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Abstract In response to touch, some carnivorous plants such as the Venus flytrap have evolved

spectacular movements to capture animals for nutrient acquisition. However, the molecules that

confer this sensitivity remain unknown. We used comparative transcriptomics to show that

expression of three genes encoding homologs of the MscS-Like (MSL) and OSCA/TMEM63 family

of mechanosensitive ion channels are localized to touch-sensitive trigger hairs of Venus flytrap. We

focus here on the candidate with the most enriched expression in trigger hairs, the MSL homolog

FLYCATCHER1 (FLYC1). We show that FLYC1 transcripts are localized to mechanosensory cells

within the trigger hair, transfecting FLYC1 induces chloride-permeable stretch-activated currents in

naı̈ve cells, and transcripts coding for FLYC1 homologs are expressed in touch-sensing cells of

Cape sundew, a related carnivorous plant of the Droseraceae family. Our data suggest that the

mechanism of prey recognition in carnivorous Droseraceae evolved by co-opting ancestral

mechanosensitive ion channels to sense touch.

Introduction
How organisms evolve new forms and functions is a question of major interest. For example,

whereas most plants respond slowly to mechanical stimuli—such as touch, gravity, or changes in tur-

gor pressure—by altering growth, some plants have additionally evolved rapid touch-induced move-

ments. These movements can be used to deter herbivory, as is seen with the sensitive plant (Mimosa

pudica), or to physically capture and digest mobile animals, as occurs in carnivorous plants

(Chehab et al., 2008). The best known carnivorous plant, Dionaea muscipula (Venus flytrap) of the

Droseraceae family, is one such plant that has evolved a remarkable and rapid touch response to

facilitate prey capture (Video 1). How this predator evolved its complex leaf form and function for

this purpose has long puzzled scientists; indeed, Charles Darwin proclaimed the species "one of the

most wonderful [plants] in the world" (Darwin, 1875).

Several groups have described the events that evoke trap closure in Venus flytrap in detail. The

plant leaf consists of an open bilobed trap, to which animal prey are attracted by volatile secretions

(Kreuzwieser et al., 2015; Lloyd, 1942). There, the animal comes into contact with one of three to

four mechanosensory trigger hairs on each lobe. Bending of any one trigger hair generates an action

potential in sensory cells at the base of the trigger hair that propagates through the trap

(Benolken and Jacobson, 1970; Burdon-Sanderson, 1873) and is correlated with an increase in
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cytosolic calcium in leaf trap cells (Suda et al.,

2020). Two action potentials (or two touches) in

a short period are required to likely further

increase cytosolic calcium levels above a neces-

sary threshold to initiate rapid closure of the

trap, which ensnares the prey (Brown and

Sharp, 1910; Suda et al., 2020). Trap closure

occurs in as little as 100 ms, representing one of

the fastest movements in the plant kingdom

(Forterre et al., 2005). These electromotive

properties were first described in the 1870s (Bur-

don-Sanderson, 1873); however, almost a cen-

tury and a half later, the molecular

underpinnings of these events remain elusive.

Early recordings from Venus flytrap trigger

hairs suggest that, based on the time scale of

action potential generation, mechanosensitive

ion channels may play a role in transducing force

into electrical signals (Benolken and Jacobson,

1970; Jacobson, 1965). To identify possible ion

channels required for the touch response in Venus flytrap, we sought to find genes that are preferen-

tially expressed in trigger hairs.

Results
The Venus flytrap genome is very large (Palfalvi et al., 2020)—approximately 20� the size of that of

the commonly studied model plant Arabidopsis thaliana (Figure 1—source data 1)—and lacks avail-

able inbred strains. Therefore, we established a clonal propagation system for the collection of

genetically identical material (Figure 1A,B, and Figure 1—figure supplement 1). Using these

clones, we generated a de novo transcriptome representing genes expressed in trap tissue from Illu-

mina-based short sequencing reads. The transcriptome of our clonal strain consists of almost 28,000

unique transcripts with open reading frames coding for predicted proteins of at least 100 amino

acids. This is larger than the approximately 21,000 genes previously predicted by genome sequenc-

ing (Palfalvi et al., 2020), reflecting the presence of multiple isoforms in our transcriptome, possible

heterozygosity and strain differences, and/or differences in genome/transcriptome completeness,

indicated by BUSCO analysis (see Materials and Methods). When we compared the transcriptome of

trigger hairs with that of only the leaf traps, 495 protein-coding genes were differentially enriched

by greater than twofold in the trigger hair, whereas 1844 were similarly enriched in the trap

(Supplementary file 1A and 1B). Based on homology to Arabidopsis, many genes preferentially

expressed in leaf traps were associated with photosynthetic function, whereas those more highly

expressed in the trigger hairs included transcription factors and genes that may affect cellular and

organ structure (Supplementary file 1C and 1D).

To find potential mechanosensitive ion channels, we screened our trigger hair-enriched transcrip-

tome for transcripts coding for likely multi-pass transmembrane proteins. Of 45 such transcripts,

three coded for possible candidates based on homology to Arabidopsis proteins. Two of these

shared homology to MSL family proteins (transcript IDs comp20014_c0_seq1 and comp28902_c0_-

seq1), and one to the OSCA family (comp16046_c0_seq1) (Haswell and Meyerowitz, 2006;

Murthy et al., 2018). We call these genes FLYCATCHER1 and FLYCATCHER2 (FLYC1 and FLYC2)

and DmOSCA, respectively. We did not observe enriched expression of homologs to the mechani-

cally activated PIEZO channels. Strikingly, one of these MSL-related transcripts, FLYC1, was

expressed 85-fold higher in trigger hairs than in trap tissue (Figure 1C,D), and was the second high-

est enriched gene (a putative terpene synthase was 176-fold enriched; see Materials and Methods).

By contrast, the other two putative ion channels were less than sevenfold differentially expressed.

Using a similar approach, Iosip et al., 2020 recently described 495 genes as trigger hair-specific.

These genes were enriched in the trigger hair relative to six other tissue types: root, flower, petiole,

trap, rim, and gland tissues. Remarkably, this approach identified FLYC1/DmMSL10 (transcript

Video 1. Touch response of the Venus flytrap. Real-

time recording of trap closure in response to insect

(house fly) touch.

https://elifesciences.org/articles/64250#video1
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Dm_00009130-RA) as the most trigger hair-specific of all genes. FLYC2 (transcript Dm_00001246-

RA) and DmOSCA (3’ end of transcript Dm_00001755-RA) were not identified as trigger hair-specific

using this analysis; however, both transcripts were enriched over twofold in trigger hairs when com-

pared to other leaf tissues (trap, petiole, rim, and glands). Expression of these genes in root and/or

flower tissue might suggest that they have additional functions in other organs (Iosip et al., 2020).

Together, these findings are consistent with our own, and support the possibility that all three genes

might play a role in trigger hair touch sensation.

To validate our transcriptome, we verified the FLYC1 transcript sequence from cDNA. In addition,

we used Sanger sequencing of PCR products generated from genomic DNA template to assemble

the complete gene sequence. Thirty-two single nucleotide polymorphisms (SNPs) were detected

between the two FLYC1 alleles of our clonal strain, of which only two were found in the coding

region and were both silent (Figure 1—figure supplement 2). To further assess the natural variation

that may exist, we sequenced the FLYC1 gene from a morphologically dissimilar cultivar, and found

additional SNPs and short sequence variations. Of these, eight SNPs were located in exons, two of

which caused amino acid changes (Figure 1—figure supplements 2 and 3). No additional SNPs

were found in a coding sequence reported by others (Iosip et al., 2020; Palfalvi et al., 2020). The
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Figure 1. Identification of putative mechanosensory channels in the Venus flytrap trigger hair. (A) Representative

image of a soil-grown Venus flytrap clone (left), Venus flytrap leaf (center), and single trigger hair (right). Black

arrowheads in the center picture indicate trigger hairs on leaf. (B) Scanning electron micrograph of a trigger hair.

Cells of the lever (L), indentation zone (In) and podium (P) are indicated. Also seen are the digestive glands on the

floor of the lobe. (C) Fold enrichment of protein-coding genes of >100 amino acids in length (black circles) in the

trigger hair relative to the trap. FLYC1, FLYC2, and OSCA are shown in red, orange, and green, respectively. CPM,

counts per million of mapped sequencing reads. (D) Average Fragments Per Kilobase of transcript per Million

mapped reads (FPKM) for FLYC1, FLYC2, and OSCA in traps and trigger hairs. Dots of the same color indicate

paired biological replicates. **FDR < 0.005.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Size estimates of two Arabidopsis (Col-0) samples compared to our Venus flytrap strain (CP01).

Source data 2. Summary of sequencing reads used to build the de novo transcriptome (NCBI Transcriptome Shot-

gun Assembly Sequence Database accession # GHJF00000000).

Figure supplement 1. Venus flytrap clonal propagation system.

Figure supplement 2. Gene structure of Venus flytrap FLYC1.

Figure supplement 3. Gene sequence of FLYC1.
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scarcity of SNPs causing amino acid changes when compared to the abundance of SNPs in introns is

likely indicative of selection for the protein product.

