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Abstract: Septicaemia likely results in high case-fatality rates in the present multidrug-resistant (MDR)
era. Amongst them are hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia
(VAP), two frequent fatal septicaemic entities amongst hospitalised patients. We reviewed the PubMed
database to identify the common organisms implicated in HAP/VAP, to explore the respective risk
factors, and to find the appropriate antibiotic choice. Apart from methicillin-resistant Staphylococcus
aureus and Pseudomonas aeruginosa, extended-spectrum β-lactamase-producing Enterobacteriaceae
spp., MDR or extensively drug-resistant (XDR)-Acinetobacter baumannii complex spp., followed
by Stenotrophomonas maltophilia, Chryseobacterium indologenes, and Elizabethkingia meningoseptica are
ranked as the top Gram-negative bacteria (GNB) implicated in HAP/VAP. Carbapenem-resistant
Enterobacteriaceae notably emerged as an important concern in HAP/VAP. The above-mentioned
pathogens have respective risk factors involved in their acquisition. In the present XDR era,
tigecycline, colistin, and ceftazidime-avibactam are antibiotics effective against the Klebsiella pneumoniae
carbapenemase and oxacillinase producers amongst the Enterobacteriaceae isolates implicated in
HAP/VAP. Antibiotic combination regimens are recommended in the treatment of MDR/XDR-P.
aeruginosa or A. baumannii complex isolates. Some special patient populations need prolonged
courses (>7-day) and/or a combination regimen of antibiotic therapy. Implementation of an antibiotic
stewardship policy and the measures recommended by the United States (US) Institute for Healthcare
were shown to decrease the incidence rates of HAP/VAP substantially.
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1. Introduction

Patients with some underlying co-morbidities frequently need hospitalisation for various reasons.
Once septicaemia occurs in these patients, they often experience prolonged hospital stays with increased
healthcare expenses and high rates of mortality [1–8]. Amongst a variety of septicaemic entities, infection
sites involving the lung parenchyma and/or complicated pleural empyema, intra-abdominal spaces,
central nervous system, or unknown origins notably account for the leading causes of death [1,4,8–11].
Treatment of these critically ill patients usually brings tremendous pressure to physicians. Pneumonia
is the most frequent cause of the above-mentioned septicaemia. Of particular note, the case-fatality
rate of nosocomial (i.e., acquired at hospital settings) pneumonia (i.e., hospital-acquired pneumonia
(HAP)) is in reality obviously higher than that of community-acquired pneumonia (CAP) [12].

According to the interval between admission and onset of pneumonia, HAP is defined as an
infection of the pulmonary parenchyma in patients who acquire the condition at least 48 h after admission
to the hospital, or within 14 days after discharge from hospital. The clinical condition of HAP mainly
includes the presence of “new lung infiltrate plus clinical evidence that the infiltrate is of an infectious
origin, and new-onset fever, purulent sputum, leukocytosis, as well as decline in oxygenation” [11]. By
contrast, ventilator-associated pneumonia (VAP) is defined as an infection of pulmonary parenchyma
occurring at least 48 h after endotracheal intubation, and also includes the above clinical scenario of
HAP. In spite of remarkable advances in the understanding of the contributing causes and prevention,
HAP and VAP continue to be frequent complications of hospitalised patients [11]. Additionally,
although HAP is considered to be less severe than VAP, serious complications (empyema, septic
shock, and multiorgan failure) are observed in approximately 50% of HAP patients, especially those
hospitalised in the intensive care unit (ICU) [11]. The incidence rate of VAP amongst mechanically
ventilated patients was estimated to range from 9 to 27% [10]. As the microbial resistance loading in
hospital settings worsens, the occurrence of VAP may result in significant consequences in association
with increasing healthcare consumption and case-fatality rates (the crude mortality rate ranges from 20
to 50%) [10,11,13].

Of the implicated microorganisms causing HAP and VAP, the top five pathogens were
Staphylococcus aureus (especially, methicillin-resistant S. aureus (MRSA)), Pseudomonas species
(especially Pseudomonas aeruginosa), Acinetobacter species, Escherichia coli, and Klebsiella species
(including extended-spectrum β-lactamase (ESBL)-producing, and extensively drug-resistant (XDR)
Enterobacteriaceae). These pathogens accounted for nearly 80% of all episodes [9,10]. Within the past
five years, other less commonly seen but not ignorable pathogens, including (by descending frequency)
Stenotrophomonas maltophilia, isolates of Chryseobacterium species, and Elizabethkingia meningoseptica,
have also gradually emerged as important HAP/VAP aetiologies [10,11,14–16]. S. aureus is still ranked
as the number one causative pathogen in the US (27.5–36.3%), many states in the European Union
(23%) [17–19], South Korea and Singapore [11,20]. By stark contrast, in China, Thailand, and Taiwan,
Gram-negative bacteria (GNB), including Pseudomonas aeruginosa, multidrug-resistant (MDR, defined as
a microorganism showing resistance in vitro to three or more antimicrobial classes routinely tested [21])
Klebsiella pneumoniae, and MDR-Acinetobacter baumannii complex, have all exceeded the prevalence of S.
aureus as the most commonly causative pathogens of HAP/VAP [10,20].

2. Materials and Methods

We first reviewed ample PubMed literature (see references below) documenting the risk factors
involved in the acquisition of specific, as well as overall drug-resistant pathogens. In addition, apart
from diverse parameters of killing or inhibiting bacterial organisms amongst different antibiotic
agents, the antibiotic concentrations at lung parenchymal tissues also have significant impact on
their efficacy against pneumonic pathogens. Consequently, the pharmacokinetic (PK) as well as
pharmacodynamic (PD) profiles, and clinical efficacy of individual antibiotic agents possibly related to
HAP/VAP treatment were also investigated to make appropriate recommendations. Moreover, we
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also explored the antibiotic combination regimens potentially effective against some notable clinically
drug-resistant GNB implicated in HAP/VAP.

