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Palaeontological evidence of membrane relationship in step-by-step
membrane fusion
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Abstract
Studies on membrane fusion in living cells indicate that initiation of membrane fusion is a transient and hard to capture
process. Despite previous research, membrane behaviour at this point is still poorly understood. Recent palaeobotanical
research has revealed snapshots of membrane fusion in a 15-million-year-old fossil pinaceous cone. To reveal the membrane
behaviour during the fusion, we conducted more observations on the same fossil material. Several discernible steps of
membrane fusion have been fixed naturally and observed in the fossil material. This observation provides transmission electron
microscope (TEM) images of the transient intermediate stage and clearly shows the relationship between membranes.
Observing such a transient phenomenon in fossil material implies that the fixing was most likely accomplished quickly by a
natural process. The mechanism behind this phenomenon is clearly worthy of further enquiry.
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Introduction

Membrane fusion is ubiquitous throughout eukary-
otic biological systems and has been of great interest
in physiological research for decades because it is
related to many physiological processes in eukaryotes
(Katz 1962, Palade and Bruns 1968, Lucy 1970,
Takeo et al. 1973, Heuser et al. 1974, 1979, Chandler
and Heuser 1980, Heuser and Reese 1981,
Battey et al. 1999, Blatt et al. 1999, Jahn and Südhof
1999, Blatt 2002, Cho et al. 2002, 2004, Yang and
Huang 2002, Jahn et al. 2003, Jeremic et al. 2003,
Tamm et al. 2003, Taraska et al. 2003, Jahn 2004,
Jena 2004, 2005a, 2005b, 2006, 2010, Kelly et al.
2004, Chernomordik and Kozlov 2005, Jahn and
Scheller 2006, Siksou et al. 2007, He and Guo
2009, Songer and Munson 2009, Žárský et al.
2009, Lee et al. 2010, Zhang et al. 2010). Membrane
fusion is a complicated process involving many
enzymes, and many hypotheses have been proposed
to explicate it in the past decades (Katz 1962, Palade
and Bruns 1968, Lucy 1970, Takeo et al. 1973,
Heuser et al. 1974, 1979, Chandler and Heuser
1980, Heuser and Reese 1981, Thiel and Battey

1998, Battey et al. 1999, Blatt et al. 1999, Blatt
2002, Cho et al. 2002, 2004, Jahn et al. 2003,
Yang and Huang 2002, Jeremic et al. 2003,
Tamm et al. 2003, Taraska et al. 2003, Jahn 2004,
Jena 2004, 2005a, 2005b, 2006, 2010, Kelly et al.
2004, Chernomordik and Kozlov 2005, Jahn and
Scheller 2006, Takamori et al. 2006, Siksou et al.
2007, Wong et al. 2007, He and Guo 2009, Songer
andMunson 2009, Žárský et al. 2009, Lee et al. 2010,
Zhang et al. 2010). More and more new technologies
have been applied in the related studies and more
in-depth understanding of the process has been
achieved (Cho et al. 2002, 2004, Yang and Huang
2002, Jahn et al. 2003, Jeremic et al. 2003, Jahn 2004,
Jena 2004, 2005a, 2005b, 2006, 2010, Kelly et al.
2004, Chernomordik and Kozlov 2005, Jahn and
Scheller 2006, Siksou et al. 2007, Croteau et al.
2009, Songer and Munson 2009, Lee et al. 2010,
Zhang et al. 2010). At this time, there still is some gap
between hypotheses and observation, however, due to
the transience of the initiation of fusion pore that
usually takes place in milliseconds, although the
whole fusion may last as long as tens of minutes
(Cho et al. 2002, 2004, Jena 2006, 2010). Few
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TEM observations provide direct evidence of details
about the intermediate stages and membrane rela-
tionship during this process. Wang et al. (2007) report
membrane fusion between secretory vesicles and
cytoplasmic membrane (CM) in a fossil cone. After
more investigation of the same material, we provide
more details of the fusion steps and membrane rela-
tionship during this transient process, and discuss its
implications for biological sample preservation and
preparation.

Materials and methods

The mummified pinaceous cone studied previously
by Wang et al. (2007) was further studied here. The
cone (PB20715) was collected in 2005 from the
Miocene (> 15 million year old) at Clarkia, Idaho,
USA (P33, 47�01¢N, 116�25¢W; Yang et al. 2005)
and is now deposited in Nanjing Institute of Geology
and Palaeontology, Nanjing, China. Originally it
was embedded in a gray siltstone formed in a
storm-influenced lake under anoxic conditions
(Yang et al. 2005).
The fossil was photographed using a LeicaMZ-16A

stereomicroscope with a digital camera (Wang et al.
2007). Small pieces of the fossilized organic material
were taken for microscopic observation, placed
sequentially in 20% HCl, 40% HF, and then 20%
HCl to remove inorganic minerals. This processing
was repeated twice more to ensure demineralization.
The samples were embedded in Epon 812 for ultra-
thin sections at Nanjing Normal University, Nanjing,
China, according to the following procedure. The
recipe for the 20 ml resin solution was 10.28 ml
Epon 812, 1.24 ml DDSA, 8.48 ml MNA, and
0.34 ml DMP-30. The samples were put in acetate
for 3 h, 1 h each in 50%, 67%, and 100% Epon resin
solutions in acetate, then in 100% resin solution
overnight. Next, samples were immersed in fresh
pure Epon resin in a container and cured in a pro-
gressively warmer oven set at 30�C for 24 h, 45�C for
24 h, and 60�C for 24 h. Then the cured blocks were
trimmed and sectioned using a Leica Ultracut R
ultramicrotome set at a 70 nm interval using a
diamond knife (Figures 1a–g). The ultrathin sections
were stained with lead citrate. Including those
in Wang et al. (2007), observations of more than
28 ultrathin sections, each covering more than
100 cells, was performed using an Hitachi-
7650 TEM at Nanjing Normal University, Nanjing,
China, and a Jeol JEM-1230 electron microscope at
Nanjing Institute of Geology and Palaeontology,
Nanjing, China. More than hundred vesicles in
various stages have been observed more than
475 times. The electron micrographs were saved in

TIFF format, and pieced together for publication
using Photoshop 7.0.