FLYC1 and FLYC2 code for predicted proteins of 752 and 897 amino acids, respectively, with

homology to Arabidopsis MSL10 and MSL5 (Figure 2A). Ten MSL (MscS-like) proteins have been

identified in Arabidopsis based on their similarity to the bacterial mechanosensitive channel of small

conductance, MscS (Haswell and Meyerowitz, 2006). In Escherichia coli, MscS opens to allow ion

release upon osmotic down-shock and cell swelling, thereby preventing cell rupture (Booth and

Blount, 2012; Levina et al., 1999). In Arabidopsis, MSL8 functions in pollen rehydration, whereas

the roles of the remaining MSLs in mechanosensory physiological processes is unclear

(Hamilton et al., 2015). Notably, MSL10 forms a functional mechanosensitive ion channel with slight

preference for chloride when heterologously expressed in Xenopus laevis oocytes (Maksaev and

Haswell, 2012). Furthermore, along with other members of the MSL family, MSL10 accounts for

stretch-activated currents recorded from root protoplasts (Haswell et al., 2008). Whereas FLYC1

and FLYC2 are 38.8% identical (Figure 2—figure supplement 1), they share 47.5 and 35.5% identity

FLYC1
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Figure 2. Molecular phylogenetic relationship of FLYCATCHER and OSCA proteins. (A) Phylogenetic analysis by

maximum likelihood method to show the relationship between the conserved MscS domain (Haswell and

Meyerowitz, 2006) of Escherichia coli MscS protein, Arabidopsis thaliana MSL proteins (MSL1–MSL10), and

Dionaea muscipula/Venus flytrap (DmFLYC1 and DmFLYC2) and Drosera capensis/Cape sundew (DcFLYC1.1 and

DcFLYC1.2) FLYCATCHER proteins. (B, C) Predicted topology for DmFLYC1 (B) and DmFLYC2 (C) proteins. (D)

Phylogenetic analysis by maximum likelihood method showing the relationship between A. thaliana OSCA family

proteins and Venus flytrap DmOSCA. (E) Predicted topology for DmOSCA protein. In (A) and (D), bootstrap

values >50 are shown; scale, substitutions per site. In (B), (C), and (E), amino acid residues that are conserved with

Arabidopsis MSL10, MSL5, and OSCA1.5, respectively, are indicated in dark blue circles, whereas residues similar

in identity are indicated in lighter blue circles. The predicted pore domain for each protein is indicated in red

circles.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sequence alignment of DmFLYC1 and DmFLYC2 proteins.
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with MSL10, respectively, with most variation in the cytoplasmic N-terminus. Compared to MscS,

FLYC1 and FLYC2 have three additional predicted transmembrane helices, six in total, with the

C-terminus of the proteins sharing highest homology (Figure 2B,C).

DmOSCA encodes a predicted 754-amino acid protein with highest homology to Arabidopsis

OSCA1.5 (64% identity), which belongs to a 15-member family of OSCA proteins in Arabidopsis

(Figure 2D,E). Although initial identification characterized the OSCA family as hyperosmolarity-acti-

vated calcium channels, it has been demonstrated that several members of the OSCA family are

mechanosensitive ion channels that are non-selective for cations with some chloride permeability

(Murthy et al., 2018; Yuan et al., 2014). Fly and mammalian orthologues, Tmem63, also encode

mechanosensitive ion channels, suggesting that the molecular function of the OSCA genes is con-

served. Furthermore, purification and reconstitution of AtOSCA1.2 in proteoliposomes induce

stretch-activated currents, indicating that these proteins are inherently mechanosensitive

(Murthy et al., 2018). Notably, mutant OSCA1.1 plants have stunted leaf and root growth when

exposed to hyperosmotic stress (Yuan et al., 2014), possibly as a consequence of impaired mecha-

notransduction in response to changes in cell size. This suggests an ancestral role for these channels

as osmosensors, similar to the MSL family.

We sought to find which cells in the trigger hair express FLYC1, FLYC2, and DmOSCA. The trig-

ger hair can be divided into two main regions: a cutinized lever and a podium on which the lever sits

(Figure 1B). An indentation zone at the top of the podium separates the two regions (Figure 3A,C),

and is where most flexure of the trigger hair occurs (Lloyd, 1942). Electrophysiological recordings

have demonstrated that mechanical stimulation of the trigger hair generates action potentials from a

single layer of sensory cells at this indentation zone, and not from other cells of the podium or lever

(Benolken and Jacobson, 1970). Remarkably, by fluorescent in situ hybridization, we detected

FLYC1 transcript specifically in indentation zone sensory cells (Figure 3B,D). No transcript was

observed in cells of the lever or lower podium (Figure 3B,E). In contrast, EF1a transcript, a house-

keeping gene, was detected throughout the trigger hair and trap (Figure 3—figure supplement 1).

FLYC1-sense probes produced no signal above background (Figure 3B). Using similar in situ hybrid-

ization methods, we were unable to detect FLYC2 transcripts, whereas DmOSCA was found at high

levels within trigger hair sensory cells, but also low levels in other cell types (Figure 3—figure sup-

plement 2). These results are consistent with our RNA-seq findings from whole trigger hairs, where

FLYC2 and DmOSCA were less enriched over background trap tissue compared to FLYC1, and in

the case of FLYC2 only weakly expressed (Figure 1D). Regardless, the expression profile of FLYC1

and DmOSCA is consistent with them being at the site of touch-induced initiation of action

potentials.

To test whether FLYC1, FLYC2, and DmOSCA were indeed mechanically activated ion channels

and could confer mechanosensitivity to naı̈ve cells, we expressed human codon-optimized sequen-

ces of these genes in mechanically insensitive HEK-P1KO cells (Dubin et al., 2017). Robust stretch-

activated currents were recorded from FLYC1-expressing cells when negative pressure was applied

to the recording pipette in the cell-attached patch configuration (Figure 4, A), but not from FLYC2-,

or DmOSCA-expressing cells (Figure 4—figure supplement 1). Notably, overexpression of human

codon-optimized MSL10 and of OSCA1.5 subcloned from A. thaliana also failed to produce stretch-

activated currents in our system (Figure 4—figure supplement 1). However, previous studies have

shown that expression of MSL10 in oocytes does elicit stretch-activated currents, suggesting that

trafficking of these plant proteins is largely compromised in mammalian cells (Maksaev and Haswell,

2012). Given the high transcript enrichment, localization in sensory cells, and mechanosensitivity, we

focused on FLYC1 as a likely functional mechanosensor in Venus flytrap sensory hairs.

Further characterization of the FLYC1 channel in cell-attached patch clamp mode indicated that

the pressure required for half-maximal activation (P50) of FLYC1 was 77.3 ± 4.0 mmHg (N = 9)

(Figure 4B and Figure 4—figure supplement 2A). The channel has a conductance of 164 ± 9 pS

(N = 6) in physiological recording solution (Figure 4C), and upon removal of the stretch stimulus, the

currents decay with a time constant of 167 ± 34 ms (N = 5). In land plants and green algae, chloride-

permeable channel opening is associated with membrane depolarization, due to the efflux of chlo-

ride ions down their electrochemical gradient (Beilby, 2007; Hedrich, 2012). Therefore, we tested

whether FLYC1 is permeable to chloride by recording stretch-activated FLYC1 currents from inside-

out excised patches in symmetrical versus asymmetrical NaCl solution. In symmetrical 150 mM NaCl,

FLYC1 stretch-activated single-channel currents reversed at +2.9 ± 1.0 mV (N = 8), whereas in
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Figure 3. FLYC1 mRNA localization in Venus flytrap trigger hairs. (A) Toluidine blue-stained longitudinal section through the base of a trigger hair.

Elongated sensory cells are visible at the indentation zone (arrowheads). (B) Max projection through a longitudinal section after fluorescent in situ

hybridization. (Top) FLYC1 transcript (red) and DAPI (blue) at low (left) and high (right) magnification of the indentation zone. Note localization of the

FLYC1 transcript puncta in sensory cells. (Bottom) No signal was observed when using FLYC1-sense probes. High background fluorescence is observed

Figure 3 continued on next page
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Figure 3 continued

in all channels. (C) Toluidine blue-stained transverse section through the indentation zone. The cells forming the outer ring are presumed to be the

mechanosensors (Benolken and Jacobson, 1970). (D) Max projection through a transverse section after fluorescent in situ hybridization. FLYC1

transcript (red) at low (left) and high (right) magnification. Note localization of the FLYC1 transcript puncta predominantly in the sensory cells of the

indentation zone. (E) Max projection through a transverse section of the trigger hair lever. No transcript was observed. Scale bars, mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Autofluorescence and EF1a transcript expression in Venus flytrap.