3. Results

3.1. Risk Factors in Association with Acquiring Specific HAP/VAP Pathogens

To optimise antibiotic prescriptions, physicians are obliged to have a thorough understanding
of the risk factors associated with the acquisition of respective HA pathogens in the era of high
resistance burden. The risk factors regarding important aetiologies of HAP/VAP and adequate
antibiotic choice against the most important pathogens, including S. maltophilia, Chryseobacterium
indologenes, and E. meningoseptica, are as follows:

3.1.1. MRSA

According to the guidelines recommended by the Infectious Diseases Society of America (IDSA)
and the American Thoracic Society (ATS) in 2016, a prior receipt of intravenous (IV) antibiotic agent(s)
within 90 days is definitively a risk factor about acquiring MRSA [11]. In addition, if patients are
being treated in units where >20% of S. aureus isolates showed a methicillin-resistant phenotype, or
patients are in units where the MRSA prevalence is unknown, the patients hospitalised at such units
were also considered to have a high risk of acquiring MRSA [11]. Another investigation revealed that
a higher clinical severity (score of Acute Physiologic and Chronic Health Evaluation (APACHE) II
≥ 12 points) and previous receipt of any antibiotic or surgery [22] were also independent predictors
for acquiring VAP due to MRSA. Furthermore, a large-scale European survey observed that patients
with a nasopharyngeal colonisation of MRSA were also at risk for subsequently acquiring MRSA
infections [23].

3.1.2. P. aeruginosa

P. aeruginosa is a highly prevalent causative pathogen in HAP/VAP worldwide. This pathogen
has a worsening global trend towards more likely displaying MDR phenotypes than before [24].
Inadequate initial treatment of HAP due to P. aeruginosa may be associated with increased mortality
rates [11]. The presence of an MDR phenotype has been further identified as an independent predictor
of an inappropriate initial antibiotic therapy for patients with HAP due to P. aeruginosa [25]. The 2016
IDSA/ATS HAP/VAP guidelines also considered the following as important risk factors acquiring
MDR-P. aeruginosa: A recent receipt of IV antibiotic agent(s) (within 90 days), patients who have
chronic obstructive pulmonary disease (COPD), cystic fibrosis, or bronchiectasis, or patients who
require ventilator support [8,11]. A Taiwanese study pointed out that patients with bacteraemia
due to carbapenem only-resistant P. aeruginosa (usually co-exhibiting MDR phenotypes, with a 50%
case-fatality rate) mostly had long hospital stay durations (mean, 42.8 days) that were likely related to
prior carbapenem use [26]. In addition, a prior fluoroquinolone use was independently associated with
subsequent emergence of carbapenem-resistant P. aeruginosa in patients (adjusted odds ratio (OR), 4.64;
95% confidence interval (CI), 1.64–13.14; p = 0.004) [27]. An investigation revealed that the presence of
chronic liver disease was also an independent predictor with respect to acquiring ICU pneumonia due
to MDR-P. aeruginosa (adjusted OR, 5.43; 95% CI, 1.41–20.89; p = 0.014) [28].

3.1.3. XDR-Acinetobacter Species

The earliest nosocomial pneumonia caused by carbapenem-resistant A. baumannii was reported in
Spain in 1998 [29]. Since then, the trend towards an escalating antimicrobial resistance rate amongst
isolates of A. baumannii complex has become a great concern in clinical settings (especially ICU) in some
Asian countries over the last decade [10,20,30–32]. By stark contrast, isolates of A. baumannii occupied
only 2.8% of the implicated organisms among HAP episodes acquired in ICUs in US hospitals between
2015 and 2017 [18]. Apart from the un-interrupted clonal disseminations at some departments of many
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hospitals and nursing homes in Taiwan [33], the plasmids on Acinetobacter species and some clinical
A. baumannii isolates that harbour genetic determinants encoding the various carbapenem-hydrolysing
class D β-lactamases (blaOXA-23, blaOXA-58, blaOXA-58-like, and blaOXA-72, etc) confer high-level resistance
to all carbapenem agents in China, as well as Taiwan [30,34]. Many acquired insertion sequences or
transposons have been shown to promote the over-expression, as well as spread of plasmid-associated
blaOXA-58 genes in Acinetobacter species [30,34,35]. In addition, a higher point (≥4) of the Charlson
co-morbidity index [34,35], a prolonged hospital stay (≥14 days) or an ICU stay (≥10 days) [36,37], a
higher APACHE II score (≥16) [37] or Simplified Acute Physiology Score II [38], a recent receipt of
broad-spectrum anti-bacterial agents, such as piperacillin-tazobactam, cefepime [39] or any carbapenem
agent [37], were all reported to be associated with a predisposition of hospitalised patients to acquire
XDR-A. baumannii complex pneumonia.

3.1.4. ESBL- and XDR-Enterobacteriaceae Species

Bloodstream infections caused by ESBL-producing Enterobacteriaceae species (especially Klebsiella
pneumoniae) have been shown to result in higher case-fatality rates in patients than those due to the
non-ESBL producers [40]. Of note, Asia has become an epicentre of high ESBL prevalence rates amongst
the important Enterobacteriaceae species (mainly E. coli, K. pneumoniae, and K. oxytoca) predominantly
implicated in complicated intra-abdominal infections since 2012 [41]. Although Enterobacteriaceae
species mainly inhabit the abdominal cavity, they also survive in the oropharynx and respiratory tract
as well.

