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Neutrophil extracellular traps (NETs) have been initially described as main actors in

host defense owing to their ability to immobilize and sometimes kill microorganisms.

Subsequent studies have demonstrated their implication in the pathophysiology of

various diseases, due to the toxic effects of their main components on surrounding

tissues. Several distinct NETosis pathways have been described in response to various

triggers. Among these triggers, IgG immune complexes (IC) play an important role

since they induce robust NET release upon binding to activating FcγRs on neutrophils.

Few in vitro studies have documented the mechanisms of IC-induced NET release

and evidence about the partners involved is controversial. In vivo, animal models and

clinical studies have strongly suggested the importance of IgG IC-induced NET release

for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune

diseases in which NETs are undoubtedly major players, systemic lupus erythematosus

(SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example

of disease recently associated with IC-induced NET release. Understanding the role

of IC-induced NETs in these settings will pave the way for new diagnostic tools and

therapeutic strategies.
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INTRODUCTION

Neutrophil extracellular traps (NETs) are extracellular chromatin filaments produced upon cell
activation and decorated with many proteins normally confined to neutrophil cytoplasm and
granules. This process was first described in 2004 as a new mechanism to catch, immobilize, and
potentially kill bacteria (1). Subsequently, NETs have been shown to kill several species of bacteria,
and rapidly limit the extent of the infection in some models (2–4). However, NET contribution to
infectious diseases is double-edged. On the one hand, they may play a major role in defense against
pathogens but on the other hand, collateral damage in infected host tissues can be significant, due to
proteolytic enzymes release or histone toxicity (5–7). For instance, a deleterious role for NETs have
been described in life-threatening infectious conditions such as sepsis or pneumonia-associated
acute respiratory distress syndrome (8–12). Interestingly, besides their major pro-inflammatory
role, NETs might also be able to downregulate dendritic cell activation and promote Th2 response,
thus participating in the resolution of inflammation (13).
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In addition to their role during infection, increasing evidence
shows that NETosis also happens in a large number of non-
infectious inflammation-associated diseases, including various
lung diseases, thrombosis, cancer, and auto-immune diseases
(14). In the lung, we and others reported that NETs are found
in high concentrations in patients with chronic obstruction
pulmonary disease or asthma (15–20). In thrombosis, a major
interplay between platelets, components of the coagulation
system and NETs have been unraveled, leading to the emergence
of a new concept named immunothrombosis (21). Finally,
as NETs are both pro-inflammatory and composed of many
potential autoimmune targets, it has been hypothesized that
NETs could be strong inducers of autoimmunity. Indeed, a
crucial role for NETs has been described in various autoimmune
diseases such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), vasculitis or diabetes (22–24).

IMMUNE COMPLEXES TRIGGER NET
FORMATION

NETosis Mechanism
In the initial studies about NETosis, the authors described a
relatively long process (several hours) leading to neutrophil lysis
and dependent on NADPH oxidase 2 (NOX2) activation (25–
27). Fifteen years later, several distinct pathways in response to
various triggers have been described making the definition of
NETosis even more complex (28). The lytic or suicidal form
of NETosis relies on NOX2-derived reactive oxygen species
(ROS) release, allowing the liberation of neutrophil elastase
(NE) and myeloperoxidase (MPO) from azurophilic granules.
Both histone cleavage by NE and their citrullination by peptidyl
deaminase 4 (PAD4) have been initially described as required
for chromatin decondensation and extrusion out of the cell.
However, several intracellular pathways have been described, and
some NET release could be NE- or PAD4-independent (29–
31). Autophagy is also probably involved, even if there is yet
no consensus as conflicting results were obtained (28, 32–34).
Very interestingly, quick non-suicidal pathways of NET release
have also been described, where neutrophils remain viable, and
can still perform functions such as phagocytosis, chemotaxis
or dendritic cell activation (14, 35–37). Some studies have also
shown NETs composed of mitochondrial DNA (38) but this
mechanism requires more investigation. In addition, NOX2–
independent pathways have been described, where calcium influx
could triggers the activation of mitochondrial ROS (39, 40). This
mechanism has been shown in chronic granulomatous disease
patients, who have impaired NOX2 activation (41, 42).

