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ABSTRACT: Synthetic polymers, in contrast to small molecules
and deterministic biomacromolecules, are typically ensembles
composed of polymer chains with varying numbers, lengths,
sequences, chemistry, and topologies. While numerous approaches
exist for measuring pairwise similarity among small molecules and
sequence-defined biomacromolecules, accurately determining the
pairwise similarity between two polymer ensembles remains
challenging. This work proposes the earth mover’s distance
(EMD) metric to calculate the pairwise similarity score between
two polymer ensembles. EMD offers a greater resolution of
chemical differences between polymer ensembles than the
averaging method and provides a quantitative numeric value
representing the pairwise similarity between polymer ensembles in
alignment with chemical intuition. The EMD approach for assessing polymer similarity enhances the development of accurate
chemical search algorithms within polymer databases and can improve machine learning techniques for polymer design,
optimization, and property prediction.
KEYWORDS: cheminformatics, macromolecules, similarity, earth mover’s distance, polymer ensemble, graph edit distance, digital search

■ INTRODUCTION
Polymers, with their wide range of applications and properties,
are integral to numerous industries1 including textiles,2 water
purification,3,4 energy,5 transportation,6 and health care.7 As the
demand for polymeric materials with bespoke properties
continues to grow, understanding the underlying similarities
and differences between polymers is essential for the efficient
design and optimization of materials.8−10 The study of polymer
similarity not only provides insights into structure−property
relationships11,12 but also aids in the development of effective
search algorithms for polymer databases13−19 and advances
machine learning techniques for property prediction and
materials discovery.12,20−37 Despite its importance, quantifying
the similarity of polymers remains a challenging task, primarily
due to the fact that polymers are ensembles of polymer chains
with varying numbers, lengths, sequences, chemistry, and
topologies.38,39 All of these features can affect the polymers’
properties and can make similarity studies of polymers more
complex than those of well-defined small molecules40−42 and
sequence-defined biomacromolecules.43,44

To compute the similarity between polymer ensembles,
researchers typically45,46 first embed each molecule in the
ensemble, or equivalently convert every polymer chain into a
vector, and then average all the embedding vectors to obtain a
global embedding vector for the ensemble. Similarity operations

(i.e., cosine similarity or jaccard index) are then performed to
calculate the similarity between two ensemble embedding
vectors, ultimately yielding a similarity between the two polymer
ensembles. For instance, Aldeghi et al.46 utilized this method to
derive a global embedding vector for ensembles of polymer
chains for block polymers, random polymers, and alternating
copolymers. However, this commonly used average method
prematurely reduces the dimensionality of the system,
eliminating differences among ensembles due to the topological
or monomer sequence information.30,45−47 This premature loss
of key information can result in two distinct ensembles being
classified as identical. Furthermore, the design of embedding
functions becomes nontrivial when the polymer chains have
varying chain lengths or complex nonlinear topologies.

Apart from the average methods, researchers have explored
the development of new text-based48−50 and graph-based
stochastic representations46,51−53 that respect the unique
aspects of polymer chemistry and then utilize these
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representations for similarity calculations. For instance,
BigSMILES48,49 is a text-based representation that builds upon
the simplified molecular-input line-entry system (SMILES)54,55

representation for small molecules and is designed specifically to
describe the stochastic nature of polymer molecules. The
polymer automaton51 developed by Lin et al. is a graph-based
state machine representation that describes polymers’ stochastic
features. Aldeghi et al. developed a graph-based representation
with “stochastic” edges to describe the average structure of
repeat units.46 These existing text-based and graph-based
stochastic representations can be used to calculate the pairwise
similarity score, which captures the chemical and topological
features contained in a polymer chemical structure diagram.56

However, these stochastic representations do not specify the
weight or probability of each polymer molecule within the
ensemble. This probability information can include chain length,
composition gradient, stereochemistry, and molecular mass
distribution. This additional information is not included in
chemical structure representations; rather, it is obtained via
polymer characterization and linked to chemical structure in
data structures such as CRIPT9 and PolyDAT.57

This work proposes the earth mover’s distance (EMD)58 to
quantitively calculate the similarity of polymer ensembles with
greater chemical resolution. Four examples are presented to
illustrate the power of EMD in characterizing the similarity
between polymer ensembles, including two component
copolymer ensembles, first-order Markov linear copolymer
ensembles, star-polymer ensembles, and polymer ensembles
represented by molecular mass distributions (MMDs). The

proposed EMD metric for calculating the pairwise similarity of
polymer ensembles offers a higher resolution by avoiding
premature dimensionality reduction. It will be shown that the
EMD yields a more accurate representation of the differences
between polymer ensembles and is more consistent with
chemical intuition.