Previous studies suggest that a preceding use of the third-generation cephalosporin agents clearly
predisposed hospitalised patients to acquire the infections related to ESBL-producing Enterobacteriaceae
species or carbapenem-resistant (CR) Enterobacteriaceae (CRE) [34,42]. In addition, a preceding
colonisation of K. pneumoniae and Enterobacter species in the airway is an independent predictor about
developing pneumonia caused by the ESBL-producing Enterobacteriaceae species (OR, 10.96; 95%
CI, 2.93–41.0) [43]. Over the last decade, the other notable issue was the emergence of CRE [44].
Between 2015 and 2017, the prevalence of CRE isolates that resulted in HAP ranged from 2.0–3.8% in
US hospitals [18,19]. Although hyper-production of ESBL or AmpC β-lactamases plus OmpK36 porin
dysfunction is also the common resistance mechanism of some CRE strains [29], the carbapenemase
producers amongst CRE are a truly worrisome concern because of their high spread potential.
Klebsiella pneumoniae carbapenemase (KPC, Ambler class A, especially sequence type (ST) 258 in the
US, South America, Greece, Italy, and Israel; and ST11 in Taiwan as well as China) are the most
abundant carbapenemases produced by Enterobacteriaceae isolates globally [33,44,45]. The isolates of
KPC-2-producing Enterobacteriaceae mostly display high-level resistance to all carbapenem agents [34].
According to prior investigations, severely ill patients who are hospitalised in the ICU [45], and patients
who received immunosuppressive agents [41], fluoroquinolone, or extended-spectrum β-lactam
agents other than carbapenem [44] were at remarkably high risk for acquiring infections related to
KPC-producing K. pneumoniae. Furthermore, the use of a nasogastric tube, central venous catheter,
urinary catheter or tracheostomy, and a need for mechanical ventilation [46] were also identified as
risk factors in association with acquiring CRE septicaemia.

Apart from KPC enzymes, the other carbapenemases that also should be watched are New
Delhi metallo-β-lactamases (NDM [34,47], Ambler class B, especially NDM-1) that were originated
in the Indian subcontinent. The blaNDM-1 determinants assisted by unique insertion elements
(rather than integrons) in conjunction with a transpose gene between different Enterobacteriaceae
species (K. pneumoniae, E. coli) in the same environment was shown to be responsible for either
the clonal spread or in vivo dissemination of strains containing NDM [34]. Although no other risk
factors except probable contact with relevant patients were ever reported regarding the acquisition of
NDM-producing Enterobacteriaceae strains [48], a cohort contact isolation precaution is currently the
best way to prevent the dissemination of blaNDM-harbouring Enterobacteriaceae isolates.
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3.1.5. S. maltophilia

S. maltophilia is capable of surviving on moist surfaces and producing biofilms, thus it is
very difficult to treat. The main MDR mechanisms of S. maltophilia include the development of
β-lactamase(s), aminoglycoside-modifying enzymes, efflux pumps, and mobile genes exhibiting
resistance to trimethoprim-sulfamethoxazole (TMP-SMX) on integrons or plasmids [49]. It has been
listed as one of the important MDR pathogens in major hospitals by the World Health Organisation.
In the US, S. maltophilia accounted for 5.1–6.8% of the aetiologies of overall HAP episodes from 2015
through 2017 [18,19]. For S. maltophilia pneumonia, an age ≥65 years-old and receipt of therapy with
inappropriate antibiotics were identified as risk factors associated with 30-day mortality amongst
patients with cancer [50]. In addition, a Taiwanese study investigating 406 patients with pneumonia
caused by S. maltophilia observed that only approximately 60% of the enrolled patients ever stayed in
the ICU or had a ≥28-day hospital stay before the onset of S. maltophilia pneumonia [50]. Moreover, in
that Taiwanese study, about one half of these patients received mechanical ventilator support, whilst
one quarter of the patients with S. maltophilia pneumonia had malignancy, diabetes mellitus, or chronic
respiratory disorders [51].

3.1.6. Chryseobacterium Species and E. meningoseptica

The Chryseobacterium species and E. meningoseptica are frequently isolated not only from soil,
saltwater, and freshwater, but from dry as well as moist surfaces of the clinical environment and
equipment [52]. Because of good adaptation ability to the hostile environments, they greatly contribute
to extensive contamination of healthcare settings [52]. Although less prevalent than the above HAP
pathogens, they have become notable causative organisms amongst diverse septicaemic entities,
including pneumonia, bacteraemia, and catheter-associated sepsis in the nosocomial settings [52–54].

As seen in other countries [16,52,54,55], C. indologenes as well as E. meningoseptica have been ranked
amongst the top ten causative microorganisms of nosocomial pneumonia for patients hospitalised
in the ICU of Taiwanese medical centres. Similar to C. indologenes, previous studies investigating
resistance mechanisms of E. meningoseptica isolates to many β-lactam drugs confirmed that most of them
harbour diverse β-lactamase-encoding alleles (blaB, blaGOB, etc.). Unsurprisingly, they also emerged in
patients who were hospitalised after recent chemotherapy [53], or were prescribed with a prolonged
course(s) of broad-spectrum antibiotic agents (extended-spectrum cephalosporins or carbapenem
agents), aminoglycosides, or colistin in clinical settings [16,52,55]. In addition, the other documented
risk factors regarding acquisition of pneumonia caused by these pathogens include utilisation of
invasive catheters (such as intravascular catheters, or indwelling central venous lines) or non-invasive
medical equipment (such as humidifiers) [52,55], underlying co-morbidities of malignancy and/or
diabetes mellitus in adults [53,54], and other immunosuppressive conditions or neutropenia regardless
of ages [55,56].