Figure supplement 2. FLYC2 and DmOSCA transcript expression in trigger hair.
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Figure 4. FLYC1 induces stretch-activated currents. (A) Left, representative trace of stretch-activated current

recorded from FLYC1-expressing HEK-P1KO cells in the cell-attached patch clamp configuration at �80 mV

membrane potential in response to �70 mmHg pipette pressure. Stimulus trace illustrated above the current

trace. Right, quantification of maximal current response from cells transfected with mock (N = 7), mouse PIEZO1

(N = 5), or FLYC1 plasmid (N = 10). p=0.0251 (mock vs. PIEZO1); p=0.0070 (mock vs. FLYC1); Dunn’s multiple

comparison test. (B) Left, currents in response to graded negative pressure steps from 50 to 90 mmHg (D5 mmHg)

at �60 mV membrane potential. Right, average pressure–response curve normalized to peak current across cells

(pressure–response curve for absolute peak values is plotted in Figure 4—figure supplement 2). A fit with

Boltzmann equation revealed P50 value of 77 mmHg (N = 9). (C) Left, representative single-channel traces in

response to stretch at the indicated membrane potential. Right, average I–V relationship of stretch-activated

single-channel currents from FLYC1-transfected cells (N = 6). (D) Left, representative stretch-activated single-

channel currents recorded from excised inside-out patch configuration in asymmetrical or symmetrical NaCl

solution at the indicated membrane potential. Right, average I–V of stretch-activated single-channel currents in

asymmetrical NaCl solution (N = 7, red/black circles) or symmetrical NaCl solution (N = 8, black cirlces). Data for

both conditions were collected from separate patches/cells. Scatter plots in B–D are mean ± s.e.m.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. DmFLYC2 and DmOSCA functionality.

Figure supplement 2. Half-maximal pressure response and chloride permeability in DmFLYC1.

Figure supplement 3. The sequence of a putative pore-forming helix in FLYC1 is compatible with MscS-like
channel structure.
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intracellular 30 mM NaCl and extracellular 150 mM NaCl asymmetrical solutions, FLYC1 currents

reversed at �30 ± 1.5 mV (N = 7). This reversal potential is closer to the theoretical reversal potential

of �37.8 mV for chloride ion than of +37.8 mV for sodium ion, derived from the Nernst equation

under our experimental conditions. Therefore, FLYC1 exhibited a preference for chloride over

sodium with a PCl/PNa ratio of 9.8 ± 1.8 (N = 7), as measured using the Goldman–Hodgkin–Katz

equation (Figure 4D). These results are further supported by the lack of inward chloride currents at

positive potential when stretch-activated currents were recorded in calcium-gluconate containing

extracellular solution in the cell-attached patch clamp mode (Figure 4—figure supplement 2B).

Finally, from our excised inside-out patches in symmetrical 150 mM NaCl the single-channel conduc-

tance of FLYC1 was 276 ± 10 pS (N = 9), calculated as the slope of the I–V curve between �80 and 0

mV (Figure 4D).

Bacterial MscS are bona fide mechanically activated ion channels, with in-depth structural and

molecular understanding of how they are gated by membrane tension (Booth and Blount, 2012).

Much less is known about the structure and function of plant MSLs. Although homology modeling of

MSL10 with MscS has hinted at certain residues that alter channel conductance, molecular determi-

nants of selectivity and gating in MSL10 remain largely unknown (Maksaev and Haswell, 2013;

Maksaev et al., 2018). Intrigued by the high sequence similarity in the C-terminus of MscS, MSL10,

and FLYC1 proteins (Figure 4—figure supplement 3A), we asked to what extent the molecular

architecture of the putative pore-lining helix is shared among these channels. Homology-modeling

of FLYC1 with the known MscS structure (Bass et al., 2002) suggested that certain features of the

pore-forming transmembrane domain (TM6) are indeed conserved. These include hydrophobic resi-

dues within the part of the helix that lines the pore (TM6a), and a glycine kink at G575 followed by

an amphipathic helix (TM6b) that lies parallel to the inner plasma membrane surface (Figure 4—fig-

ure supplement 3B,C). Based on our result that FLYC1 has a higher preference to chloride, we

tested whether the positively charged lysines on either side of the putative pore (K558 and K579)

may confer pore properties. We substituted lysines at position 558 and 579 with glutamate and mea-

sured PCl/PNa. Whereas selectivity for chloride in both mutants remained unchanged, the K579E

mutant exhibited smaller single-channel currents at positive membrane potentials (Figure 4—figure

supplement 3D), suggesting that K579 is indeed in the vicinity of the pore. This analysis confirms

that the predicted TM6 of FLYC1 is part of the pore-lining region of the channel, consistent with

mutagenesis results in MSL10 (Maksaev et al., 2018). These observations are further supported by

the cryo-electron microscopy structure of AtMSL1, which indicates a similar architecture of the last

TM of the channel (Deng et al., 2020). Future structural studies on FLYC1 will better resolve how

selectivity is determined in these channels.

If FLYC1 is indeed important for touch-induced prey recognition, we reasoned that its expression

and function in mechanosensory structures is likely to be conserved across carnivorous Droseraceae

plants. To test this, we investigated the largest genus in the family, Drosera, which includes ~200

species of sundew (Poppinga et al., 2013). Sundews are characterized by touch-sensitive projections

on their leaf surface called tentacles (Figure 5A; Darwin, 1875; Lloyd, 1942; Poppinga et al.,

2013; Williams, 1976). These tentacles typically secrete a glob of sticky mucilage from their head,

which acts as a trapping adhesive when contacted by insect prey. Movement by the adhered insect

results in action potentials along the tentacle (Williams and Pickard, 1972), often accompanied by

radial movement of the tentacle towards the leaf center (Darwin, 1875). This traps the struggling

insect against even more mucilage-secreting tentacles, allowing for digestion to occur (Figure 5B

and Video 2).

We identified the expression of two FLYC1 homologs in Cape sundew (Drosera capensis) by

quantitative reverse transcriptase (qRT)-PCR (Butts et al., 2016). Consistent with our findings from

Venus flytrap, these two transcripts had 30- to 40-fold higher expression in tentacles compared to

tentacle-less leaf tissue (Figure 5C). The cloned cDNAs of these two genes—which we call

DcFLYC1.1 and DcFLYC1.2—code for almost identical predicted protein products with 96.4% iden-

tity. They share 66.2 and 65.6% identity to Venus flytrap FLYC1, respectively (Figure 2A).

Cape sundew tentacles display variation in length depending on their position on the leaf (Fig-

ure 5—figure supplement 1), but share a similar mechanosensory head structure, with two outer

layers of secretory cells (Figure 5D; Lloyd, 1942; Williams and Pickard, 1972, Williams and Pick-

ard, 1974). The outermost secretory cells have previously been hypothesized to also be the site of

touch sensation (Lloyd, 1942). Not only are these cells directly exposed to the mucilage
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environment on which the insect prey adheres and pulls, but they display a unique morphology of

outer cell wall buttresses and plasma membrane crenellations (Figure 5—figure supplement 2;

Lloyd, 1942). In addition, cellulose fibrils extend from the outer cell wall into the cuticle in much the

same way as they do in the Venus flytrap indentation zone (Sievers, 1968; Williams and Pickard,

1974). Strikingly, smFISH probes against DcFLYC1.1 and DcFLYC1.2 transcripts localized to the

outer secretory cells, whereas no transcripts were observed in the leaf at the base of the tentacles

(Figure 5E).

Heterologous expression of human codon-optimized DcFLYC1.1 and DcFLYC1.2 cDNA, indepen-

dently or together in HEK-P1KO cells, did not result in stretch-activated currents (Figure 5—figure

supplement 3). Similar to our findings with DmFLYC2 and DmOSCA, we speculate that the lack of

activity could be due to incorrect folding and trafficking of these proteins. Nonetheless, our
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Figure 5. DcFLYC1.1 and DcFLYC1.2 localize to touch-sensitive structures of Drosera. (A) The Cape sundew leaf,

showing tentacle projections with mucilage secretions. (B) Image of tentacle bending in response to insect (house

fly) touch. Arrowheads mark examples of tentacles that have bent inward. (C) Relative expression of DcFLYC1.1

and DcFLYC1.2 in sundew tentacles versus tentacle-less leaves by qRT-PCR. **p<0.005, moderated t-test, results

from four biological replicates of each tissue type. (D) Toluidine blue–stained longitudinal section through the

head and upper neck of a Cape sundew tentacle. The head is composed of xylem (X), an endodermis-like layer (E),

and secretory cells (S). (E) Max projection image, at low (left) and high magnification (right), showing collective

localization of DcFLYC1.1 and DcFLYC1.2 mRNAs to the outer secretory cells of the tentacle head (top). Arrows

indicate example secretory cells with DcFLYC puncta. No signal above background was observed in the leaf

(bottom). Scale bar, mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Variation in Cape sundew tentacles.

Figure supplement 2. Unique cell morphology of Cape sundew sensory/excretory cells.

Figure supplement 3. Drosera FLYC functionality.
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expression data is consistent with a conserved role for FLYC1 in two divergent species in carnivorous

Droseraceae plants.

Discussion
Here, we identify members of the FLYC and OSCA families of ion channels as candidate mechano-

sensors in rapid touch sensation in carnivorous plants. First, members of both families have enriched

mRNA transcript expression in the sensory trigger hairs of Venus flytrap. Among these, FLYC1 is a

prime candidate as its mRNA is massively enriched in the putative mechanosensory cells that initiate

transduction of the touch-induced signal. Second, FLYC1 forms a mechanically activated ion channel

with properties that would facilitate generation of action potentials in sensory cells. Third, expression

of FLYC genes is remarkably conserved in two morphologically disparate touch-sensitive structures

from different genera in the Droseraceae family. In addition to the three candidates presented here,

our results do not exclude the possibility that other mechanosensitive proteins could also contribute

to the events that enable touch-induced prey capture. In the future, knockout experiments will be

critical to determine which candidate mechanosensor(s) identified here, if any, are absolutely neces-

sary for functional prey detection and trap closure.

