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The concept of brain inflammation and its role in epilepsy has

much evolved during the last 2 decades since my original Epi-

lepsy Currents commentary,1 and even more since its first

description in autoptic tissue from Rasmussen’s encephalitis or

in epilepsies developing after central nervous system (CNS)

infections. The new vision stems from in-depth investigations

carried out since 1999 in preclinical models of provoked seizures

and acquired epilepsies and in human focal epilepsies.2 This

commentary reports my subjective historical perspective of the

progress in the field, also considering if predictions of the semi-

nal findings were confirmed by the follow-up research, or if

some original concepts were disproved. I will also discuss which

aspects of this complex phenomenon need further investigations

to help gather valuable insights for the clinical translation of the

increasing experimental evidence.

The original studies reported histological and biochemical

evidence for the induction of inflammatory cytokines, and

related receptors, in rodent brain areas where seizures

occurred,3-5 as outlined in my original Epilepsy Currents

commentary.1 This phenomenon was confirmed by the induc-

tion of nuclear factor-kB transcriptional factor in astrocytes

and neurons in human temporal lobe epilepsy (TLE).1,6 Sub-

sequently the presence of brain inflammation was extended to

other common epilepsies, and specific inflammatory mole-

cules, first discovered in animal models,1 were described in

surgical brain specimens from human drug-resistant structural

epilepsies with acquired or genetic causes.2,7,8 Notably, in

tuberous sclerosis complex, inflammatory processes were

observed in cortical tubers and subependymal giant cells in

association with mammalian target of rapamycin activation,

already in fetal brain lesions thus preceding epilepsy devel-

opment.9 This evidence supports the causal link between

brain inflammation and epileptogenesis suggested by experi-

mental studies (see later).

Growing evidence in both human epilepsy brain tissue and

animal models of acute or chronic seizures reinforced over the

years the critical involvement of innate immunity in initiation

and maintenance of the inflammatory brain response,2,10 as

first described in kainate-injected rats.1,4,5 In addition to the

prototypical inflammatory cytokines, interleukin (IL)-1b,

tumor necrosis factor (TNF), and IL-6,1 newly identified

inflammatory molecules and pathways, were incrementally

found to be upregulated in microglia and astrocytes, neurons,

and cell components of the blood–brain barrier (BBB) in

seizure-generating areas.11,12

The well-established presence of inflammatory molecules

in epilepsy brain begged the following questions: (1) what

triggers this phenomenon, and (2) what is the pathophysiolo-

gical role of the inflammatory mediators, and how do the

receptor-activated pathways in targeted neurons, glia, and BBB

impact neuronal network excitability? These questions have

opened a new area of ongoing research focused on sterile

neuroinflammation, that is, the brain innate immune response

in absence of infections.

(1) Recurrent seizures and cell death were initially iden-

tified as main triggers of neuroinflammation in epi-

lepsy.1,4,5,8 This still stands true, and the subsequent

clinical studies helped to confirm and refine the orig-

inal findings. In particular, recent molecular imaging

investigations by positron emission tomography (PET)

in patients with TLE and focal cortical dysplasia

(FCD) showed that the inflammatory brain response

persists in the interictal phase and spreads beyond the

epilepsy focus to regions of seizure generalization,13-15

thus confirming data from the animal models.1,8,16

Moreover, the type of neuropathology appears to play

a role in determining the extent of brain inflammation,

beyond recurrent seizures. In fact, brain inflammation

is significantly more pronounced in FCD type 2 than

type 1,17 and there is recent description of gradual

extent of neuroinflammation in various types of human

malformations of cortical development with drug-

resistant seizures.18
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However, new knowledge in the field of neuropathic pain