With respect to S. maltophilia, it is usually susceptible in vitro to TMP-SMX, levofloxacin,
moxifloxacin, and tigecycline [49]. These antibiotics are thus good options in the treatment of
S. maltophilia-related HAP/VAP. By contrast, piperacillin-tazobactam, tigecycline, levofloxacin, and
other newer fluoroquinolones (moxifloxacin, garenoxacin, and gatifloxacin) are a good treatment
choice against clinical infections due to these two pathogens, whilst TMP-SMX and ciprofloxacin
show variable in vitro susceptibility to C. indologenes [16,52]. Of interest, vancomycin usually shows
good in vitro activity against isolates of E. meningoseptica, but when vancomycin is considered in
the treatment of severe E. meningoseptica infections, a combination with linezolid, ciprofloxacin, or
rifampicin is needed [57].

The risk factors regarding acquisition of the above-mentioned six HAP/VAP implicated pathogens
are summarised in Table 1. In our opinion, with the exception of cautiously inspecting the administered
antibiotic regimens, it is difficult to predict the acquisitions or infections due to ESBL-producing
Enterobacteriaceae spp. or CRE isolates by risk factors in advance.
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Table 1. The risk factors regarding acquisition of the following clinical multidrug-resistant bacteria.

MDR Bacteria Risk Factors

MRSA

Stay at a given unit where there is a >20% prevalence of methicillin
resistance amongst clinical S. aureus isolates [11,14]

A receipt of intravenous antibiotic(s) within 90 days [11,22]

Higher clinical severity (APACHE II score), or prior receipt of surgery [22]

Delay-onset pneumonia at hospital, a nasopharyngeal colonisation of
MRSA [23]

MDR- or CR-Pseudomonas
aeruginosa

More than 10% prevalence of resistance to a single anti-pseudomonal
antibiotic class amongst clinical P. aeruginosa isolates at a specific unit [11]

Receipt of intravenous antibiotic(s), especially carbapenem or
fluoroquinolone agents within 90 days [11,26,27]
Prolonged (>3 weeks) hospital stay durations before HAP [26]

The presence of chronic hepatic disorder, diabetes mellitus, or admission to
intensive care units [28]

XDR- or CR-Acinetobacter
baumannii complex species

Stay at a unit where isolates of XDR-A. baumannii complex are highly
prevalent [33]

Charlson co-morbidity index ≥4 points [34,35]

Prolonged (≥14-day) hospital stays, or ≥10-day ICU stays [36,37]

A high APACHE II score (≥16) or Simplified Acute Physiology
Score II [37,38]

Prior receipt of cefepime, piperacillin-tazobactam, or carbapenem
agents [37,39]

ESBL-producing or
carbapenem-resistant

Enterobacteriaceae species

Stay at an institute where NDM-producing Enterobacteriaceae are highly
prevalent, or contact with patients who are colonised with
blaNDM-harbouring Enterobacteriaceae isolates [34]

Receipt of immunosuppressive agent(s) [41]

Prior colonisation of drug-resistant isolates of K. pneumoniae or Enterobacter
species within the airway [43]

Receipt of fluoroquinolone or extended-spectrum cephalosporins [44]

High-severity residents requiring hospitalisation at ICUs [45]

Stenotrophomonas maltophila An ICU stay, or >28-day hospital stay course, or required ventilator use,
with co-morbidities such as malignancy or diabetes mellitus, etc. [51]

Chryseobacterium species, or
Elizabethkingia meningoseptica

Recent receipt of extended-spectrum cephalosporin, carbapenem,
aminoglycoside, or colistin therapy [16,52,55]

Use of intravascular catheter or indwelling central venous lines, or other
non-invasive equipment (e.g., humidifiers) [52,55]

Recent receipt of chemotherapy [53]

Underlying co-morbidities of malignancy, or diabetes mellitus in
adults [53,54]

Immunosuppressed conditions, or neutropenia regardless of ages [55,56]

MDR, multidrug-resistant. MRSA, methicillin-resistant Staphylococcus aureus. APACHE, Acute Physiologic
and Chronic Health Evaluation. CR, carbapenem-resistant. HAP, hospital-acquired pneumonia. XDR,
extensively drug-resistant. ICU, intensive care unit. ESBL, extended-spectrum β-lactamase. NDM, New Delhi
metallo-β-lactamase.

3.2. Risk Factors Related to Acquisition of the Overall MDR Pathogens of HAP/VAP

Apart from risk factors of respective HAP/VAP aetiologies, when empirical antibiotic choice is
prescribed for patients with HAP or VAP, the clinical severity as well as the epidemiology, and the
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microbial resistance loading of given healthcare settings need to be cautiously evaluated [10,11]. For
patients with critically ill conditions (haemodynamically unstable status, high short-term mortality
rates) or at high risk of acquiring MDR pathogens, prescription of a combination regimen against the
troublesome bacteria has apparently been accepted worldwide [10,11,14,34,58–61]. The risk factors
for patients likely acquiring VAP due to overall MDR pathogens, as specifically stressed by the
2016 IDSA/ATS HAP/VAP guidelines, are as follows: (1) Receipt of IV antibiotic within 90 days,
(2) complicated septic shock, (3) acute respiratory distress syndrome preceding VAP, (4) acute renal
replacement therapy prior to VAP onset, and (5) five or more days of hospitalisation before the
occurrence of VAP [11]. An antibiotic treatment for MRSA (glycopeptide or linezolid) should be
considered to be added if patients are colonised with this pathogen within the airway, or are admitted
to a unit where a high (≥20%) prevalence of MRSA amongst S. aureus isolates is detected [10,11,14].