■ METHODS
EMD is a well-constructed metric to calculate the similarity of
ensembles or distributions. The original application of EMD is an
optimization problem, where the goal is to minimize the amount of
work needed to move earth from one pile to another. Thus, it can be
formulated and solved as a transportation problem. EMD has been
successfully applied in multiple fields, including the similarity of
inorganic solids,59,60 cell−cell similarity inference,61 and geometric data
set distances.62 Analogously, the problem here is transforming one
polymer ensemble to another polymer ensemble with the minimum
amount of work done, which is interpreted as a calculation of
dissimilarity. In order to use EMD to calculate the pairwise similarity of
the polymer ensembles, it is necessary to determine the dissimilarity or
distance between each pair of individual polymer chains. There are
numerous methods for calculating the dissimilarity or distance between
two individual polymer chains, such as sequence alignment
algorithms63,64 and graph edit distance (GED). Among all of these
methods, GED stands out as a robust and generalized approach for
calculating the pairwise dissimilarity or distance between each pair of
individual polymer chains with varying chemistries, lengths, and
topologies.

Figure 1. (a) Three examples of the coarse-grained graph representations of polymer chains, where the nodes are molecular fragments, such as repeat
units, end groups, and linkers, and the edges are the connections between those molecular fragments. Graph edit distance (GED) operations include
(b) adding nodes/edges or deleting nodes/edges and (c) substituting nodes.
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Graph Edit Distance
In this work, each polymer chain in the molecular ensemble is first
transformed into a coarse-grained graph representation, where the
nodes are molecular fragments, such as repeat units, end groups, and
linkers, and the edges are the connections between these molecular
fragments, as shown in Figure 1a. If the end group is *H, this end group
*H is implicit. Canonicalization rules51 are utilized to ensure the
generalization of selecting repeat units as nodes for building the coarse-
grained polymer graph representations. GED is then used to calculate
the pairwise dissimilarity or distance between each pair of individual
polymer chains, with one chain selected from each of the two ensembles
being compared. GED, first reported by Sanfeliu and Fu65 in 1983, is a
measure of similarity between two graphs g1 and g2. The idea behind
GED is to find the minimal set of transformations that can transform
graph g1 into graph g2 by means of edit operations on graph g1. The set
of elementary graph edit operators typically includes the insertion,
deletion, and substitution of both nodes and edges, as shown in Figure
1. The formula for calculating GED is

g g c eGED( , ) min ( )
e e g g i

k

i1 2 ( ,..., )P( , )
1k1 1 2

=
= (1)

where g g( , )1 2 denotes the set of edit paths transforming g1 into graph
g2 and c(ei) is the cost of each graph edit operation ei. As shown in Figure
1b, for insertion and deletion of nodes/edges, they add a constant cost
to the distance, assumed here to be 1. For node substitution (Figure
1c), the cost is either the same constant cost as the insertion and
deletion costs if the node uses one-hot encoding or equal to the
constant cost multiplied by the Tanimoto dissimilarity43 of the pair of
nodes being substituted if the node uses Morgan fingerprint
encoding.43,46 GED(g1,g2) is zero when g1 and g2 are identical. GED
is symmetric; the minimal cost of transforming graph g1 into graph g2 is
the same as the minimal cost of transforming graph g2 into graph g1.