Using a mammalian cell-expression system, we detected robust macroscopic as well as single-

channel stretch-activated currents in FLYC1-expressing cells and identified residues important for

channel properties, which strongly suggests that FLYC1 form mechanosensitive ion channels. How-

ever, we were unable to detect currents from the other channels tested, including Arabidopsis

MSL10, which has previously been shown to induce currents only in oocytes but not in mammalian

cells. We hypothesize that these channels fail to fold and traffic correctly to the mammalian cell

membrane, or, alternatively, that the activation threshold for these channels might be higher than

that of DmFLYC1 (Venus flytrap), technically precluding us from recording reliable stretch-activated

currents. Future functional studies on these genes in different non-mammalian expression systems

and purification and reconstitution of proteins in lipid vesicles will conclusively determine whether

these genes encode inherently mechanosensitive ion channels.

It is interesting to compare FLYC1 channel properties to its homologs, MSL10 and MscS. FLYC1

single-channel conductance is 164 ± 9 pS (in physiological pipette solution) in cell-attached patches

and 276 ± 10 pS (in 150 mM NaCl) in excised inside-out patches from HEK-P1KO cells, whereas

MSL10 and MscS channel conductance from oocytes is 103 ± 3 pS and 218 ± 2 pS, respectively

(Maksaev and Haswell, 2011). FLYC1 and MSL10 stretch-activated currents have slow opening and

closing kinetics with lack of inactivation in the presence of sustained pressure, unlike MscS

(Maksaev and Haswell, 2011). The half-maximal activation (P5077.3 ± 4.0 mmHg) for FLYC1 is two-

fold lower than its bacterial orthologs MscS

(P50188 ± 31 mmHg; Akitake et al., 2005) and

MscL (P50147.3 ± 4.3 mmHg; Doerner et al.,

2012). However, we observed that similar to

MSL10 recordings in oocytes (Maksaev and Has-

well, 2012), the cell membrane in our recordings

often ruptured before current saturation (satu-

rated open probability (Po) was measured in only

3/9 cells) resulting in our measurement of FLYC1

P50 likely being an underestimation. Finally, PCl/

PNa ratio of FLYC1 (PCl/PNa = 9.8) is higher than

ratios obtained for MSL10 (PCl/PNa = 5.9) and

MscS (PCl/PK = 1.2–3.0) (Cox et al., 2014;

Maksaev and Haswell, 2012). In-depth func-

tional and structural characterization of these

channels (FLYC1, MSL10, and MscS) under similar

expression systems and recording conditions will

further determine absolute differences in their

properties and the underlying molecular architec-

ture that govern these properties.

Video 2. Touch response of the Cape sundew plant.

Time lapse recording of tentacle bending in response

to insect (Drosophila melanogaster) touch. Insects were

placed directly on the leaf tentacles and the recording

started within 10 s thereafter. 1 s represents 5 min.

https://elifesciences.org/articles/64250#video2
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Our characterization of FLYC1 as a chloride-permeable mechanically activated ion channel sug-

gests a possible mechanism to elicit rapid touch-induced movements in Venus flytrap. Due to the

high electronegativity of sensory cells (Benolken and Jacobson, 1970; Hodick and Sievers, 1988),

combined with a concentration gradient that likely favors efflux (Higinbotham et al., 1967), a chlo-

ride-permeable channel like FLYC1 could contribute to membrane depolarization. This is consistent

with the finding that increasing concentrations of extracellular chloride ions reduced or abolished

the electrical response of Venus flytrap sensory cells to a mechanical stimulus (Jacobson, 1974).

FLYC1-mediated depolarization, likely in combination with FLYC2 and OSCA, would then initiate

action potentials that propagate into the leaf through plasmodesmata clustered on the basal side of

the sensory cells (Williams and Mozingo, 1971), eliciting trap closure (Figure 6A). The role of a

mechanosensitive calcium permeable ion channel, OSCA, is noteworthy here. Indeed, it has been

described that trigger hair movement causes a rise in cytosolic calcium and that this signal propa-

gates through the trap preceding its closure (Suda et al., 2020); however, the propagation signal

most likely involves a mechanism independent of mechanotransduction. A similar chain of events

would occur in the sundew tentacle: prey contact with the tentacle results in DcFLYC-induced action

potentials, possibly in combination with OSCA or other mechanosensory proteins not identified

here, that may propagate through plasmodesmata along the outer cell layers of the tentacle mecha-

nosensory head and stalk, evoking tentacle bending (Figure 6B).

A method for transformation of Venus flytrap has been recently reported (Suda et al., 2020). By

generating targeted knockouts using this method, future studies may be able to address which or if

all of these channels are required redundantly for touch responses in the plant. Nonetheless, our

findings are consistent with FLYC1 being one of the bona fide sensors of touch in Darwin’s ‘most

wonderful’ plants, and shed new light on how carnivorous plants evolved to sense touch by co-opt-

ing ancestral, osmosensing mechanosensitive channels.

A

MS channel-expressing cellindentation zone plasmodesmata/cell-cell contacts action potential

(1) (2) (3)

Cl-
Cl-

mechanical stimuli Bending Trap closure

B

DcFLYC-expressing cellmucilage

Cl-Cl-

touch
(1) (2) (3)

action potential

mechanical

 stimuli
Tentacle 

bending

Figure 6. Model of touch-induced movements in carnivorous Droseraceae plants. (A) In Venus flytrap, mechanical

stimulation of the trigger hair by a prey animal causes bending at the indentation zone sensory cells (1), leading to

mechanically induced activation of mechanosensitive (MS) channels and chloride efflux (2). This triggers an action

potential that propagates from the base of the sensory cells to cells of the podium via plasmodesmata (3)

(Williams and Mozingo, 1971). Propagation of action potentials through the lobe of the leaf results in trap

closure. (B) In sundew tentacles, the pulling of mucilage could lead to activation of DcFLYC1.1 and DcFLYC1.2

proteins in the outer cell layer of tentacle heads, triggering a propagating action potential down the tentacle stalk.
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Materials and methods

Plant materials and growth conditions
Venus flytraps were propagated in tissue culture using methods modified from those previously

described (Jang et al., 2003). Seeds of mixed genotypes (FlytrapStore.com) were surface-sterilized

for 5 min using 70% ethanol with 0.1% Triton X-100; rinsed; and then seeded onto 1/3x Murashige

and Skoog (MS) salts and vitamins (Caisson Labs), 3% sucrose, and 4.3 g/L gellan gum. Following

germination, plants were selected for robust growth in tissue culture as well as large size to facilitate

tissue manipulations. A single strain originating from a single seed (CP01) was chosen for further

propagation by continual splitting of rhizomes. After 9–12 months in culture, the largest rosettes

were transferred to soil (fine-grade sphagnum peat moss) and grown under greenhouse conditions

(25–30˚C; ~16:8 hr light–dark cycle, with overhead artificial red light added in evening hours to bring

to 16 hr light length). Soil was kept constantly moist using purified water. Plants were allowed to

harden on soil for at least 2–3 months prior to experiments.

D. capensis var. rubra (Cape sundew) seeds (AK Carnivores, HI) were surface sterilized, germi-

nated on plates, and seedlings transferred to soil and grown under greenhouse conditions.

Imaging
For imaging of cell wall-stained tissue sections, freshly harvested plant tissue was dissected in 2% (v/

v) paraformaldehyde and 1.25% (v/v) glutaraldehyde in 50 mmol/L PIPES buffer, pH 7.2 and fixed for

2 hr in the same solution. Samples were dehydrated in a graded ethanol series and embedded in

JB-4 Plus Embedding Media (Electron Microscopy Sciences) according to manufacturer’s instruc-

tions, with the exception that infiltration was performed at room temperature over 7 days. Some

dehydrated samples were then stained with 0.1% eosin in 100% ethanol prior to embedding to help

visualize the material during sectioning. Sections were cut at 4–6 mm and dried from a drop of dH2O

onto Probe On Plus slides (ThermoFisher Scientific). Tissues sections were stained with 0.01% aque-

ous Toluidine Blue O, cover-slipped, and examined with an Olympus BX51 microscope.

Scanning electron microscopy was performed by imaging fresh plant tissue in the variable-pres-

sure mode of a field emission-scanning electron microscope (Sigma VP; Zeiss) at 5 Pa of nitrogen

with the variable-pressure secondary electron detector.

For time-lapse movies and light images of D. capensis during feeding, plants were fed with Dro-

sophila melanogaster (Canton-S) or house flies (Musca domestica) and imaged using an Olympus

Tough TG-5 camera. To aid in feeding, all insects were momentarily paralyzed by placing them in a

tube on ice for 5–10 min immediately prior to plant feeding.

Estimation of nuclear genome size
Nuclear genome size was estimated using flow cytometry methods similar to those reported previ-

ously (Arumuganathan and Earle, 1991), and were performed at Benaroya Research Institute, Seat-

tle, WA. Nuclei from 50 mg of Arabidopsis leaf or Venus flytrap petiole tissue were suspended in 0.5

mL solution of 10 mM MgSO4, 50 mM KCl, 5 mM Hepes pH 8.0, 3 mM dithiothreitol, 0.1 mg/mL

propidium iodide (PI), 1.5 mg/mL DNAse free RNAse (Roche), and 0.25% Triton X-100. Nuclei were

filtered through a 30 mm nylon mesh and incubated at 37˚C for 30 min. Stained nuclei were analyzed

with a FACScalibur flow cytometer (Becton-Dickinson). As an internal standard, samples included

nuclei from chicken red blood cells (2.5 pg/2C). For each measurement, the PI fluorescence area sig-

nals (FL2-A) from 1000 nuclei were collected and analyzed and the mean positions of the G0/G1

peaks for the sample and internal standard were determined using CellQuest software (Becton-Dick-

inson). Nuclear DNA size estimates are an average of four measurements.