The mechanisms of NET formation and release may vary
depending upon the initial trigger (23, 43, 44). A large number
of triggers have been described, both artificial and physiological.
Among them, IgG and IgA immune complexes (IC) have been
shown to trigger NETosis in different situations (38, 45–48).

Immune Complexes Triggering
In this review, we will focus on the role of IC on NET
formation. To date, few in vitro studies have documented the
mechanisms of NET release in response to pre-formed IC in

both murine (49, 50) and human neutrophils (49, 51). Moreover,
these studies provided conflicting results especially regarding
type of FcγR involved or NOX2 requirement. Using soluble
bovine serum albumin (BSA)-IgG IC, Chen et al. highlighted
some discrepancies between the results obtained in human
FcγRIIA transgenic mice and those using blocking antibodies
on purified human neutrophils. The first model suggested the
importance of human FcγRIIA during in vivo NET release
whereas the latter supported a role of FcγRIIIB in vitro. The
differences between the models could explain this discrepancy.
Indeed, in transgenic FcγRIIIB+/γ−/− mice which do not express
FcγRIIA, FcγRIIIB engagement lead to IC clearance. Moreover,
blocking FcγRIIA on human neutrophils does not affect receptor
intracellular signaling domain, allowing FcγRIIA to transduce
signal mediated by FcγRIIIB engagement. Hence, these results
support a cooperative role of FcγRIIA and FcγRIIIB, the two
activating receptors constitutively expressed on neutrophils,
during IC-induced NET-release (49). However, other studies
have pointed out an exclusive role of FcγRIIIB in NET release
in response to immobilized ICs (51) or by direct receptor
aggregation (52, 53). Similarly, the requirement of NOX2-
generated ROS in IC-induced NET release is controversial.
Although most studies supported a pivotal role of NOX2 (38,
45, 51, 52), two of them provided opposite results despite
similar pharmacological inhibitor [diphenyleneiodonium (DPI)]
but different concentrations (49, 54). As DPI inhibits a wide
variety of NADP-dependent enzymes as well as mitochondrial
flavoenzymes (55), DPI-related NET release inhibition only
means that ROS (whatever their cellular origin) are important
in this process. Additionally, a role of actin cytoskeleton (49),
Syk/Src (49–51), and MAPK (49, 51, 52) have been suggested
by a few studies whereas the implication of NE/MPO (49, 51)
and PI3K/AKT (49, 51, 52) are debated and need confirmation.
All these conflicting results regarding the molecular pathways
implicated in IC-induced NET release could be explained
at least in part by the heterogeneity of the protocols: type
of IC (antigenic system, spatial configuration, antigen, and
antibody concentrations), pharmacological inhibitors (type and
concentration), blocking antibodies [clone, type (Fab or full Ab)],
use of human transgenic mice, and method to quantify NETs.
Thus, there is a need for recapitulative studies comparing side
by side the different triggers and inhibition strategies to obtain a
definitive and clear view of IC-induced NET release pathways.

IMMUNE COMPLEX-INDUCED NETS CAN
TRIGGER AND PERPETUATE VARIOUS
AUTOIMMUNE DISEASES

As they expose intracellular endogenous components to the
immune system, NETs have been very soon suspected to
participate in the initiation of the autoimmune response
(Figure 1). Indeed, autoantibodies against several NET
components such as DNA, MPO, elastase, citrullinated
histones, or proteinase 3 (PR3) are hallmarks of several systemic
autoimmune diseases. It has been speculated for several years that
anti-ribonucleoprotein (RNP) and anti-DNA antibodies found
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FIGURE 1 | Mechanisms of NET formation in autoimmunity. Autoantigen/IgG IC can bind to several FcγRs expressed at the neutrophil surface and induce their

activation. In particular, NOX2 is activated and produce ROS that can in turn activate PAD4 leading to protein citrullination and chromatin decondensation. In parallel,