clearly showed that neuroinflammation may also arise during

enhanced levels of neuronal activity in the absence of overt

pathologic conditions, a phenomenon referred to as neurogenic

inflammation.19 Thus, the neuroinflammatory milieu may be

induced by subclinical acquired or gene-related events associ-

ated with hyperexcitability, and not only by severe CNS insults

as was initially conceptualized using animal models of status

epilepticus.1 Importantly, it was shown that long-lasting neu-

roinflammation can be induced in forebrain by a systemic

inflammatory challenge in the absence of cell loss or seizures,

and this was sufficient to reduce seizure threshold long-term

and to promote neurological deficits, or epilepsy development

following a second hit, particularly when the inflammatory

challenge occurs in immature rodents.20 Evidence of the

long-term effects of neuroinflammation on brain function con-

tributed to foster research on the role of inflammation in epi-

leptogenesis and neurological comorbidities (see later).2,21

(2) Since the seminal identification of the ictogenic prop-

erties of the IL-1b-IL receptor type 1 axis in rodents

injected with chemoconvulsive drugs1,5,16 or exposed

to hyperthermia mimicking febrile seizures,22 flourish-

ing studies showed the contribution to seizures of addi-

tional elements of neuroinflammation (eg, TNF-p55R,

RAGE, ATP-P2X7R, IL-6, arachidonic acid cascade,

oxidative stress, chemokines, complement).12 This

was demonstrated by inhibiting acute provoked sei-

zures or chronic seizures,2 and by reverting pharma-

coresistance,23 with specific anti-inflammatory

interventions. Reduction of seizure-associated neuro-

degeneration, mortality, and neurological comorbid-

ities were often observed, particularly with

intervention upstream or downstream the arachidonic

acid cascade.12,24 A breakthrough was the discovery of

the nucleus-to-cytoplasm translocation and release of

the danger signal High Mobility Group Box1

(HMGB1) in neurons and glia following ictogenic or

epileptogenic events. Released HMGB1 then acts on

immune toll-like receptor 4, originally identified as

first line of defense against infections, and promotes

seizures25 and epileptogenesis.26,27 Overall, these

interventional studies have been instrumental to

ascribe pathophysiological consequences to the semi-

nal description of neuroinflammatory molecules in

epilepsy brain.1

Based on evidence that neuroinflammation contributes to set

seizure threshold and occurs before the onset of epilepsy in

animals exposed to status epilepticus, neurotrauma, or

hyperthermia, pharmacological studies targeted potentially

pathogenic inflammatory pathways during epileptogenesis.