To map GED(g1,g2) onto a distance d(g1,g2) that is 0 and 1, first the

GED is normalized to be g g
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whereNi denotes the number of nodes of gi and α is a tunable parameter
with the default value being 1. d(g1,g2) is 0 when g1 and g2 are identical.
d(g1,g2) is also symmetric, so d(g1,g2) = d(g2,g1). The reason for
converting the absolute GED(g1,g2) to a normalized GED stems from
the chemical intuition. In the case of explicitly comparing molecular
mass distributions, GED(g1,g2) is proportional to |N1−N2 |, so
converting to a normalized GED is equivalent to looking at the percent
difference instead of the absolute difference. According to Van
Krevelen’s book,67 many properties of polymers, for example, glass-
transition temperature68 and tensile strength,69 can be described by
X X A

Mn
= , where X is the property considered, X∞ is the property

value at infinite molecular mass, A is a constant, and Mn is the number-
average molecular mass. This equation suggests that the difference in
property values will be larger for the same GED between shorter chains
than between larger chains. The normalized GED most accurately
captures this intuitive trend. The exponential decay on the normalized
GED66 is then used because it constrains the similarity to be between 0
and 1, consistent with prior work about molecular similarity
calculations.40,70,71 This provides a sense of scale and allows for two
similarities to be compared more easily, while maintaining the expected
trends from chemical intuition. Although eq 2 is proposed here as an
advantageous metric for di,j, the choice of di,j can be modified based on
users’ needs and specific requirements for their scientific problems,
using for example absolute graph edit distance65 or sequence alignment
algorithms,63,64 without modifying the subsequent EMD calculation.

Earth Mover’s Distance
As shown in Figure 2, one polymer ensemble is defined as P = {(p1,wp1),
(p2,wp2),···,(pi,wp di

),··· (pm,wp dm
)} having m types of polymer chains,

where pi represents a type of polymer chain and wpi is its corresponding
weight, which can be the mole fraction of this polymer chain in the
polymer ensemble. Similarly, the second polymer ensemble Q =
{(q1,wq1),(q2,wq2),···,(qj,wqj),··· (qn,wqdn

)} has n types of polymer chains.
The sums of the weights for P and Q are both normalized and equal to
one (i.e.,∑i = 1

m wp di
= ∑j = 1

n wqdj
= 1) and individual weights must be

positive.
The pairwise dissimilarity or distance di,j between every pair of

individual polymer chains pi and qj is calculated through eq 2.40 After
wpi, wqj, and di,j are obtained for all of the entities in the ensembles, the
earth mover’s distance (EMD) is determined using eq 3a along with the
constraints as specified in eqs 3b−3e.
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f i,j is the flow or amount of weight at pi which is transported to qj, and F
= [f i,j] denotes all the flows between P and Q. Here, di,j·f i,j is the cost for
each individual flow. These equations are coded into Pyomo,72,73 an
open-source optimization modeling language, and solved with
Computational Infrastructure for Operations Research (COIN-OR)

Figure 2. Schematic of earth mover’s distance (EMD) for calculating
the similarity score between two polymer ensembles, where P =
{(p1,wp1),(p2,wp2),···,(pi,wp di

),··· (pm,wpdm
)} has m types of polymer chains

and Q = {(q1,wq1),(q2,wq2),···,(qj,wqj)),··· (qn,wq dn
)} has n types of

polymer chains. The pairwise dissimilarity or distance di,j between every
individual polymer chains pi and qj is calculated through graph edit
distance (GED). EMD utilizes wpi, wqj, and di,j to calculate the pairwise
ensemble similarity between P and Q.

ACS Polymers Au pubs.acs.org/polymerau Article

https://doi.org/10.1021/acspolymersau.3c00029
ACS Polym. Au 2024, 4, 66−76

68

https://pubs.acs.org/doi/10.1021/acspolymersau.3c00029?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00029?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00029?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acspolymersau.3c00029?fig=fig2&ref=pdf
pubs.acs.org/polymerau?ref=pdf
https://doi.org/10.1021/acspolymersau.3c00029?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Branch-and-Cut (cbc) solver,74 an open-source mixed integer linear
programming solver. Since the sum of the weights is normalized, the
minimum overall cost equals the minimum overall distance. All di,j are
bounded between 0 and 1, so EMD is also bounded between 0 and 1,
representing the minimum overall distance to convert one polymer
ensemble P to another polymer ensemble Q, or equivalently the
dissimilarity score. Finally, the pairwise similarity score S(P,Q), for the
ensemble pair P and Q, may then be defined as

S P Q P Q( , ) 1 EMD( , )= (4)

The value of S(P,Q) is also between 0 and 1. The larger the S(P,Q),
the more similar the results between P and Q. The self-ensemble
similarity score is 1.