Tissue collection for RNA-seq and qRT-PCR
To generate RNA-seq libraries from trigger hair tissue, trigger hairs were collected over the course

of a month, 3–4 times a week during the hours of 6:30–9:30 pm under artificial red light. Only traps

larger than 1.5 cm in length were used. Twelve trigger hairs were dissected from the surface of two

leaves at a time before snap-freezing in liquid N2 (<5 min between dissection and freezing). Aliquots

of trigger hairs were later pooled during RNA extraction. A sampling of traps (~20) with the trigger

hairs removed was collected simultaneously as comparison tissue. The experiment was performed in
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triplicate: 250 trigger hairs were collected for the first replicate and 750 trigger hairs for each of rep-

licates two and three.

For fed versus unfed trap samples, each tissue sample included two traps (>1.5 cm in length),

each fed with a single house fly for 24 hr. Fed traps were opened at the time of harvest and the fly

carcass removed before snap-freezing the tissue. Samples were collected in duplicate.

Cape sundew tentacles were harvested by removing fresh leaves from plants and placing these

directly into liquid N2. While immersed in the liquid N2, the leaves were agitated and/or scraped to

break off the tentacles. The tentacles and remaining leaf material were then separated for RNA

extraction. Each sample type was collected in quadruplicate.

RNA extraction for qRT-PCR and RNA-seq
Total RNA was extracted using a modified LiCl-based method similar to that described by others

(Bemm et al., 2016; Jensen et al., 2015). Briefly, frozen plant material was ground to a powder and

700 mL of RNA extraction buffer added (2% CTAB, 2% polyvinylpyrrolidone K25, 100 mM Tris HCl

pH 8.0, 25 mM Na-EDTA pH 8.0, 2M NaCl, 2% v/v b-mercaptoethanol). If necessary, tissue aliquots

were pooled at this stage, or later during ethanol precipitation. Samples were vortexed 2 min and

then incubated 65˚C for 10 min, vortexing occasionally. Debris was removed by centrifugation and

600 mL chloroform was added to the supernatant and mixed. The sample was centrifuged at 10,000

rpm for 10 min. About 1/3 vol 7.5 M LiCl was added to the aqueous phase, which was then incu-

bated overnight at 4˚C with gentle mixing. RNA was pelleted by centrifugation at 10,000 rpm for 10

min at 4˚C. The RNA pellet was washed with 70% ethanol, air-dried, and re-suspended in 100 mL

H2O. The RNA was then re-precipitated by adding 0.1 vol 3M NaAcetate (pH 5.2), 2.5 vol 100% eth-

anol and an optional 1.5 mL GlycoBlue (Thermo Fisher) for low yield samples; mixing; and incubating

for 1 hr at �80˚C. The RNA was pelleted by centrifugation at 12,000 rpm for 20 min at 4˚C. The pel-

let was washed with 70% ethanol, air dried, and re-suspended in 30–50 mL H2O. These samples were

then used directly to generate cDNA for qRT-PCR. Alternatively, samples for RNA-seq were re-sus-

pended in 22 mL H2O, and to this was added 2.5 mL 10x TURBO buffer and 1 mL TURBO DNase

(Thermo Fisher). Samples were incubated at 37˚C for 20–30 min. About 2.5 mL inactivation reagent

was then added, and samples incubated for a further 5 min at room temperature, mixing occasion-

ally. The resin was removed by centrifugation at 10,000 rpm for 1.5 min and transferring the super-

natant to a new tube. RNA quality and yield was assessed by Agilent TapeStation before

proceeding with sequencing library generation.

RNA-Seq and Venus flytrap trap transcriptome assembly
Stranded mRNA-Seq libraries were prepared using Illumina TruSeq Stranded mRNA Library Prep Kit

according to the manufacturer’s instructions. Libraries were quantified, pooled, and sequenced at

paired-end 125 bp reads using the Illumina HiSeq 2500 platform at the Salk NGS Core. Raw

sequencing data was demultiplexed and converted into FASTQ files using CASAVA (v1.8.2). All sam-

ples were sequenced simultaneously on a single flow cell lane. The average sequencing depth was

8.8 million reads per library. Library quality was assessed using FastQC (v0.11.5) (Andrews, 2010),

and Illumina adapter sequences and poor quality reads trimmed using Trimmomatic (0.36.0) with the

suggested parameters by Trinity (Bolger et al., 2014).

Most aspects of our de novo transcriptome assembly and RNA-Seq analysis were performed

using CyVerse cybercomputing infrastructure (Goff et al., 2011). So as to acquire as complete a

representation of the Venus flytrap trap transcriptome as possible, we included reads collected from

house fly-fed and unfed traps, in addition to our paired trigger hair and trigger hair-less trap samples

to build our trap transcriptome (Figure 1—source data 2). We used Trinity (v2.5.1) for the de novo

build (Grabherr et al., 2011), using default settings and an assembled contig length of greater than

300 nt. Our final transcriptome included 80,592 contigs, which were grouped into 77,539 compo-

nents. In our manuscript and hereafter, each Trinity component is generally referred to as a ’gene’.

The maximum contig length was 15,873 nt; average and median lengths 867 and 536 nt, respec-

tively; and N50 1197 nt.

We used Core Eukaryotic Genes Mapping Approach (CEGMA) and Benchmarking Universal Sin-

gle-Copy Orthologs (BUSCO) analyses to assess the completeness of our Venus flytrap trap tran-

scriptome (Parra et al., 2007; Simão et al., 2015). Using CEGMA, of 248 ultra-conserved core
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eukaryotic genes tested for, all were present in our transcriptome, including 246 of which the coding

sequences were defined as complete by CEGMA criteria. When we searched for the presence of

near-universal single copy orthologs using BUSCO (v3.0; lineage: plantae; species: Arabidopsis),

94.7% of BUSCOs were present, 92.6% of which were defined as complete. This number is greater

than that reported for the previously published Venus fly trap genome sequence (Palfalvi et al.,

2020).

To further test the quality of our transcriptome, we aligned reads for each sample back to the

transcriptome using Bowtie 2 (v2.2.4) (Langmead and Salzberg, 2012). For each sample, 80–90% of

the paired reads mapped back concordantly, while the overall alignment rate was >90%. These val-

ues were similar when the reads for each sample from a second sequencing run were independently

aligned (see below).

TransDecoder (v1.0) (Haas et al., 2013) was used to find open reading frames (ORFs) that coded

for possible proteins or incomplete protein fragments of at least 100 amino acids in length on the +

strand. In total, 33,710 ORFs fulfilling these criteria were found (this number increased only a small

amount, to 34,080, if the - strand was also included). Of these, 14,886 were identified as complete.

Our values are not that dissimilar for a previously reported Venus flytrap transcriptome generated

from multiple tissues (Jensen et al., 2015).

To assign homologous sequences from Arabidopsis to our protein-coding transcripts, we blasted

all complete and partial polypeptides against the Arabidopsis TAIR10 proteome using default set-

tings in Blastp (v2.2.29), with an e-value threshold <0.01 (Camacho et al., 2009). The top hit only

was retained for downstream analysis. To predict the number of transmembrane passes per protein,

we used TMHMM v. 2.0 (Krogh et al., 2001; Sonnhammer et al., 1998).

Our de novo Venus flytrap trap transcriptome is available through the National Center for Bio-

technology Information (NCBI) Transcriptome Shotgun Assembly (TSA) database with accession

number GHJF00000000. The uploaded transcriptome has the following modifications from that

described above and used for differential gene expression analysis in the following section. The last

42 nt of contig comp11005_c0_seq1 and the first 21 nt of comp46326_c0_seq1 were removed (pos-

sible adapter sequences), and 18 contigs were flagged as possible contaminants and deleted. The

uploaded transcriptome includes 80,574 contigs.