3.3. Special Considerations about Specific Antibiotics for HAP/VAP

Doripenem has an in vitro spectrum similar to meropenem [62]. However, it is noteworthy that a
1 g doripenem administered for a 4-h infusion duration every 8 h for 7 days was not shown to have
definitive clinical superiority to the 10-day imipenem/cilastatin regimen prescribed with a dosage of
1000 mg every 6 h in treating late-onset VAP, in terms of all-cause 28-day mortality (21.5% vs. 14.8%;
95% CI, −5.0 to 18.5%) and the Kaplan–Meier survival curve analysis for VAP caused by P. aeruginosa
(p = 0.040) [63]. In addition, for patients with haematological diseases with HAP or VAP, a doripenem
dosage of 500 mg intravenously every 8 h was not shown to have a better survival rate compared
to meropenem (1000 mg every 8 h) [64]. The US Food and Drug Administration (FDA) and the
European Medicines Agency (EMA) do not presently recommend doripenem for the treatment of
HAP and VAP [11,14]. Ceftobiprole, a first anti-MRSA cephalosporin having a spectrum covering
many HAP pathogens, was shown to have higher mortality rates compared to ceftazidime amongst
VAP patients [11]. Additionally, ceftaroline shows excellent in vitro data and clinical efficacy against
CA-MRSA isolates and was approved in treatment of CAP in 2010 [65]. Nevertheless, ceftaroline is not
recommended in the management of HA-MRSA due to the high minimum inhibitory concentration
(MIC; 8 mg/L) [66]. As compared to vancomycin, telavancin was also shown to have higher case-fatality
rates amongst MRSA-VAP patients who had significant renal dysfunction (i.e., creatinine clearance <

30 mL/min) [11]. There are no studies to elucidate the efficacy of tedizolid against MRSA HAP [11].
The above-mentioned drugs are not recommended in the treatment of MRSA-HAP/VAP presently. The
recommended antibiotic regimens and dosage (calculated by creatinine clearance rates ≥ 50 mL/min)
against HAP/VAP with suspicious relevance to P. aeruginosa are presented in Table 2.
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Table 2. The recommended regimens and dosage (if creatinine clearance rates ≥ 50 mL/min) for patients
with hospital-acquired pneumonia of which aetiologies are likely related to Pseudomonas aeruginosa
and/or methicillin-resistant Staphylococcus aureus.

Clinical Severity and Risk
Evaluation Recommended Antibiotic(s)

Haemodynamically stable, low
MDR-GNB risks Any anti-pseudomonal agent (except aminoglycoside IVD monotherapy)

Haemodynamically not stable,
or higher risks of acquiring

MDR-GNB pathogens

Monotherapy with any of the following antibiotics, including:

Ceftolozane-tazobactam: 1.5 g IVD every 8 h [19]

Ceftazidime-avibactam: 2.5 g IVD every 8 h
Or

Piperacillin-tazobactam: 4.5 g IVD (EI) every 6 h

Ceftazidime: 2 g IVD (EI) every 8 h

Cefepime: 2 g IVD (EI) every 12 h or every 8 h

Imipenem/cilastatin sodium: 500 mg IVD every 6 h or 1 g IVD every 8 h

Meropenem: 1–2 g IVD (EI) every 8 h

Cefoperazone-sulbactam: 4 g IVD every 12 h

+(any of the below non-β-lactam agent)
Ciprofloxacin: 400 mg IVD every 8 h (preferred), or alternatively levofloxacin:

750 mg once daily

Colistin (66.8 mg/vial): 5 mg/kg IVD loading, then 2.5 mg × (1.5 × CrCl + 30)
IVD every 12 h [67]

±Aerosolised colistimethate sodium (2 MU/vial): 1–2 vials every 12 h or 8 h, or
±Amikacin: 15–20 mg/kg IVD once daily, if complicated bacteraemia, combined

with urinary tract infection, and in vitro susceptible to amikacin

High risk of acquiring MRSA
pneumonia

Vancomycin: 25–30 mg/kg loading, then 15 mg/kg IVD every 12 h, or

Teicoplanin: 12 mg/kg every 12 h × 3 doses (loading), then 6–12 mg/kg IVD
once daily, or

Linezolid: 600 mg IVD every 12 h

MDR-GNB, multidrug-resistant Gram-negative bacteria. IVD, intravenous drip. MU, million units. EI, extended
infusion (intravenous drip for 3 h). CrCl, creatinine clearance rate. MRSA, methicillin-resistant Staphylococcus aureus.

As issued by the 2016 IDSA/ATS HAP/VAP guidelines [11], the PK and PD data are also important
considerations for prescribing effective antibiotics in the treatment of MDR or XDR respiratory GNB
pathogens. Herein, we summarise the PK/PD data of important antibiotics of last resort.

In spite of a bacteriostatic nature and a relatively low serum concentration under standard-dose
administration (100 mg loading followed by 50 mg every 12 h), tigecycline is active in vitro against
most CRE and some CR-A. baumannii complex isolates [68], and is thus frequently adopted as an
adjuvant (combined with meropenem and colistin) in treating many nosocomial XDR-GNB, especially
producers of KPC [69]. Of note, treatment with tigecycline at a dosage of 200 mg loading followed
by 100 mg every 12 h showed numerically better cure rates than imipenem/cilastatin (1 g every
8 h) amongst patients with HAP. This result was attributed to a higher ratio of area under the
concentration–time curve over 24 h (AUC0–24) divided by the MIC (AUC0–24/MIC) than that of
the subgroup treated with the standard-dose regimen [70], and a significantly higher penetration
into infected lung parenchyma [71]. Furthermore, the high-dose regimen of tigecycline was also
shown to provide a significant benefit of survival and have appropriate safety in treatment of the
non-haemodialysis patients with CRE septicaemia [72]. Despite a better PK parameter achieved by the
high-dose tigecycline, approximately one quarter (23.5%) of patients who received a ≥7-day tigecycline
monotherapy were reported to have superinfections due to P. aeruginosa [73]. Consequently, to avoid



J. Clin. Med. 2020, 9, 275 9 of 21

the late-onset pseudomonal superinfections, a combination of one anti-pseudomonal antibiotic with
tigecycline is clinically meaningful when tigecycline is administered.