ROS can also help MPO and NE degranulation and translocation to the nucleus contributing to chromatin unfolding. The nuclear membrane breaks down, the

decondensed chromatin is released in the cytosol and becomes decorated with various cytosolic and granule-derived proteins. Finally, NETs are released exposing to

the immune system a large number of autoantigens that can amplify this mechanism called lytic NETosis. In some conditions, in particular in SLE, these IC can also

induce a non-lytic NOX2-independent NETosis via the production of mitochondria-derived ROS and/or DNA; in that case, neutrophils are still alive.

in the serum of patients with SLE could be produced in response
to NET constituents and thus participate to the high level of
circulating IC in lupus (56–58). ICs containing self-antigens, in
particular RNP/anti-RNP ICs, have been shown to induce NET
release, creating an amplification loop where NET components
induce autoantibodies leading to ICs, which subsequently trigger
NET formation and perpetuate the phenomenon. The role of
these IC-induced NETs in the pathophysiology of lupus is not
obvious, as the high levels of NETs released during infection does
not usually lead to autoimmune response. This suggests that
some additional mechanisms must lead to a break of tolerance to
NETs. Interestingly, RNP-containing ICs were shown to induce
mitochondrial hyperpolarization, increased mitochondrial ROS
production and extracellular release of oxidized mitochondrial
DNA, a potent proinflammatory compound able to activate
type 1 interferon pathway (38). Additionally, self-DNA ICs
have been shown to activate plasmacytoid dendritic cells via
TLR9, also leading to type 1 interferon release, which has been
linked to loss of tolerance (56, 57). An impairment of NETs
regulatory mechanisms could also favor loss of tolerance. Some
patients with active lupus or lupus nephritis have a deficiency in
DNase 1 activity and/or anti-NET antibodies that inhibit DNase

effect (23, 59, 60), leading to abnormal NET accumulation. This
prolonged presence of NETs could favor rupture of tolerance
as well as increase tissue damage (61). Another interesting
element is that the composition of NETs from SLE patients is
different from that of healthy controls. NETs from SLE patients
are richer in toxic compounds (e.g., oxidized alpha-enolase)
leading to tissue damage, especially in lupus nephritis (62).
Recent observations suggest that several PAD4 polymorphisms
are associated to SLE and lupus nephritis, reinforcing the link
between NETs and SLE pathophysiology (63, 64). Additionally,
in lupus nephritis, circulating IC deposit in the glomerular
basement membrane, giving an additional pathogenic role for
these IC. Taken together these findings emphasize a major
role for IC in the different NETosis pathways involved in SLE,
particularly in lupus nephritis (65).

RA is another example where IC-induced NETs are of
importance (66, 67). Even if the pathogenesis of RA is not
fully understood, many studies have shown that in genetically
predisposed patients, anti-citrullinated protein antibodies
(ACPAs) play a major role. These autoantibodies target
citrullinated self-proteins like histones, vimentin, enolase,
collagen, filaggrin, fibrinogen, or calreticulin. Citrullination
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is a physiological process that occurs in inflammation and
during NETosis, due to the activation of PAD4 (66–69). PAD4
activity contributes to RA development, since PAD4-deficient
mice have reduced autoantibodies and joint damage in arthritis
models (70, 71), and a single nucleotide polymorphism of
PAD4 is associated to an increased risk to develop RA in
humans (72). Neutrophils from RA patients are activated and
produce spontaneously more NETs than healthy donors (73).
Additionally, NETosis can be activated by ACPA IgG and IgA
ICs (46, 69, 74). Circulating NETs and netting neutrophils in
joints are found in patients with RA (69, 75, 76), demonstrating
active and widespread NETosis in this context. Thus, IC-induced
NETs together with inflammation and synoviocyte activation
can enhance the production of citrullinated autoantigens and
fuel the autoimmune response, which will in turn produce
more ICs (24, 77). Furthermore, synovial fibrocytes can
internalize NETs via a RAGE-TLR9 pathway leading to MHC-
class II upregulation and presentation to specific T cells of
NET-associated citrullinated peptides (78).