RNA-seq differential gene expression analysis
We used methods supported by Trinity (Haas et al., 2013) for finding genes differentially expressed

between trigger hair and trigger hair-less trap tissue samples. To increase the sequencing read count

number over any given contig, we performed a second sequencing run of all samples (SRA accession

numbers SRR8834210, SRR8834209, SRR8834208, SRR8834207, SRR8834212, and SRR8834211). We

trimmed the concatenated reads from both sequencing runs using Trimmomatic as described above,

and aligned these to our de novo Venus flytrap trap transcriptome using Bowtie (Langmead et al.,

2009). RSEM (v1.2.12) was used to find expected gene counts (Li and Dewey, 2011), and edgeR to

find differentially expressed genes using a paired experimental design for statistical testing

(Robinson et al., 2010). For our analysis in edgeR (v3.12.1), we first filtered our gene list to include

only those Trinity components whose transcript(s) included an ORF coding for a protein (or fragment

thereof) of at least 100 amino acids in length. For components with more than one such protein

assigned to them, the longest ORF was assumed to be the most relevant, and was used as the basis

for assigning an Arabidopsis homolog to the gene/component. Genes that had counts per million

(CPM) <2 in over half the samples were excluded from the analysis. A table of genes passing these

criteria showing gene expression values as mean CPM in traps and trigger hairs, as well as differen-

tial expression in trigger hairs versus traps calculated using edgeR algorithms with false discovery

rate (FDR) can be found at the NCBI Gene Expression Omnibus (GEO) database (Edgar et al.,

2002) with GEO Series accession number GSE131340 (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE131340). This repository also includes a list of all protein-coding genes and blast results

against the Arabidopsis proteome. Genes that had a fold enrichment difference of twofold or more,

in addition to FDR <0.05, were designated as having trigger hair- or trap-enriched expression. These

are shown in Supplementary file 1A and B. Note that fold enrichment is calculated using edgeR

algorithms, and not directly from mean CPM values. Using predictive fold changes for each of the

three replicate pairs in edgeR (prior.count = 1), our three genes of interest were also all consistently

enriched in the trigger hairs. Specifically, FLYC1 was the fourth, second, and third most enriched
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gene in replicate pairs 1–3, respectively, while FLYC2 was 57th, 259th, and 57th, and DmOSCA

108th, 41st, and 40th most enriched. For gene ontology (GO) analysis (Supplementary file 1C and

D), GO terms were assigned to each gene based on its homologous Arabidopsis protein (Arabidop-

sis TAIR10 annotation data downloaded, April 2018). GO enrichment was performed using BiNGO

3.03 (biological process terms only) with Benjamini and Hochberg corrected p value < 0.05

(Maere et al., 2005).

The highest differentially expressed gene in our trigger hair transcriptome coded for a protein

with homology to a terpene synthase (transcript ID comp18811_c0_seq1; approximately 175-fold

enrichment). It is possible that the expression of this gene is a vestigial remnant of the proposed

evolutionary history of the trigger hair from an ancestral, tentacle-like secretory structure (Wil-

liams, 1976). However, we do not see enriched expression of other genes obviously associated with

volatile production. Interestingly, when we blasted the transcript against the Arabidopsis TAIR10

genome (https://www.arabidopsis.org/Blast/) we found a reported hit against Arabidopsis MSL10,

due to a conserved 17 nt stretch. Thus, a shared regulatory sequence may exist between this tran-

script and MSL-related genes.

Cloning of Venus flytrap cDNAs and sequencing of DmFLYC1 genomic
DNA
cDNA from Venus flytrap whole-trap tissue was prepared from RNA using the Maxima First Strand

cDNA Synthesis Kit (Thermo Fisher). FLYC1 cDNA (Trinity ID #comp20014_c0_seq1) was then PCR

amplified using primers CP1010 and CP1011, which anneal in the predicted 5’ and 3’ UTRs, and was

ligated into pCR-Blunt II-TOPO (Invitrogen). A clone was generated that matched the predicted

sequence from the de novo transcriptome, as assessed by Sanger sequencing methods. Similarly,

EF1a (comp10702_c0_seq1) was PCR amplified from cDNA template using primers CP1144 and

CP1145, and ligated into pCR-Blunt II-TOPO. We chose this EF1a transcript as a ubiquitously

expressed control gene for our RNAscope experiments due to its high expression in all RNA-seq tis-

sue samples. We sequenced the EF1a cDNA insert using flanking M13F and M13R primers that

anneal in the pCR-Blunt II-TOPO vector, and verified that the first ~1.1 kb and last ~350 bp of the

cDNA matched the prediction from our de novo transcriptome.

Venus flytrap genomic DNA from strain CP01 was extracted from fresh plant tissue using a CTAB-

based method (Murray and Thompson, 1980). Using this as template, we PCR-amplified overlap-

ping fragments covering the gene and sequenced these using Sanger sequencing. Overlapping and

nested primer sets were: CP1010 and CP0995; CP0994 and CP1034; CP1033 and CP1035; CP1172

and CP1173; CP1176 and CP1177; and CP1174 and CP1009. The presence of two overlapping

peaks on a chromatogram was used as evidence of SNPs and allelic variation. Our most 3’ primer

(CP1009) anneals over the stop codon and the last 31 bases of the coding sequence, and as such,

we cannot rule out the existence of additional SNPs within this 31 bp stretch. To compare our

sequence to that of another strain, we used similar methods using the cultivar Creeping Death

(FlytrapStore.com), which has elongated petioles. At sites of short insertions and/or sequence varia-

tion, we assumed similarity to the previously sequenced alleles to construct the most probable

sequences. In addition, we aligned our coding sequence against previously reported transcript

Dm_00009130-RA (Iosip et al., 2020; Palfalvi et al., 2020; https://www.biozentrum.uni-wuerzburg.

de/carnivorom/resources). The three ambiguous nucleotides in Dm_00009130-RA were not included

in the analysis, although are sites where we see allelic variation in our own sequenced strains. For

electrophysiological characterization, FLYC1, FLYC2, and OSCA cDNAs were gene synthesized

(human codon optimized) into pIRES2-mCherry vector from Genewiz. K558E and K579E substitutions

in FLYC1 were generated using Q5 Site-Directed Mutagenesis Kit (New England BioLabs) according

to the manufacturer’s instruction and confirmed by full-length DNA Sanger sequencing.

Primer sequences

Primer Sequence (5’! 3’)

CP0994 CCAGTGTCACCTTATAGGGAAGAAGCG

Continued on next page
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Continued

Primer Sequence (5’! 3’)

CP0995 CCCTCGACGTAGTTCCCCTAGC

CP1009 cacatcgatTCACATATTGCGGATACTAATTTCTTGGGGC

CP1010 acacccgggGCTAGCTTTCATCCACCGAATAAACACC

CP1011 cacatcgatACATCATTGACCAGAAGCAAGGCACTC

CP1033 TGGCATCTTCATTCCATTTGAATAGGTTCTTTG

CP1034 GCATACCCGACATGGTCGACAAGC

CP1035 TGACAAGTTTGTTTAACTGCTTCACTGCTG

CP1144 AGGTCTTTAGATTAACTCTTCAACATGGGTAAGG

CP1145 ACAAGACTTCATTTTGCACCCTTCTTTATCG

CP1172 GATTGAGCAAACAAAAGGCGCATGAAG

CP1173 AAATTTTGACCTACGTTGACCGTCAGC

CP1174 TGATCAGGCTGCGCTTAAACATGC

CP1176 ACATTCTACTTTGTTTGCAATTGTTTTCCCACTC

CP1177 AAGAAACATTAAGCTGCACCTGCTCC

CP1208 GAGAGGTCCACCAACCTTGACTGG

CP1209 AGCAACGGTCTGACGCATGTCC

CP1218 GTGCCAGTGGGAAGAGTTGAGAC

CP1219 CAGAGAAAGTCTCGACAACCATGGG

CP1224 CAAATCATTGAAAACGTGAAGGGAAGCACTG

CP1225 CCTATGAGATACTTAGCCTGTTAGCCATGC

CP1233 GCCCTTCTATAGTAGTCTCACCTCTTCG

CP1237 GCCATGCGCAGCATATGTACTAGC

CP1240 GCTATTTCTTATTCTCCTGAGCACAACATACTG

CP1242 TGATCGCTGTGTCGTAGATGGAACAATG

CP1243 CTAATGGATTGCAAACTAGGAGATGCTTAGC

Identification of D. capensis cDNA sequences and design of qRT-PCR
primers
To find Drosera FLYC1 homologs, we blasted the first exon of Venus flytrap FLYC1 against the scaf-

fold assemblies of the D. capensis genome (Butts et al., 2016). We reasoned that because the first

exon codes for the N-terminal cytoplasmic domain—which is most divergent among MSL family

members—it would therefore best differentiate among different MSL genes and find the best FLYC1

homolog. We found four close homologous sequences using this method (e-value of 0.0; >60%

query cover; NCBI blastn), two of which were located on scaffold LIEC01006169.1, one on

LIEC01010092.1, and another on LIEC01012078.1. Position 42843–46002 of scaffold

LIEC01006169.1 (reverse strand; start to stop codon) and position 23270–26408 of scaffold

LIEC01012078.1 (forward strand; start to stop codon) were predicted to code for transcripts closely

resembling the complete Venus flytrap FLYC1 sequence based on inferred exon structure and con-

served sequences. The intervals between the start and stop codons of the two D. capensis sequen-

ces shared 93.7% identity, while the 3.5 kb regions immediately upstream and the 10 kb regions

immediately downstream of the start and stop codons shared only 56.61% and 46.69% identity,

respectively, as determined by alignment using the default settings of Clustal Omega (Sievers et al.,

2011). This indicates that the two sequences are likely two different genes that arose from an ances-

tral gene duplication event. Here, we call these genes DcFLYC1.1 and DcFLYC1.2, respectively.