The revival of polymyxin B and colistin (polymyxin E) provide another choice in the treatment
against important XDR-GNB infections since the last decade. The optimum dosage of IV colistin
was proposed to maximise its efficacy against the infections related to MDR-GNB (with colistin MIC
≥ 1 mg/L) [67]. Additionally, during the interval of an aerosolised colistimethate sodium (CMS)
dosing (2 million units [MU]), a high pulmonary AUC of colistin (ranging 18.9–73.1 µg h/mL) and a
high maximum pulmonary colistin concentration (6.00 ± 3.45 µg/mL) are achieved in humans [74].
Nevertheless, there are divergent recommendations about dosage of IV drip and inhaled colistin in
treatment of various GNB infections [67,69,74–77]. For example, an adjuvant 1 MU aerosolised CMS
administered via either jet or ultrasonic nebuliser every 8 h in conjunction with IV colistin therapy
was observed to improve the clinical cure rates of VAP caused by colistin-only susceptible GNB [73].
By contrast, despite existence of controversy and the technical requirements of using CMS [78,79],
a high-dose regimen of aerosolised CMS (4 MU administered every 8 h) monotherapy also showed
benefits in improving clinical parameters (in terms of improvement in pulmonary oxygenation function,
and shorter durations of ventilator use), as well as earlier GNB eradications, whilst there was no
increase in acute nephrotoxicity compared to IV CMS (4.5 MU every 12 h following 9 MU loading) in
treating VAP caused by MDR-GNB (P. aeruginosa and A. baumannii complex spp. predominantly) [77].
In the present era of the antibiotic pipeline, however, this drug is better reserved for treatment against
CRE or CR-A. baumannii infections, or for HAP patients who are at high risk of acquiring MDR
organisms [11,14,33,80]. Compared to polymyxin E, a significantly higher proportion of CMS is
converted into colistin in vivo for polymyxin B [81]. Nevertheless, polymyxin B is not recommended
as a treatment choice against GNB-related HAP/VAP presently by any expert worldwide.

Although formally approved as a single drug treatment of only urinary tract infections (UTI)
caused by MDR-GNB [82], fosfomycin also has a wide in vitro anti-bacterial spectrum and was shown
to have an excellent percentage of penetration into infected lung tissue [83,84]. Consequently, herein,
we suggest fosfomycin as a potentially adjunctive option in combination with other antibiotics in the
treatment of HAP/VAP due to CRE and MDR-P. aeruginosa, too.

In this decade, ceftazidime-avibactam, a new drug having a spectrum superior to all carbapenems
against XDR-GNB, was approved by the US FDA and the EMA to treat HAP/VAP related to many
CRE (producers of KPC and/or oxacillinase [OXA]-48, 181-like enzymes) and CR-P. aeruginosa [85–87].
Thus, it is suitable to be regarded as the first-line antibiotic when infections caused by the ESBL
producers and/or CRE are highly suspected. Although ceftazidime-avibactam is effective in vitro
against isolates of ESBL, KPC, AmpC β-lactamase, and OXA-48-like producers of Enterobacteriaceae,
it lacks the activity against isolates of Gram-positive bacteria, metallo-β-lactamase (MβL) producers of
Enterobacteriaceae spp., and XDR-A. baumannii complex spp. [85]. A combination of other antibiotic
agents (e.g., plazomicin, fosfomycin, etc.) [88] or the anti-MRSA agent with ceftazidime-avibactam is
plausibly recommended to enforce control of drug-resistant VAP.

The other novel antibiotic ceftolozane-tazobactam was shown to have an excellent in vitro activity
against XDR-P. aeruginosa isolates [89] and a good PK profile in the thorax [90], but less in vitro activity
against ESBL (especially SHV type)-producing K. pneumoniae than most carbapenems [89]. Apart from
being effective against the organisms causing complicated intra-abdominal infections and UTI, it was
also shown to have adequate clinical efficacy in treating HAP/VAP [19]. In June 2019, this drug was
also approved for HAP/VAP therapy by the US FDA.

Cefiderocol, a siderophore (catechol moiety, chelating ferric ions)-containing cephalosporin agent
modified from ceftazidime, has a good PK profile (except in the abdominal cavity) in humans, and thus
is a promising antibiotic in treatment of HAP/VAP caused by many important XDR-GNB, including
KPC and most MβL producers, CR-P. aeruginosa and CR-A. baumannii isolates [85,91]. This novel agent
was approved by the US FDA in the treatment of UTIs caused by XDR-GNB in November 2019, but it
is not yet approved for HAP/VAP treatment.
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Although aerosolised amikacin initially showed a fantastic in vitro effect on many MDR-GNB [92],
its clinical trial was terminated due to poor clinical efficacy. Additionally, systemic amikacin
administration (15–20 mg/kg once daily) was not able to achieve acceptable PK and PD parameters
regarding the penetration into epithelial lining fluid and killing of pulmonary GNB [93]. In our
opinion, as nephrotoxicity and the poor PK data in lung tissue likely outweigh its therapeutic benefits,
prescription of IV drip amikacin is not strongly recommended against HAP/VAP unless there is an
emergence of complicated bacteraemia or a concomitant UTI due to MDR-GNB showing an in vitro
susceptibility to amikacin.

The regimens and dosage of antibiotics recommended against HAP/VAP related to XDR-A.
baumannii complex and CRE are illustrated in Table 3.

Table 3. The recommended antibiotic regimens and dosage (if creatinine clearance rates > 50 mL/min) for
patients with hospital-acquired or ventilator-associated pneumonia related to extensively drug-resistant
Acinetobacter baumannii complex species and carbapenem-resistant Enterobacteriaceae.