The breaking of tolerance to citrullinated proteins is suspected
to occur in the airway, in particular in smoker’s airway (79–81).
Identical citrullinated proteins are present in the joints and in the
lung of patients with RA, and high levels of NETs can be found
in the sputum of ACPA-positive RA patients, and even in at-
risk patients’ relatives (positive for HLA-DRB1 allele and ACPA)
(82). Nicotine could induce NETs via PAD4 activation (83),
and smoking triggered NETosis in several experimental models
(84, 85). The link between nicotine, NETs, and loss of tolerance
to citrullinated proteins is not fully elucidated yet, but the more
recent studies point to an intense lung citrullination process
related to high levels of PAD4 and neutrophil activation (22, 86).
These NETs can then induce dendritic cell maturation, type 1
IFN release, Th1 expansion, and B cell activation. Furthermore,
ectopic lymphoid tissue and high levels of ACPA are observed
in the lung of patients with RA reinforcing the idea of a local
autoimmune response (82, 87). Finally, the microenvironment,
in particular the microbial agents, might themselves play a
role in breaking the tolerance; it was for instance recently
demonstrated that PAD from Porphyromonas gingivalis is able to
produce citrullinated proteins and participate to RA pathogenesis
(23, 88). Thus, NETs produced in response to infection could
constitute in some instances a bridge between infection and
autoimmunity. To summarize, NETs are an important source
of citrullinated autoantigens in RA, fueling the production
of ACPAs in predisposed individuals. They also maintain an
inflammatory environment in the lung and in the joints,
facilitating neutrophil activation and NET production by the
ACPA/citrullinated peptides ICs.

IMMUNE COMPLEX-INDUCED NETS
PARTICIPATE TO ANAPHYLAXIS

IgG ICs Formed During Anaphylaxis Induce
NET Release
Anaphylaxis is an acute systemic hypersensitivity reaction
that can be life-threatening. Because of its extremely fast
and unpredictable onset, it is difficult to obtain data on its

mechanisms in human, and animal models have been developed
to better understand this complex disease (89). The classical
pathway is based on the triad IgE/basophil-mastocyte/histamine.
During anaphylaxis, cell-surface bound specific IgE on basophils
and mast cells react with the allergen and induce the release of
preformed mediators such as histamine and proteases, leading
to clinical signs of anaphylaxis. However, anaphylaxis can be
triggered in mice lacking IgE or their receptor (90, 91), and we
reported that up to 30% of patients with neuromuscular blocking
agent (NMBA) perioperative anaphylaxis do not have any sign
of the IgE pathway (92, 93). An IgE-independent anaphylaxis
mechanism has thus been proposed and demonstrated in mice,
mediated by neutrophils, specific IgG and FcγRs (94). Specific
IgG-IC can bind to various activating FcγRs at the surface
of cells such as neutrophils and induce their activation. High
circulating levels of several neutrophil-related components and
platelet activating factor (PAF) have been described in mice
models of anaphylaxis, and in patients experiencing anaphylaxis
as markers of neutrophil activation (95–97). The mechanisms
of IgG-mediated neutrophil activation during anaphylaxis were
first demonstrated in mice models of BSA-induced anaphylaxis.
Using depletion and inhibition strategies it was shown that
specific IgG-IC binding to neutrophil FcγRIIIA or FcγRIV was
sufficient to induce fatal anaphylaxis (94). As human neutrophils
do not express these two activating receptors but FcγRIIA,
transgenic mice expressing the human FcγRIIA were used to
demonstrate a major role for this receptor during anaphylaxis
(98, 99). Very recently, these findings were confirmed in an
elegant humanized mouse model where the human low-affinity
IgG receptor locus, comprising both activating and inhibitory
FcγR genes was inserted into the equivalent murine locus (100,
101). The implication of such an IC-mediated anaphylaxis via
a new IgG/neutrophil/PAF triad is thus well-demonstrated in
animal models and suggested to be relevant in humans by the
studies on humanized mice. The existence of this alternative
or additional mechanism in humans has been very recently
demonstrated in a cohort of 86 patients experiencing NMBA
anaphylaxis (93). Blood neutrophils were activated in patients
as shown by the upregulation of CD11b, CD18, CD66b, and
high levels of circulating elastase. NETosis was also triggered
and patients had high levels of circulating NETs remnants
(DNA-MPO complexes). Interestingly, a decreased expression of
neutrophil FcγRIIA and FCγRIIIB was observed 30min after
anaphylaxis onset. This negative modulation is consistent with
the engagement of FcγRs by circulating IC. Moreover, purified
anti-rocuronium IgG isolated from a patient could form IC in
vitro with a rocuronium bioconjugate. These IC were able to
activate human neutrophils in vitro, and induce NET release
(93). Concentration of anti-NMBA IgG and neutrophil activation
markers correlated with anaphylaxis severity. This mechanism
could be observed in patients lacking any evidence of IgE-
dependent anaphylaxis, suggesting that IgG and IgE pathways
could be independent, at least in some instances.