■ RESULTS AND DISCUSSION

Example 1: Two Component Polymer Ensemble
EMD provides greater resolution of chemical differences
between polymer ensembles than simple sums or averages of
the embedding for each polymer chain. The reason is that simply
averaging or summing44 prematurely reduces the dimensionality
of the system, eliminating differences among ensembles. In this
example, a comparison of two ensembles, each composed of an
equal mixture of two equal-length polymer chains, is employed
to demonstrate the features of the EMD method for computing
pairwise similarity scores, as shown in Figure 3a,b. The two

ensembles are denoted P = {(p1,wpd1
= 0.5),(p2,wp d2

= 0.5)} where
p1 and p2 are alternating polymers, and Q = {(q1,wq d1

= 0.5),
(q2,wq d2

= 0.5)} where q1 and q2 are blocky polymers. To compare
the two ensembles, each polymer chain is first represented as a
vector, also known as an embedding. Specifically, a one-hot
encoding method is used, where the blue repeat unit R0 is
represented by 1

0
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ÅÅÅÅÅÅ
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ÑÑÑÑÑÑ, the red repeat unit R1 is represented by 0
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This embedding is easily extended to an arbitrary number of
monomers by increasing the dimensionality of the vector. Then
the embedding vectors for these polymer chains are
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To illustrate the benefits of EMD, the commonly used average
method is computed as a benchmark. In this case, a single
embedding vector for an ensemble is generated by taking a
weighted average of the embedding vectors35 resulting in a
single embedding for the entire ensemble rather than explicitly
using the embedding of each constituent. Using this method, the
embedding vector VP for polymer ensemble P is
V v w v w( ) ( )
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. Since VP ≡ VQ, the

similarity score between P and Q is one. P and Q are treated
identically, regardless of which similarity metric is used in the
average method. However, as observed in Figure 3a,b, the two
polymer ensembles P and Q are noticeably distinct in terms of
their sequences. Thus, the average method fails to capture the
dissimilarity between polymer ensembles P and Q.

Next, the EMD method is used to calculate a quantitative
ensemble similarity score. GED matrix and distance matrix
([di,j]) between the polymer ensembles P and Q are calculated,
with results shown in Figure 3c,d. Additional details can be
found in the Methods. Using the necessary information about
wpi, wqj, and di,j, the optimization problem is solved, yielding
EMD(P,Q) = 0.28 and S(P,Q) = 0.72. The EMD method
captures the difference and provides a quantitative pairwise
similarity score that accurately reflects the similarity between the
two ensembles.
Example 2: First-Order Markov Copolymer Ensemble

EMD is applied to a more complex system, first-order Markov
copolymers,38,75 where the primary structure of the copolymer
can be treated as a first-order Markov process. The two repeat
units are the same as in Example 1, where the blue repeat unit is
R0 and the red repeat unit is R1. Fixed-length linear polymers are
generated using tij, the transition or conditional probability that a
repeat unit of type i is followed by a repeat unit of type j in a
linear sequence, with i,j = R0,R1. As shown in Figure 4a, the
transition probability t10, for example, is the probability of
forming a ∼R1R0 from ∼R1 in a copolymer chain where “∼”
represents a piece of polymer chain. The tijs can be used to
construct a transition matrix T, which is given by

T
t t

t t
00 10

01 11
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (5)

Due to the rules of probability, the sum of the transition
probabilities for the addition to ∼R0 and ∼R1, are each
separately equal to 1. Therefore,

t t 100 01+ = (6a)

t t 110 11+ = (6b)

The first-order Markov process can thus be specified by two
independent parameters: (i) the average fraction of R1 in a
copolymer chain, f Rd1