To determine the exact DcFLYC1.1 and DcFLYC1.2 sequences coded for in our D. capensis

plants, the cDNAs were amplified using primers predicted to bind in the 5’ and 3’ UTRS (primers

CP1240 and CP1243 and CP1224 and CP1225, respectively). Each cDNA was amplified from
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template derived from two different plants, and these PCR products were independently cloned into

pCR-Blunt II-TOPO vector. For DcFLYC1.1, 1 of 2 and 2 of 2 clones from each of the two reactions

from independent templates shared the same cDNA sequence as determined by Sanger sequenc-

ing. For DcFLYC1.2, 3 of 7 and 4 of 8 clones from each of the two reactions shared the same cDNA

sequence. These sequences have been submitted to GenBank. Other clones had additional base dif-

ferences not seen in any other clone. While these might represent endogenous variation in this tetra-

ploid species, they are more likely a result of PCR amplification errors or low-fidelity transcription

and reverse transcription processes.

DcFLYC1.1 and DcFLYC1.2 cDNAs share a high sequence similarity. To resolve between the two

by qRT-PCR, we designed primer pairs where one of the two primers annealed in a less-conserved

stretch of residues in the 5’ or 3’ UTR (CP1242 and CP1237 and CP1224 and CP1233, respectively).

The resolution of the two cDNAs using these primers was confirmed by directly sequencing the two

PCR products by Sanger sequencing. DcFLYC1.1 and DcFLYC1.2 cDNAs were gene synthesized by

Genewiz (human codon optimized) and subcloned into pIRES2-mCherry vector for electrophysiologi-

cal characterization.

To design qRT-PCR primers for the D. capensis EF1a reference transcripts, we amplified a PCR

product from cDNA template using primers CP1208 and CP1209. Sanger sequencing of this product

suggested the presence of at least two highly similar EF1a transcripts, as evidenced by double peaks

on the chromatogram. These may represent the products of different genes or alleles. To avoid

biases against any one EF1a transcript, we refined our qRT-PCR primers to anneal over unambigu-

ous bases (CP1218 and CP1219).

Quantitative real-time polymerase chain reaction
About 500–1000 ng of RNA extracted from Cape sundew leaf and tentacle tissue were used to gen-

erate cDNA using the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher) according to the

manufacturer’s instructions. Diluted cDNA samples were then used as template for qPCR using

SYBR Green/Fluorescin dye on a CFX384 Real-Time PCR Detection System (Bio-Rad). The PCR

cycling condition consisted of 45 cycles of 95˚C for 10 s, 60˚C for 20 s, and 72˚C for 30 s. Data were

analyzed with Bio-Rad CFX Manager software (version 1.6), and fold-changes in gene expression

were calculated using the DDCt method (Schmittgen and Livak, 2008). Comparisons were per-

formed in biological quadruplicate.

Bioinformatics analyses: homology modeling, protein/nucleotide
comparisons, protein topology predictions, and evolutionary history
Unless otherwise specified, all nucleotide and amino acid comparisons were made using the default

settings of MUSCLE (Edgar, 2004a, Edgar, 2004b). For phylogenetic tree analysis of MscS domain

and OSCA proteins shown in Figure 2A,D, maximum likelihood trees were built from MUSCLE align-

ments of MscS domains (Haswell and Meyerowitz, 2006) and full-length OSCA proteins using

MEGA X software (LG + G model, four discrete Gamma categories) and viewed using iTOL

(Kumar et al., 2018; Letunic and Bork, 2019). All positions with <95% site coverage were elimi-

nated (partial deletion option). The trees with the highest log likelihood and bootstrap values from

1000 replications are shown.

Protein topologies of FLYC1 and FLYC2 (Figure 2B,C) were predicted using Protter

(Omasits et al., 2014). DmOSCA topology (Figure 2E) was determined by aligning the protein

against Arabidopsis OSCA1.2 and assigning TM and pore domains at the same positions identified

in the OSCA1.2 protein structure (Jojoa-Cruz et al., 2018). To model the Venus flytrap FLYC1 TM6

putative pore domain, residues A555-P593 were threaded to residues Q92-F130 of MscS in a closed

conformation (PDB 2OAU) (Bass et al., 2002). C7 symmetry was imposed using Rosettascripts

(Fleishman et al., 2011), and side chain and backbone conformations were minimized using the

Rosetta energy function (Leaver-Fay et al., 2011) with the solvation term turned off due to exposed

hydrophobics in the partial structure.

Accession numbers
RNA-Seq data, our de novo transcriptome, ORF identification, and downstream differential gene

expression analysis can be found at NCBI using the accession numbers referenced above, and under
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the umbrella Bioproject PRJNA530242. CDS sequences subcloned and sequenced from plant cDNA

template are deposited in GenBank (DmFLYC1, DcFLYC1.1, and DcFLYC1.2 under accessions

MN096566, MN096567, and MN096568, respectively).

Cell culture and transient transfection
PIEZO1-knockout human embryonic kidney 293T (HEK-P1KO) cells were used for all heterologous

expression experiments. HEK-P1KO cells were generated using CRISPR–Cas9 nuclease genome edit-

ing technique as described previously (Lukacs et al., 2015), and were negative for mycoplasma con-

tamination. Cells were grown in Dulbecco’s modified eagle medium (DMEM) containing 4.5 mg/mL

glucose, 10% fetal bovine serum, 50 units/mL penicillin, and 50 mg/mL streptomycin. Cells were

plated onto 12-mm round glass poly-d-lysine—coated coverslips placed in 24-well plates and trans-

fected using lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction. All plas-

mids were transfected at a concentration of 700 ng/mL. Cells were recorded from 24 to 48 hr after

transfection.

Electrophysiology
Patch-clamp experiments in cells were performed in standard cell-attached, or excised patch (inside-

out) mode using Axopatch 200B amplifier (Axon Instruments). Currents were sampled at 20 kHz and

filtered at 2 kHz or 10 kHz. Leak currents before mechanical stimulations were subtracted off-line

from the current traces. Voltages were not corrected for a liquid junction potential (LJP) except for

ion selectivity experiments. LJP was calculated using Clampex 10.6 software. All experiments were

done at room temperature. Data were analyzed in Clampex 10.6 and Graphpad Prism 7.

Solutions
For cell-attached patch-clamp recordings, external solution used to zero the membrane potential

consisted of (in mM) 140 KCl, 1 MgCl2, 10 glucose, and 10 HEPES (pH 7.3 with KOH). Recording pip-

ettes were of 1–3 MW resistance when filled with standard solution composed of (in mM) 130 NaCl,

5 KCl, 1 CaCl2, 1 MgCl2, 10 TEA-Cl, and 10 HEPES (pH 7.3 with NaOH).

Ion selectivity experiments were performed in inside-out patch configurations. PCl/PNa was mea-

sured in extracellular solution composed of (in mM) 150 NaCl and 10 HEPES (pH 7.3 with NaOH)

and intracellular solution consisted of (in mM) 30 NaCl, 10 HEPES, and 225 sucrose (pH 7.3 with

NaOH). Calcium gluconate solution for Figure 4—figure supplement 2B was composed of (in mM)

50 calcium gluconate, 0.5 CaCl2, 10 HEPES, and 170 sucrose (pH 7.3 with NaOH).

Mechanical stimulation
Macroscopic stretch-activated currents were recorded in the cell-attached or excised, inside-out

patch clamp configuration. Membrane patches were stimulated with 1 or 3 s negative pulses through

the recording electrode using Clampex controlled pressure clamp HSPC-1 device (ALA-scientific),

with inter-sweep duration of 1 min. Pressure for half-maximal activation was calculated by fitting

pressure response curve for individual cells, which was recorded in cell-attached configuration, with

Boltzmann equation and averaging P50 values across all cells. We note that we were successful in

obtaining saturating currents at higher pressures in only three out of the nine cells. Stretch-activated

single-channel currents were recorded in the cell-attached configuration. Since single-channel ampli-

tude is independent of the pressure intensity, the most optimal pressure stimulation was used to

elicit responses that allowed single-channel amplitude measurements. These stimulation values were

largely dependent on the number of channels in a given patch of the recording cell. Single-channel

amplitude at a given potential was measured from trace histograms of 5–10 repeated recordings.

Histograms were fitted with Gaussian equations using Clampfit 10.6 software. Single-channel slope

conductance for each individual cell was calculated from linear regression curve fit to single-channel

I–V plots.

Permeability ratio measurements
Reversal potential for each cell in the mentioned solution was determined by interpolation of the

respective current–voltage data. Permeability ratios were calculated by using the following Gold-

man–Hodgkin–Katz equations:
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PCl/PNa ratios:

Erev ¼
RT

F
ln
PNa½NA�o þPCl½Cl�i
PNa½Na�i þPCl½Cl�o

In situ hybridization and imaging
Whole Venus flytrap and Cape sundew leaves were cut from the plant, freshly frozen in liquid N2,

and 15 mm sections collected. RNA in situ hybridization (RNAscope) was performed on sections

according to manufacturer’s instructions (ACDBio: #323100) using probes against DmFLYC1 (ACD-

Bio; Ref: 546471, lot: 18177B), DmFLYC1-sense (ACDBio; Ref: 566181-C2, lot: 18361A), DmFLYC2

(ACDBio; Ref: 546481, lot: 18177C), DmOSCA (ACDBio; Ref: 571691, lot: 19032A), DcFLYC1.1/

DcFLYC1.2 (ACDBio; Ref: 572451, lot: 19037B), and EF1a (ACDBio; Ref: 559911-C2, lot: 18311B).