Alternative Mechanisms of NET Release
During Anaphylaxis
Besides the role of IgG/IC in NET release during anaphylaxis,
one could speculate that other mechanisms exist that could
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modulate neutrophil activation. Some mediators released both
in the acute and the late inflammatory phase of anaphylaxis
such as pro-inflammatory cytokines, PAF, or C5a seem able
to activate NET release in some conditions, even if there is
still conflicting results on the subject (102–105). Recently, a
major role of platelets in anaphylaxis has been suggested both
in hFcγRIIA transgenic mice model and in humans (106, 107).
In the mouse model, the interaction of platelet FcγRIIA with
IgG-ICs induced platelet activation/aggregation, whose intensity
correlated with the severity of anaphylaxis. Moreover, platelets
depletion substantially attenuated symptomatology in mice.
As platelets are much more abundant in bloodstream than
neutrophils, it seems likely that IgG-ICs interact with platelet
FcγRIIA first, before interacting with neutrophils. Activated
platelets can aggregate on neutrophils to form platelet-neutrophil
complexes detectable in vivo during several inflammatory
conditions such as sepsis, pulmonary diseases, atherosclerosis
(108), and recently allergic shock (106). The formation of
these complexes involves the GP1b (glycoprotein 1b)/MAC-1
(macrophage 1 antigen) interaction (108), which is able to induce
NET release. Platelets also release several soluble mediators
known to activate NETosis (Von Willebrand Factor, platelet
factor 4, HMGB1, PAF) (4, 109). Thus, besides direct neutrophil
activation by IgG-ICs, other mechanisms involving released
mediators or/and activated platelets may contribute to NET
release during the acute phase of anaphylaxis.

Contribution of NETs to Anaphylaxis
Mechanism
To date, only one study showed NET formation during
anaphylaxis in human (93). Therefore, the pathogenic role of
NET in this context is still unclear. However, some hypotheses
could be raised according to well-established NET component
properties. NET cytotoxicity on vascular endothelium and
epithelia has already been shown to be responsible for organ
failure in mouse models of sepsis and acute lung injury (4, 5, 110)
and may therefore contribute to the pulmonary and vascular
symptomatology of anaphylaxis. Whether NETs are formed in
the lungs during anaphylaxis has not been directly investigated
so far, but interstitial accumulation of neutrophil associated with
pulmonary congestion has been demonstrated in a model of
casein-induced active anaphylaxis (111). It is also possible that
circulating NETs reach lung microcirculation and damage the
alveolar-capillary interface as observed in mouse models of acute
lung injury (112).

Complement activation is one of the mechanisms implicated
in alternative routes of anaphylaxis and in worsening classical
IgE-mediated anaphylaxis through C3a and C5a production
(89). Along with direct toxicity, NETs could amplify mast cell
degranulation by activating the alternative complement pathway
(113, 114). Similarly, NETs could amplify bradykinin-mediated
circulatory complications through their capacity to activate
contact coagulation system (115).

To summarize, very recent human studies have shown that
allergen/specific IgG IC are able to activate neutrophils and

induce NETs. This new anaphylaxis pathway could participate
to clinical manifestations of anaphylaxis (Figure 2), and should
be considered in future investigations of diagnostic markers or
therapeutic interventions.

DIAGNOSTIC AND THERAPEUTIC
PERSPECTIVES

The implication of NETs in pathology has been prompting several
studies investigating its potential as a diagnostic marker or a
therapeutic target.