Figure 3. (a) Polymer ensemble P = {(p1,wp d1
= 0.5),(p2,wp d2

= 0.5)} and
(b) polymer ensemble Q = {(q1,wqd1

= 0.5),(q2,wqd2
= 0.5)}. Blue circles

represent the repeat unit R0, and red circles represent the repeat unit R1.
(c) Graph edit distance (GED) matrix and (d) distance (d) matrix
between polymer ensembles P and Q.
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f f t f t(1 )R R 11 R 01
1 1 1

= · + · (7)

and (ii) the nontrivial eigenvalue of the transition matrix T, λ,
which defines the correlations in the linear repeat unit sequence.

t t 100 11= + (8)

Here copolymer ensembles are studied with the setting
f Rd0 = f Rd1

= 0.5, where the average fractions of R0 and R1 are the
same in a copolymer chain. Consequently, t00, t01, t10 and t11 are
solely determined by λ.

t t
1

200 11= = +
(9a)

t t
1

201 10= =
(9b)

By modifying the value of λ, different copolymer ensembles
Pλ. can be generated. In this example, a series of polymer
ensembles are generated for λ = −1.0 to 1.0 in increments of 0.5.
All chains have a fixed length L = 10. Representative copolymer
sequences are shown in Figure 4b. At λ = 0, there are no
correlations (memory) along the chain; this is an ideal random
copolymer. The case of λ > 0 corresponds to positive
correlations between identical repeat units, meaning that the
last monomer of the polymer chains has a tendency to connect
the same type of repeat units (blocky polymers). The case of λ <
0 corresponds to negative correlations between identical repeat
units, meaning chains tend to alternate between R0 and R1 repeat
units. For the case of λ = −1.0, the polymer ensemble Pλ = 1.0 has
two sequences with equal probability, R0 R1 R0 R1 R0 R1 R0 R1 R0

R1 and R1 R0 R1 R0 R1 R0 R1 R0 R1 R0. Even though these two
polymer chains’ pairwise GED is zero due to symmetry, they are
both kept because they are generated in different Markov
processes. For the case of λ = 1.0, polymer ensemble Pλ = 1.0 has
only two sequences with equal probability R1 R1 R1 R1 R1 R1 R1
R1 R1 R1 R1 and R0 R0 R0 R0 R0 R0 R0 R0 R0 R0. Apart from these
two special cases, polymer ensembles generated by other λ
values are sampled by following the above first-order Markov
process for 3 × 107 polymer chains (Discussions of sampling size
convergence are included in the Supporting Information).

The distributions of the mole fraction of R1 in the polymer
chain CRd1

) for a series of ensembles as a function of the
composition variation on a chain basis in the ensemble are
shown in Figure 4c. These copolymer ensembles generated by
different λ values have distinct chain composition distributions.
The ensemble generated at λ = −1.0 is a perfectly alternating
copolymer with only two unique sequences where the values of
CRd1

of these two chains are both 0.5. Therefore, polymer
ensemble Pλ= −1.0 has probability of 1.0 at CRd1

= 0.5. As λ
increases, the corresponding probability for CRd1

= 0.5 gradually
decreases, and the corresponding probability at the two ends
(CRd1

= 0.0 and CRd1
= 1.0) gradually increases. When λ = −1.0,

polymer ensemble Pλ= −1.0 has a distribution with the probability
of CRd1

= 0.0 being 0.5 and the probability of CRd1
= 1.0 being 0.5.

The distributions are symmetric since the same average fraction
f Rd0

= f Rd1
= 0.5.

Similar to Example 1, the one-hot encoding method is utilized
to embed the copolymer sequence as a vector, where the blue

Figure 4. (a) First-order Markov copolymer model. (b) Representative copolymer sequences (Blue circle representing repeat unit R0 and red circle
representing repeat unit R1) with average mole fraction f Rd1

= 0.5, and different repeat unit sequences (λ value): λ = 1.0 generates chains either pure R0

or R1 (t00 = t11 = 1.0); λ = 0.5 creates a chain with moderate positive correlations in identical monomers (t00 = t11 = 0.75); λ = 0.0 is an ideally random
chain (t00 = t11 = 0.5); λ = −0.5 creates a chain with moderate negative correlations in identical monomers (t00 = t11 = 0.25); and λ=-1.0 is a perfectly
alternating chain (t00 = t11 = 0). (c) Distributions of the mole fraction of R1 in the polymer chain (CRd1

) for a series of first-order Markov copolymer
ensembles generated from different λ values.
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the average method is employed to compute the mean of all
embedding vectors of copolymer chains within each ensemble,
the obtained average global vector V for each ensemble is
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the average method eliminates the ensemble features and fails to
accurately characterize the pairwise similarity among these
copolymer ensembles, akin to the issue in Example 1.