The field of research therefore extended the role of inflamma-

tion in sustaining acute or chronic seizures as addressed by the

initial studies.1 Specific anti-inflammatory drugs were found to

provide disease-modifying effects, for example, delaying

epilepsy onset, reducing spontaneous seizure, affording neuro-

protection, and preventing memory deficits.12,26,28,29 Growing

evidence supports that neuroinflammation during epilepsy

development can mediate the transition to pathology, and this

process likely depends on lack of efficient homeostatic anti-

inflammatory mechanisms and is reinforced by oxidative

stress.26 Boosting the endogenous anti-inflammatory response

might be, therefore, a clinically feasible therapeutic option to

improve the disease course by re-establishing the homeostatic

function of inflammation.2

A concomitant question addressed during the interventional

studies on seizures or epileptogenesis concerned the mechan-

isms underlying the effects of neuroinflammation. Direct neu-

romodulatory actions of cytokines, chemokines, and

prostaglandins were well-known for a long time, but their

involvement in epilepsy was a new discovery.12,26,30 Initial

evidence reported functional interactions between cytokines

and neuronal ionotropic glutamate receptors, and cytokines’s

modulatory effects on gliotransmission,1 then additional new

mechanisms were described underlying the ictogenic

cytokine’s effects.30 Worth mentioning is the inhibitory

effect of neuroinflammation on dendritic Hyperpolarization-

activated cyclic nucleotide–gated (HCN1) channel-mediated

currents (Ih) in CA1 pyramidal cells,31 and the decrease in

g-aminobutyric acid-evoked currents induced by IL-1b in

human TLE tissue.32 Notably, a fresh line of research pointed

to the reciprocal interactions between neuroinflammation and

BBB dysfunction, as underscored by the discovery of

the crucial role of transforming growth factor (TGFb)-SMAD2

signaling activation by extravasated serum albumin for indu-

cing inflammation in astrocytes and its contribution to

epileptogenesis.11

Finally, the increasingly detailed analysis of inflammation

in human epilepsy brain tissue since its initial description in

TLE1 revealed that inflammation is not a stereotyped brain

response but it occurs at different extents depending on etiol-

ogies and between patients and, in addition to the common

presence of activated microglia and astrocytes, may include

different cellular components such monocytes/macrophages

and other peripheral immune cells.10,17,18 This observation

highlighted the need for discovering biomarkers of brain

inflammation to stratify patients for the most appropriate ther-

apeutic interventions. These research efforts are in progress,

including validation of some promising blood molecules and

in vivo neuroimaging of glia activation and BBB dysfunction

by PET and magnetic resonance imaging/ magnetic resonance

spectroscopy.2,11

In spite of the huge progress in the field, there are still many

open questions to be addressed for improving the approach to

therapy: (1) microglia and astrocytes are pivotal cells of the

neuroinflammatory response,1 but the role played by each cell

population during disease development is still not fully clar-

ified. Similarly, the dynamics of inflammatory pathways acti-

vation during epileptogenesis, and how to prevent the

detrimental effects of some inflammatory mediators while

preserving their homeostatic functions (see for eg, TNF1 and
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cyclooxygenase 2 signals) should be better defined. Animal

models of epilepsies should help define the therapeutic out-

comes of specific anti-inflammatory interventions at critical

time points of disease development, since treatment at the

wrong time may be ineffective or even harmful24; (2) pres-

ence and role of peripheral immune cells in epileptogenesis

and chronic seizures in common epilepsies needs further stud-

ies1,8,33-35; (3) due to complexity of the inflammatory

response, treatment combinations might be required to

improve therapeutic success,2 and nodal points of intervention

should be defined with the help of systems biology36; (4)

information about presence and role of neuroinflammation

in genetic epilepsies remains scarce. Studies in rodent models

of absence seizures and progressive myoclonus epilepsy have

shown that neuroinflammation anticipates and contributes to

spike-and-wave activity and precedes myoclonic seizures2;

(5) optimal timing of intervention with anti-inflammatory

drugs in each eligible clinical condition and patients selection

with sensitive biomarkers are critical aspects of therapy which

remain to be addressed.

In conclusion, the animal models and clinical findings gath-

ered over the last 2 decades confirmed the presence of brain

inflammation in common epilepsies and shed new light on the

consequences of this phenomenon for seizure generation and

the associated neuropathology and comorbidities, also disco-

vering some of the mechanisms involved. Importantly, the

newly acquired data are reinforcing the early prediction1 that

drugs that modulate specific inflammatory pathways could be

a new therapeutic approach for pharmacoresistant focal epi-

lepsies. Indeed, repurposed anti-inflammatory drugs (ie, ana-

kinra and canakinumab against IL-1b, tocilizumab against IL-

6, adalimumab against TNF), as suggested by early work in

animal models,1 are being used for rare epilepsy syndromes

with encouraging results.2 These treatments could be

extended to epileptic encephalopathies,37 refractory status

epilepticus, or structural drug-resistant epilepsies either sus-

pected or known to be associated with brain inflammation.2

Early anti-inflammatory intervention after diagnosis of phar-

macoresistance may provide improvement of the human dis-

ease course as suggested by evidence of disease

modifications. Preventative approaches will require refine-

ment of targets and timing of interventions and await for

prognostic biomarkers.

Overall, this field of research has progressed incrementally

forward with breakthroughs mostly related to discovery of new

pathways, and molecular and cellular mechanisms, and the first

attempts of clinical translation based on experimental findings.

Perception of the field for providing new treatments and bio-

markers has increased over time among clinicians, and the

enthusiasm of basic science and preclinical research for explor-

ing novel targets or validating existing ones in additional mod-

els has not declined. Therefore, this field of research has gained

further attention since my original Epilepsy Currents commen-

tary1 which raises hopes for attaining a deeper understanding of

this complex phenomenon and for new therapeutic interven-

tions in eligible patients.
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