Circulating NETs have been detected in patient’s serum in
many diseases. Accordingly, NET concentrations have been
studied as diagnostic or prognostic markers. Many studies have
focused on the concentrations of cell-free DNA or circulating
nucleosomes as NET surrogates. However, those are a poor
reflect of NETosis since they will be released by any dying cell
(116). Some other works focused on citrullinated H3 (H3citr)
quantification in serum or tissues. For example, serum H3citr
levels predicted the risk of venous thromboembolism in a cohort
of 946 cancer patients. Additionally, Jin et al. showed in an
interesting study that intratumoral NETs identified by H3citr
staining could predict poor survival in post-surgery pancreatic
cancer patients (117). The most specific marker of NETs to
date are DNA-MPO complexes (116), but fewer studies have
investigated their diagnostic relevance. Concentration of DNA-
MPO complexes in serum are associated with poor control in
asthma (20), severity in anaphylaxis (93), and development of
extra-articular nodules in rheumatoid arthritis (118). It could also
predict organ dysfunction and 28-day mortality in septic shock
(119). High levels of circulating NETs were also associated with
poor prognosis in community-acquired pneumonia, though it’s
not clear exactly which NETs surrogate marker was used in this
study (120).

As for therapeutic intervention, two main approaches have
been investigated: destruction of NETs or inhibition of their
production. NETs can be dismantled by DNAse I treatment
or by heparin (121), while their production has been blocked
with PAD-4 inhibitors, mostly chloramidine (Cl-Amidine).
Disruption of NETs with DNAse I have proven efficient in mouse
models of stroke (122), ischemia reperfusion (123, 124), heparin-
induced thrombocytopenia (125), and deep vein thrombosis
(126). Furthermore, mice treated with DNAse I show less
metastasis in mammary tumor models (127, 128). Treatment
with chloramidine has shown efficacy in murine models of
abdominal aortic aneurysm (122), arterial thrombosis (129),
photothrombotic stroke (122), and sepsis (130).

However, studies in pathologies involving IC-induced NETs
are scarce. The most relevant works show that pristane-induced
lupus is reduced after inhalation of DNAse 1 (131), and arthritis
symptoms are reduced by chloramidine treatment in collagen-
induced arthritis model (132). Specific inhibition strategies using
FcR blocking antibodies represent an interesting possibility, but
no study has tested this approach so far, despite the existence of
broadly available efficient antibodies.

Frontiers in Immunology | www.frontiersin.org 5 December 2019 | Volume 10 | Article 2824

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Granger et al. Immune Complexes and Neutrophil Extracellular Traps

FIGURE 2 | Mechanisms of NET formation during anaphylaxis. The classical pathway of anaphylaxis is based on histamine release by mast cells and basophils

activated by the engagement of FcεRI after interaction of specific IgE with an allergen. A second pathway was recently demonstrated both in mice and human. In this

pathway the allergen reacts with specific IgG and form an IC that binds to several FcγRs at the neutrophil surface and activate them. In addition to ROS and protease

release, neutrophils release PAF and NETs, that could be also involved in anaphylaxis clinical manifestations.

Globally, while several potential clinical uses of NETs have
been described, most results come frommouse models, and large
scale clinical trials results are missing.

CONCLUSION

ICs can be formed in several clinical conditions. In autoimmunity
they can be continuously present in circulation or in
tissues, depending on the accessibility of the self-antigen.
In contrast, during anaphylaxis they are formed as soon as
the allergen enters the body and encounters pre-existing
IgGs. As neutrophils express high levels of FcγRs, they can
be activated by ICs and release NETs. Beside their tissue
toxicity and proinflammatory properties, NETs contain
autoantigen and can thus perpetuate autoimmunity. In
anaphylaxis, IC-induced NETs release represents a new

pathway that may participate in symptoms and severity of
the disease. New fundamental and clinical investigations
are needed to better elucidate the intracellular mechanisms
of IC-induced NET release and evaluate the potential
clinical applications of NETs as a biomarker and a
therapeutic target.
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