Causative Organisms Recommended Antibiotic(s)

CR- or XDR-Acinetobacter
baumannii complex

Ampicillin/sulbactam (0.5/1 g/vial): 3 g IVD every 6 h (if in vitro susceptible
and haemodynamically stable)

Aerosolised colististimate sodium (2 MU/vial): 2 vials every 8 h (if in vitro
susceptible and haemodynamically stable)

Otherwise
High-dose meropenem [EI], or doripenem [EI], or imipenem/cilastatin, plus

sulbactam: 2.0 g IVD every 6 h, or alternatively colistin (66.8 mg/vial):
2.5–5.0 mg/kg/day IVD (divided into 2–3 times per day, if normal renal

function) [75]

±Aerosolised colistimethate sodium (2 MU/vial): 1–2 vials every 12 h or
every 8 h, or

±Amikacin: 15–20 mg/kg IVD once daily, if complicated bacteraemia and/or
urinary tract infection, and in vitro susceptible to amikacin

Tigecycline: 50 mg IVD every 12 h (after 150–200 mg loading) plus any
anti-pseudomonal carbapenem (EI if necessary)

CR-Enterobacteriaceae spp.

Regardless of haemodynamic condition or severity—
Tigecycline: 50 mg IVD every 12 h (after 150–200 mg loading) plus

Meropenem: 2 g IVD [EI] every 8 h, and
colistin (66.8 mg/vial): 1 vial IVD every 8 h, or 2 vials IVD every 12 h after
adequate dose loading if CrCl is normal (or alternatively, Fosfomycin: 2 g

IVD every 6 h)

Ceftazidime-avibactam: 2.5 g IVD every 8 h (against KPC, or partial
oxacillinase-producing CRE)

Dual carbapenem regimen (ertapenem: 1 g IVD once daily plus high-dose
meropenem or doripenem [EI]) against KPC producers that are in vitro

resistant to colistin [94]

EI, extended infusion (intravenous drip for 3 h). CrCl, creatinine clearance rate. CR, carbapenem-resistant. XDR,
extensively drug-resistant. IVD, intravenous drip. MU, million units.

3.4. Optimal Treatment Durations, Including the Combination Antibiotic Regimens

Two notable differences were observed between the HAP/VAP guidelines recommended by the
IDSA/ATS in 2016 and Europe/Latin America in 2017 [11,14]. Firstly, to alleviate the resistance burden,
the IDSA/ATS guidelines considered a <7-day antibiotic therapy is the most favourable duration, but
its accurate duration might be dependent upon the patient’s clinical response, and improvement of
radiological and laboratory parameters [11]. By contrast, the European guidelines advocated that
longer (>7 days) courses of antibiotic(s) were needed in patients with immunodeficiency, structural
lung defects, necrotising pneumonia, empyema, inappropriate initial empiric therapy, or had XDR-GNB
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infections or bacteraemia [14]. Secondly, prescription of the regimen of dual anti-GNB antibiotics
against HAP/VAP caused by the MDR-GNB was favoured by the American guidelines for patients
who have septic shock or in-hospital mortality rates (>25%). However, partly corresponding to prior
studies with respect to relapsed septicaemia [95,96], the Europe/Latin America guidelines suggested
that prolonged therapy durations (>7 days) of the regimen of dual anti-GNB antibiotic combination
regimen were needed to treat HAP/VAP caused by MDR, XDR, or pandrug-resistant GNB (such as
CRE, or glucose non-fermenting isolates, e.g., XDR-A. baumannii complex species and CR-P. aeruginosa),
to treat patients who were immunosuppressed hosts (with neutropenia or recipients of stem cell
transplantation), patients who have persistently unstable haemodynamic conditions, patients who
received initial inappropriate antibiotic therapy, or required use of the second-line broad-spectrum
antibiotic agents (e.g., tigecycline, colistin, etc.) [14].

The possible causes of failure of responding to initial antibiotic therapy against HAP/VAP are
illustrated in Table 4. In addition, we provide an algorithm of the strategies about antibiotic therapy
for HAP/VAP, as illustrated in Figure 1.

Table 4. Possible causes of failure of responding to initial antibiotic therapy against hospital-acquired
and/or ventilator-associated pneumonia.

1. Inadequate spectrum of antimicrobial(s)
2. Inadequate dosage prescription of antibiotic(s)
3. Lack of, or insufficient control of, the source of HAP/VAP (e.g., inadequately drained empyema,

extrapulmonary source)
4. Specific individual factors, including:

(1) High clinical severity (e.g., high APACHE II point)
(2) Immunocompromised condition
(3) Inadequate duration of antibiotic therapy
(4) Incorrect diagnosis about HAP/VAP (e.g., congestive heart failure, pulmonary embolism)

HAP, hospital-acquired pneumonia. VAP, ventilator-associated pneumonia. APACHE, Acute Physiologic and
Chronic Health Evaluation.
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4. Discussion

In addition to considerations of efficacy of specific antibiotics, only a few randomised control
studies were published on recommendations for antibiotic treatment against HAP/VAP caused by
MDR-GNB [14,34,85]. A Spanish study investigating the outcomes of ICU patients with VAP caused
by P. aeruginosa observed that initial use of antibiotic combination therapy (mainly anti-pseudomonal
β-lactam plus an aminoglycoside or an anti-pseudomonal fluoroquinolone agent) indeed significantly
reduced the likelihood of inappropriate therapy, which was strongly associated with higher case-fatality
risk [97]. Nevertheless, in distinction from two guidelines [11,14], there were many diversified regimens
of antibiotic combinations proposed against clinical infections due to isolates of CR-Acinetobacter
baumannii complex species [59,75,80,98–100], as well as CRE [34,69,94,101]. Despite no reduction of
mortality rates [11], a useful de-escalation of an antibiotic has the benefit of decreasing resistance
burden. It should be seriously considered for patients who have definitively positive culture data and
had an improvement in clinical condition. Multiplex polymerase chain reaction tests are beneficial in
assistance of accurately diagnosing the implicated aetiologies of pneumonia in ICU [84,102].