EMD is then employed to compute the pairwise similarity
between a pair of ensembles of first-order Markov copolymers.
As illustrated in Figure 5a, using one-hot encoding and setting
substitution cost as 1, the value of S(λ1,λ2) between a copolymer
ensemble Pλd1

and a copolymer ensemble Pλd2
from the EMD

method is between 0.61 and 1. The lowest similarity score is
S(1.0,-1.0) = S(−1.0,1.0) = 0.61, and the highest similarity score

is self-similarity S(λ,λ) = 1. The similarity between copolymer
ensemble Pλd1

and copolymer ensemble Pλd2
decreases as the gap

|λ1-λ2| increases, which is consistent with chemical intuition. If
repeat units R0 and R1represent specific chemical structures,
such as “*CC(*)c1ccccc1” (the repeat unit of polystyrene
represented in BigSMILES, {[][$]CC(c1ccccc1)[$][]}) and
“*CC(*)c1ccc(C(�O)OC)cc1” (the repeat unit of poly-
(methyl 4-vinylbenzoate), {[][$]CC(c1ccc(C(�O)OC)cc1)
[$][]}), then the nodes and edges can be embedded with
Morgan fingerprints46 and the Tanimoto dissimilarity between
R0 and R1 can be used as the substitution cost.43 The
corresponding pairwise similarity results for this case are
shown in Figure 5b. The basic trends match that of one hot
encoding, but the range of similarity values is smaller since the
two different repeat units are more similar to one another than if
one hot encoding is used. For both one-hot encoding and
Morgan fingerprint encoding, the EMD results follow chemical
intuition and provide a quantitative result. Therefore, unlike the
average method, the EMD method is able to distinguish these
first-order Markov copolymer ensembles from one another, thus
demonstrating the utility of the method.

Apart from different chemistries, Example 2 can also be used
to describe the pairwise similarity of polymer ensembles with
different tacticity, such as atactic and syndiotactic polypropylene
(PP), where R0 and R1 represent “*C[C@H](C)*” and
“*C[C@@H](C)*”. Atactic PP ensembles can be treated as
Pλ = 0. Syndiotactic PP can be treated as Pλ = −1.0. If using the one-
hot encoding, the pairwise similarity result can be found in
Figure 5a, where S(atactic PP, syndiotactic PP) = 0.69.
Furthermore, if Morgan fingerprint encoding is used to include
the detailed chemical structure of stereochemical centers, then
the pairwise similarity result is S(atactic PP, syndiotactic PP) =
0.90.
Example 3: Star Polymer Ensemble

In the two examples discussed above, all of the polymer chains
are linear and have a constant chain length. However, in the real-
world, polymer ensembles are often more complex, featuring
varying lengths, topologies and chemistries, such as the eight
types of star polymer ensembles in Figure 6a. Take SP-1, a three-
arm star polymer ensemble, is an example. The probabilities of
arm-lengths assigned to be one, two, and three are 1

4
, 1

2
and 1

4
,

respectively. This simple case was chosen as it allows for
illustration of the method while reducing the computational
burden of the costly GED method. With these parameters, this
three-arm star polymer ensemble SP-1 has ten configurations
with the corresponding analytical mole fractions as shown in
Figure 6b. The configurations and corresponding mole fractions
of the other seven polymer ensembles are given in the
Supporting Information. Morgan fingerprints are used for the
embedding of nodes and edges, while Tanimoto dissimilarity is
used as the substitution cost.

