both the annotated DNA (input) and its additive con-

tributions to tissue-specific abundance (output) in a compressed form amenable to down-

stream analyses (such as network-based analyses). These embeddings display interesting

properties, including the encoding of correlation information and membership to pathways/

curated gene sets. Importantly, these embeddings are in a linear space, such that the pairwise

cosine similarity between these dense gene representations is proportional to the measured

RNA-seq correlation between the gene pair. In other words, co-regulation and co-expression

may be discovered by leveraging linear structure within the embeddings (e.g., adding embed-

dings of two genes to discover their co-expression with a third).

(DOCX)

S2 Text. We demonstrate the utility of this peaBrain DNA reporter model in investigating the

role of DNA and histone modifications in difficult-to-study processes, such as neural induction.

By modelling the transitions between consecutive neural progenitor cell stages, we identified the

subset of genes in each stage-specific differentiation whose expression is directly altered by epige-

netic modifications in their promoter sequences. Among the genes identified in the differentiation

of neuro-epithelial and mid-radial glial cells, we note significant enrichment of genes implicated in

schizophrenia, autism, bipolar, and depression (1.5–2.6 fold enrichment; Fisher’s exact p< 0.05); a

trend that becomes more pronounced when limited to genes implicated using genetic associations

alone. With nearly 5–10% labelled as transcription factors (1.53–3.24 fold enrichment), this cross-

disease enrichment provides a putatively causal mechanism early in neural development for the

shared genetic correlation between these psychiatric phenotypes–an observation that is difficult to

extract from GWAS data alone and is missed by differential peak/gene expression analyses.

(DOCX)

S3 Text. We show, with a small extension to this in silico DNA reporter model to incorpo-

rate small molecule fingerprints, this network architecture can also be used to predict the

transcriptomic impact of small molecules in cell lines, with as few as 600 molecules (24

hours post-exposure). Predictive performance of this small molecule screen is on par with in
vitro experimental replication of external test sets, allowing us to impute expression for all clin-

ically approved molecules in the ChEMBL database. By training on the imputed expression

profiles for all molecules first approved prior to the year 2000, we are able to retrospectively

identify molecules that would later be assigned to the corresponding indications (post-2000),

with 64–86% increase in F1-scores (i.e., the harmonic mean of precision and recall, a measure

of model performance and accuracy that is robust to class imbalance), 22–63% increase in pre-

cision, 75–94% increase in recall, and 13–19% increase in area under precision-recall curve

(AUPRC), compared to current chemoinformatic/molecule structure-based approaches.

(DOCX)

S4 Text. List of URLs referenced in the main text, including links to peaBrain code, sample

datasets, and Stage 1 scores.

(DOCX)
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