Apart from adequate antimicrobial treatment, of paramount importance is a strict implementation
of antibiotic stewardship policy, including education to primary-care staff on preventing the
dissemination of high-risk hospital microorganisms, such as cohort isolation, and optimisation
of the appropriate doses of antibiotics, etc. [11,14,85,103]; as well as an in-time de-escalation of
antibiotic therapy according to culture data, once HAP/VAP has shown significant improvement after
adequate therapy [11,14]. Additionally, to quickly detect the existence of carbapenemase-encoding
alleles in XDR-GNB isolates, polymerase chain reaction tests provide great help in achieving the goal
of “precision medicine” that avoids the erroneous prescription of novel antibiotics and elucidates the
resistance epidemiology (especially for CRE isolates) [85,104].

In addition to effective antibiotic therapy, there are many other important measures with regard
to preventing the development of HAP/VAP for hospitalised patients. A well-designed study showed
that, if there were no contraindications, cautious adoptions of the mode of non-invasive positive
pressure ventilation amongst patients with COPD or cardiogenic pulmonary oedema was beneficial in
decreasing the incidence and mortality rates of HAP [105]. In addition, in order to reduce lengths of ICU
stay and improve mortality rates related to VAP, the US Institute for Healthcare Improvement grouped
the interventions together in 2012 for the consistent prevention of VAP (i.e., VAP care bundle) [10,13].
In brief, to ensure patient comfort, the prescription of dexmedetomidine or propofol as a sedative
choice is preferred to benzodiazepine, as well as a neuromuscular blocking agent when possible,
for patients who are mechanically ventilated [13]. Moreover, the decreased maintenance dose of
IV sedative drugs when possible, implementation of protocol-guided daily sedation interruption
and spontaneous breathing trials to assess the readiness of extubation, and early physical as well as
occupational therapy initiated by a mobility team were shown to effectively shorten the duration of
ventilator use (2.4–3.1 days) and length of ICU stay (3.5–3.8 days) [13,106–110].

Some of the mechanically ventilated patients have obtunded consciousness. Consequently, the
sources of potential microorganism inoculation for VAP likely originate in the sinuses, oropharynx,
subglottic area, and the upper gastrointestinal tract to a substantial degree [13]. Consequently, the use
of subglottic secretion drainage (SSD) for the patients expected to be intubated for >48 h, maintenance
of the target pressure of the endotracheal cuff at about 25 cmH2O (to prevent microaspiration of gastric
contents), and maintenance of the semi-recumbent position (i.e., elevation of the head above the bed
up to 30–45 degrees) when possible were also significantly beneficial for patients receiving mechanical
ventilation in terms of decreasing the VAP incidence rate and length of ICU stay [10,13,111–113]. To
reduce channel formation and fluid leakage from the subglottic area, the use of an endotracheal tube
with an ultrathin polyurethane cuff in conjunction with SSD was demonstrated to help prevent early-
and late-onset VAP to significant degrees [114]. Furthermore, an application of antiseptic chlorhexidine
gluconate once daily to selectively decontaminate the oral cavity for patients undergoing mechanical
ventilation has been gradually accepted as an effective method in reducing the VAP incidence rate
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(44%) [13,115]. Of interest, the other alternative strategy also employed amongst the mechanically
ventilated patients to broadly decontaminate the oropharyngeal and digestive tract is administration
of prophylactic non-absorbable probiotics (containing Pediococcus pentosaceus, Leuconostoc mesenteroides,
and Lactobacillus spp., etc). It was shown by convincing evidence to lead to a significant reduction
in the incidence of VAP, Clostridium difficile-associated diarrhoea, and length of ICU stay as well,
with no significant difference in hospital mortality [116,117]. Nevertheless, the worrisome concern of
increasing MDR bacterial loading in the ICU after widespread utilisation of probiotics [14] remains
to be alerted. Finally, cautious prescription of proton-pump inhibitors (e.g., pantoprazole) should be
exercised amongst ICU patients, as they have a three-fold increased risk of developing VAP compared
to those receiving histamine H2 receptor antagonists [118].

Apart from correct prescription of antibiotics for effective treatment of nosocomial pneumonia,
the measures beneficial in preventing the development of HAP/VAP are summarised in Table 5.

Table 5. Measures of preventing the development of nosocomial pneumonia apart from correct
antibiotic prescription.

1. Use of non-invasive positive pressure support if feasible.
2. Avoidance of using benzodiazepine and neuromuscular-blocking agent for intubated patients as possible.
3. Decrease maintenance dose of intravenous sedative agents as possible.
4. Implementation of protocol-guided daily sedation interruption, as well as spontaneous breathing trials

(to assess the readiness of extubation).
5. Use of subglottic secretion drainage for the patients expected to be intubated for >48 h.
6. Maintenance of the target pressure of the endotracheal cuff at about 25 cm H2O.
7. Maintenance of the semi-recumbent position (head above the bed, up to 30–45 degrees).
8. Application of antiseptic chlorhexidine gluconate once daily, to selectively decontaminate the oral cavity

for intubated patients.
9. Administration of prophylactic oral non-absorbable probiotics.
10. Cautious prescription of proton-pump inhibitors as possible.

5. Conclusions

To determine whether to use an antibiotic combination or not, we need to first cautiously evaluate
the risks of acquiring MDR pathogens and clinical severity first when facing patients with HAP or
VAP. A few pneumonic MDR or XDR-GNB pathogens do warrant >7-day durations of antibiotic(s)
therapy. Although novel anti-XDR-GNB antibiotics have been launched recently, the antibiotics of
last resort are valuable and should be prescribed with more discretion in the present MDR era. In
addition, an antibiotic stewardship in combination with other recommended measures needs to be
strictly implemented to decrease the incidence rate of HAP/VAP.
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