The pairwise dissimilarity di,j between two individual polymer
chains is calculated by GED, and then the di,j and each polymer
chain’s weight are used to calculate the EMD and similarity
score. The similarity results are shown in Figure 7. S(SP-1, SP-2)
reveals the effect of arm length on the similarity score; S(SP-1,
SP-3) illustrates the effect of arm number on the similarity score;
S(SP-1, SP-5) demonstrates the impact of repeat units on
similarity. S(SP-1, SP-2) > S(SP-1, SP-4) and S(SP-1, SP-3) >
S(SP-1, SP-4) because, compared with SP-1, SP-4 changes both
arm length and arm number, which is consistent with the

Figure 5. Pairwise similarity score S(λ1,λ2) for first-order Markov
copolymer ensembles generated by different λ values under one-hot
encoding (a) and Morgan fingerprint encoding (b).
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chemical intuition. The pair SP-1 and SP-8 and the pair SP-4 and
SP-5 have the smallest pairwise similarity scores, meaning these
pairs are the most different pairs. This is consistent with
chemical intuition because the arm length, arm number, and
repeat units of SP-1 and SP-8 (or SP-4 and SP-5) are all different.
Example 4: Polymer Ensembles Represented by
Experimental Molecular Mass Distributions
Polymer molecular mass distributions (MMDs)38,39,76−78

exemplify the fact that synthetic polymers are ensembles rather
than single, well-defined structures. Six experimental polystyr-

ene MMDs from Kottisch et al.76 are used to illustrate how EMD
can be used to characterize the pairwise similarity between two
different MMDs, as displayed in Figure 8a. Kottisch et al.
controlled the breadth and shape of polystyrene MMDs by
varying initiator (sec-butyllithium) addition rates (constant,
linearly ramped, and exponentially ramped) and addition time.76

For example, C-40 refers to a constant rate of initiator addition
with an addition time of 40 min. The parameters of these six
MMDs are shown in Figure 8b. Among these MMDs, C-40, L-
40 and E-60 have similar number-average molar mass (Mn) and
dispersity (Đ) but different shapes illustrated by the asymmetry
factor (As), skewness (α3), and kurtosis (α4).

In this example, the EMD metric is utilized to quantitatively
calculate the similarity between two arbitrary distributions. As in
the previous examples, each unique polymer molecule is utilized
to generate a polymer graph representation. In this case, to make
the method generalizable to multiparameter distributions (for
example, molar mass and monomer composition), the polymer
graph representation is built for every single value of measured
molecular mass (Mi) in the MMDs, as shown in Figure 8c. To do
so, the fact that the polymers are linear is used. Since one of the
end groups (*H) is implicit, the number of nodes can be
computed as

N dp 1i i= + (10)

where dpi is the degree of polymerization computed from Mi.
The value of 1 corresponds to the other end group, the sec-butyl
group. Since all of the MMDs in this study are for linear
polystyrene, as shown in Figure 8c, adding one repeat unit node
means also adding one edge in the graph representation. GED
between Mi and Mj can be computed as two times the difference

Figure 6. (a) Eight types of star polymer ensembles were generated with varying arm lengths, arm numbers, and repeat unit compositions. The blue
circle and the red circle represent two types of repeat units. The yellow triangle is a star core group with three connection spots. The green square is a
star core group with four connection spots. (b) Ten polymer chains’ configurations and the corresponding mole fractions about the three-arm polymer
ensemble SP-1 in (a).

Figure 7. Pairwise similarity score for eight star polymer ensembles.
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of the degree of polymerization. For nonlinear polymers, this
equation may also be a suitable approximation approach if only
the MMDs are known.

GED M M dp dp( , ) 2i j i j= × | | (11)

Plugging this into eq 2 yields

d M M
dp dp

( , ) 1 exp
2

i j i j
i j

dp dp, ( 1) ( 1)

2
i j

=
× | |
+ + +

i

k

jjjjjjjjjj

y

{

zzzzzzzzzz (12)