DmFLYC1-sense (Figure 3B) and DmFLYC2 (Figure 3—figure supplement 2) were tested on the

same section. However, DmFLYC2 probe was independently tested in two additional experiments

and no signal was observed. Slides were mounted with Vectashield + DAPI (Ref: H1200, lot:

ZE0815). Stained sections were imaged with a Nikon C2 laser scanning confocal microscope and

z-stacks were acquired through the entire section with a 60� objective. Displayed images are max

projections of the entire z-stack. Images were processed using ImageJ (Fiji image processing

package).
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Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR. 1999. Protection of Escherichia coli cells against
extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for
MscS activity. The EMBO Journal 18:1730–1737. DOI: https://doi.org/10.1093/emboj/18.7.1730,
PMID: 10202137

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinformatics 12:323. DOI: https://doi.org/10.1186/1471-2105-12-323, PMID: 21816040

Lloyd FE. 1942. The Carnivorous Plants. Chronica Botanica Company.
Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW,
Stevenson DA, Patapoutian A, Krock BL. 2015. Impaired PIEZO1 function in patients with a novel autosomal
recessive congenital lymphatic dysplasia. Nature Communications 6:8329. DOI: https://doi.org/10.1038/
ncomms9329, PMID: 26387913

Maere S, Heymans K, Kuiper M. 2005. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology
categories in biological networks. Bioinformatics 21:3448–3449. DOI: https://doi.org/10.1093/bioinformatics/
bti551, PMID: 15972284

Maksaev G, Shoots JM, Ohri S, Haswell ES. 2018. Nonpolar residues in the presumptive pore-lining Helix of
mechanosensitive channel MSL10 influence channel behavior and establish a nonconducting function. Plant
Direct 2:e00059. DOI: https://doi.org/10.1002/pld3.59, PMID: 30506019

Maksaev G, Haswell ES. 2011. Expression and characterization of the bacterial mechanosensitive channel MscS in
Xenopus laevis oocytes. Journal of General Physiology 138:641–649. DOI: https://doi.org/10.1085/jgp.
201110723

Maksaev G, Haswell ES. 2012. MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a
preference for anions. PNAS 109:19015–19020. DOI: https://doi.org/10.1073/pnas.1213931109, PMID: 231121
88

Maksaev G, Haswell ES. 2013. Recent characterizations of MscS and its homologs provide insight into the basis
of ion selectivity in mechanosensitive channels. Channels 7:215–220. DOI: https://doi.org/10.4161/chan.24505,
PMID: 23590902

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research
8:4321–4326. DOI: https://doi.org/10.1093/nar/8.19.4321, PMID: 7433111

Murthy SE, Dubin AE, Whitwam T, Jojoa-Cruz S, Cahalan SM, Mousavi SAR, Ward AB, Patapoutian A. 2018.
OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7:e41884.
DOI: https://doi.org/10.7554/eLife.41844

Omasits U, Ahrens CH, Müller S, Wollscheid B. 2014. Protter: interactive protein feature visualization and
integration with experimental proteomic data. Bioinformatics 30:884–886. DOI: https://doi.org/10.1093/
bioinformatics/btt607, PMID: 24162465

Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, Ankenbrand M, Becker D, Förster F, Freund M, Iosip
A, Kreuzer I, Saul F, Kamida C, Fukushima K, Shigenobu S, Tamada Y, Adamec L, Hoshi Y, Ueda K, Winkelmann
T, et al. 2020. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory. Current
Biology 30:2312–2320. DOI: https://doi.org/10.1016/j.cub.2020.04.051, PMID: 32413308

Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes.
Bioinformatics 23:1061–1067. DOI: https://doi.org/10.1093/bioinformatics/btm071, PMID: 17332020

Poppinga S, Hartmeyer SR, Masselter T, Hartmeyer I, Speck T. 2013. Trap diversity and evolution in the family
Droseraceae. Plant Signaling & Behavior 8:e24685. DOI: https://doi.org/10.4161/psb.24685, PMID: 23603942

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics 26:139–140. DOI: https://doi.org/10.1093/bioinformatics/
btp616, PMID: 19910308

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols
3:1101–1108. DOI: https://doi.org/10.1038/nprot.2008.73, PMID: 18546601
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Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence
alignments using clustal omega. Molecular Systems Biology 7:539. DOI: https://doi.org/10.1038/msb.2011.75,
PMID: 21988835

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome
assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. DOI: https://
doi.org/10.1093/bioinformatics/btv351, PMID: 26059717

Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden markov model for predicting transmembrane helices in
protein sequences. Proceedings. International Conference on Intelligent Systems for Molecular Biology 175–
182.

Suda H, Mano H, Toyota M, Fukushima K, Mimura T, Tsutsui I, Hedrich R, Tamada Y, Hasebe M. 2020. Calcium
dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants 6:1219–1224. DOI: https://
doi.org/10.1038/s41477-020-00773-1, PMID: 33020606

Procko, Murthy, Keenan, et al. eLife 2021;10:e64250. DOI: https://doi.org/10.7554/eLife.64250 23 of 24

Research article Cell Biology Plant Biology

https://doi.org/10.1016/B978-0-12-381270-4.00019-6
http://www.ncbi.nlm.nih.gov/pubmed/21187238
http://www.ncbi.nlm.nih.gov/pubmed/21187238
https://doi.org/10.1093/nar/gkz239
http://www.ncbi.nlm.nih.gov/pubmed/30931475
https://doi.org/10.1093/emboj/18.7.1730
http://www.ncbi.nlm.nih.gov/pubmed/10202137
https://doi.org/10.1186/1471-2105-12-323
http://www.ncbi.nlm.nih.gov/pubmed/21816040
https://doi.org/10.1038/ncomms9329
https://doi.org/10.1038/ncomms9329
http://www.ncbi.nlm.nih.gov/pubmed/26387913
https://doi.org/10.1093/bioinformatics/bti551
https://doi.org/10.1093/bioinformatics/bti551
http://www.ncbi.nlm.nih.gov/pubmed/15972284
https://doi.org/10.1002/pld3.59
http://www.ncbi.nlm.nih.gov/pubmed/30506019
https://doi.org/10.1085/jgp.201110723
https://doi.org/10.1085/jgp.201110723
https://doi.org/10.1073/pnas.1213931109
http://www.ncbi.nlm.nih.gov/pubmed/23112188
http://www.ncbi.nlm.nih.gov/pubmed/23112188
https://doi.org/10.4161/chan.24505
http://www.ncbi.nlm.nih.gov/pubmed/23590902
https://doi.org/10.1093/nar/8.19.4321
http://www.ncbi.nlm.nih.gov/pubmed/7433111
https://doi.org/10.7554/eLife.41844
https://doi.org/10.1093/bioinformatics/btt607
https://doi.org/10.1093/bioinformatics/btt607
http://www.ncbi.nlm.nih.gov/pubmed/24162465
https://doi.org/10.1016/j.cub.2020.04.051
http://www.ncbi.nlm.nih.gov/pubmed/32413308
https://doi.org/10.1093/bioinformatics/btm071
http://www.ncbi.nlm.nih.gov/pubmed/17332020
https://doi.org/10.4161/psb.24685
http://www.ncbi.nlm.nih.gov/pubmed/23603942
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1038/nprot.2008.73
http://www.ncbi.nlm.nih.gov/pubmed/18546601
https://doi.org/10.1007/BF00385134
https://doi.org/10.1038/msb.2011.75
http://www.ncbi.nlm.nih.gov/pubmed/21988835
https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1093/bioinformatics/btv351
http://www.ncbi.nlm.nih.gov/pubmed/26059717
https://doi.org/10.1038/s41477-020-00773-1
https://doi.org/10.1038/s41477-020-00773-1
http://www.ncbi.nlm.nih.gov/pubmed/33020606
https://doi.org/10.7554/eLife.64250


Williams SE. 1976. Comparative sensory physiology of the Droseraceae—the evolution of a plant sensory system.
Proceedings of the American Philosophical Society 187–204.

Williams ME, Mozingo HN. 1971. The fine structure of the trigger hair in Venus’S FLYTRAP. American Journal of
Botany 58:532–539. DOI: https://doi.org/10.1002/j.1537-2197.1971.tb10001.x

Williams SE, Pickard BG. 1972. Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–
221. DOI: https://doi.org/10.1007/BF00386844, PMID: 24481555

Williams SE, Pickard BG. 1974. Connections and barriers between cells of Drosera tentacles in relation to their
electrophysiology. Planta 116:1–16. DOI: https://doi.org/10.1007/BF00390198, PMID: 24458987

Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift
GB, He Y, Siedow JN, Pei ZM. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for
osmosensing in Arabidopsis. Nature 514:367–371. DOI: https://doi.org/10.1038/nature13593, PMID: 25162526

Procko, Murthy, Keenan, et al. eLife 2021;10:e64250. DOI: https://doi.org/10.7554/eLife.64250 24 of 24

Research article Cell Biology Plant Biology

https://doi.org/10.1002/j.1537-2197.1971.tb10001.x
https://doi.org/10.1007/BF00386844
http://www.ncbi.nlm.nih.gov/pubmed/24481555
https://doi.org/10.1007/BF00390198
http://www.ncbi.nlm.nih.gov/pubmed/24458987
https://doi.org/10.1038/nature13593
http://www.ncbi.nlm.nih.gov/pubmed/25162526
https://doi.org/10.7554/eLife.64250