For the weight setting of wi and wj, the normalized mole
fractions are used. EMD takes wi, wj and di,j to calculate the
pairwise similarity score values among MMDs. Since the weights
are normalized, the EMD should theoretically converge
(ignoring experimental error) if the frequency of sampling Mi
is increased beyond the sampling of about 1 s (discussion of
MMD sampling frequency convergence are included in the
Supporting Information). The pairwise similarity results are
shown in Figure 8d. S(C-40,C-60) is lower than S(E-40,E-60),
which is consistent with the chemical intuition that E-40 and E-
60 are closer in dispersity. Among C-40, L-40, and E-60 MMDs,
C-40 and L-40 are the most similar pair, while polystyrene
MMDs C-40 and E-60 are the most different. These similarity
scores are consistent with the relative rankings of skewness and
kurtosis of C-40, L-40, and E-60.
Areas for Future Development
GED is a robust, generalized, and powerful tool for calculating
the pairwise distance between two individual polymer chains
with arbitrary composition, chain length, and topology.
However, the calculation of exact GED is nondeterministic

polynomial-time hard (NP-hard). Even the state-of-the-art
algorithms cannot reliably compute the exact GED within
reasonable computing time between graphs with more than 16
nodes.66,79 If each polymer ensemble has thousands of unique
polymer chains, then the calculation of EMD between these
polymer ensembles requires millions of exact GED calculations.
This NP-hard feature of an exact GED calculation renders it
especially costly for large graph representations and limits the
proposed method to relatively small polymers unless assump-
tions such as those in Example 4 are used.

The method for selecting repeat units as nodes for building
coarse-grained polymer graph representations needs further
improvement. For example, a polyethylene chain with 100
polymerization degrees (CC)100 and a hydrogenated 1,4-
polybutadiene chain with 50 polymerization degrees,
(CCCC)50 are treated differently since their monomers are
different under the canonicalization priority rules51 despite the
fact that they both represent the same polymer chain with the
total length of 200 carbons. Fundamentally, this is an artifact of
coarse-graining of the polymer chain into monomer units.
Comprehensive coarse-graining techniques that satisfy both the
repeat unit level and the whole polymer chain level will be
developed in the future.

In the study of experimental polymer ensembles, various
approximation methods are employed to calculate pairwise
similarity scores. These methods aim to construct representative
ensembles that reflect the actual states of the polymers, albeit
with limited available information (molecular structure
representations and MMDs). As experimental characterization
techniques for polymers continue to advance in the future, it is
anticipated that more comprehensive data will be collected. This
additional information will facilitate the creation of more

Figure 8. (a) Six polystyrene MMDs from the work of Kottish et al.76 generated by varying initiator (sec-butyllithium) addition rates (constant (C),
linearly ramped (L), and exponentially ramped (E)) and addition time (40 and 60 min). C-40, for example, refers to a constant rate of initiator addition
with an addition time of 40 min. (b) MMDs’ parameters include number-average molar mass (Mn), dispersity (Đ), asymmetry factor (As), skewness
(α3), kurtosis (α4) from Kottish et al.76 (c) The polymer graph representation is built for every single value of measured molecular mass (Mi) in the
MMDs. (d) Pairwise similarity scores for six polystyrene MMDs via EMD.
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accurate representative ensembles, which, in turn, will improve
the precision of similarity calculations.

■ CONCLUSION
Quantifying the pairwise similarity of polymers is a challenging
task due to their ensemble nature consisting of polymer chains
with varying quantities, lengths, sequences, chemistry, and
topologies. This complexity is greater than that of small
molecules with well-defined molecular structures or biomacro-
molecules with specified sequences. This research leverages the
earth mover’s distance (EMD) method to quantitatively
compute pairwise similarity scores of polymer ensembles. The
EMD metric provides enhanced chemical resolution compared
with the average method, which may eliminate differences by
prematurely reducing system dimensionality. Furthermore,
EMD only needs the pair dissimilarity di,j which can be robustly
calculated from graph edit distance, skipping the difficult step of
designing comprehensive embedding functions for each
polymer chain, especially for those nonlinear polymers with
complex topological structures.

Utilizing the EMD metric allows for an accurate and
quantitative assessment of chemical similarity between polymer
ensembles, and the results have been shown to align with the
chemical intuition. This method has far-reaching applications in
polymer database retrieval systems including nearest neighbor
search queries. It benefits the development of supervised
machine learning techniques on polymer properties and
provides a robust foundation for future research in polymer
design and optimization.8,12,24,33,80−85
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