Results

The tissues in the cone are well preserved, and dark-
stained cells are separated from each other by light-
stained cell walls (Wang et al. 2007). Sometimes the
double layer structure of CM is evident (Figures 1b,
1d, 1f), but it may disappear due to the discharge of
vesicle content (Figures 1a, 1c, 1e, 1g). There may be
multiple vesicles of various forms and stages within a
single epidermal cell (Figures 1a, 1e, 1f). The vesicles
are of various sizes, ranging from 77–383 nm in diam-
eter (Figures 1a–g). The vesicles have a membrane of
only one leaflet (Figures 1a–g; Wang et al. 2007).
Depending on their positions in the cells, the vesicles
have various relationships with the CM and thus can
logically be arranged in eight stages (Figures 1a–g).
Those in Stage 1 (hereafter abbreviated as S1; the same
for other stages) are of spherical form and freely
floating in the cytoplasm (Figure 1a). Those in
S2 just start interacting with the CM, with their shapes
slightly distorted corresponding to that of the CM,
compared to those in S1 (Figure 1b). Sometimes the
vesicle membrane in S2 appears to have a tendency to
interact with the CM (Figure 1e), and this closely
resembles that in S3 in term of the blurry connection
to the CM. The vesicle in S3 is rarely seen and has its
shape slightly stretched, connected to the CM with a
cylindrical connection (Figure 1c). This stage may be
hard to distinguish from that in S2, such as
in Figure 1e. Those in S4 usually have lost their vesicle
membrane integration, a loss that already starts in S3.
The vesicles in S4 still have their sub-spherical form,
connected to the CM openings, sometimes with well
established narrow necks, forming a clear omega-
shaped configuration (Figures 1a, 1d–f). Vesicles in
S4 usually have no clear CM in the fusion opening
(Figures 1a, d–f), probably due to the impact of the
vesicle content discharge. The vesicle in S5 is rarely
seen (Figure 1f). It is omega-shaped and connected to
the CM. There are smaller pores on each side of the
central plug within the fusion opening on the CM,
connecting the interior of the vesicle to the extracellular
space (Figure 1f). The central plug is formed by the
CM and vesicle membrane, with the vesicle membrane
and the inner leaflet of the CM forming a flattened,
closed loop (Figure 1f). The vesicles in S6 have
wider fusion openings and reduced central plugs
(Figures 1e–f). In this stage the CM within the fusion
opening, especially the outer leaflet, is hardly visible
(Figure 1e). The vesicle in S7 has a still wider fusion
opening, and its plug is rarely seen in the fusion
opening (Figure 1e). The vesicle in S8 has the widest
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fusion opening, with a diameter close to that of the
vesicle; sometimes the relic of a plug may still be visible
(Figure 1g). It is noteworthy that in all case the vesicle
membranes interact only with the inner leaflet of the
CM, but are never connected to the outer leaflet of
the CM.

Discussion

The Clarkia fossil locality where the studied material
was collected is famous worldwide because of its
well-preserved fossil plant tissues (Niklas and Brown
1981, Niklas 1982, 1983, Niklas et al. 1985,
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Figure 1. TEM images showing vesicles in various stages of membrane fusion in fossil plant cells. The membrane fusion stages are labeled by
numbers. CW, cell wall. Bar = 100 nm. (a) About nine vesicles in various stages of membrane fusion in the same cell. Vesicles in S1 are free
from the CM, those in S4 are already fused with the CM. Note the vesicle in the bottom right is blurry while those in the left are sharp. (b) A
vesicle near the CM. Note its generally regular spherical form and a slightly distorted region (to the upper left) close to the CM. (c) A vesicle
tethered to the CM. Note the cylindrical connection (arrow) between the vesicle and CM. Courtesy of Wang et al. (2007) and MMB. (d) A
vesicle fused with the CM. Note the two leaflets of the CM and only one leaflet of the vesicle. The vesicle membrane is connected to the inner
leaflet of the CM. Courtesy of Wang et al. (2007) and MMB. (e) Four vesicles in different stages of membrane fusion in the same cell. The
vesicle in S2 is only weakly connected to the CM (arrow), the one in S4 is already connected to CM by a narrow neck, the one in S6 is omega-
shaped and with a central plug in the fusion opening, and the one in S7 has a wider fusion opening and no visible central plug. (f) Four vesicles
in different stages of membrane fusion in the same cell. Note the double layer structure of the CM and its relationship with the membranes of
the vesicles. The vesicle in S1 is free from the CM, the one in S5 is already connected to the CM and forms a central plug together with the CM,
the one in S6 is connected to the CM and has a relict central plug, and the one in S4 is connected to CM and has no trace of the outer leaflet of
the CM. Note all vesicle membranes are connected to the inner leaflet of the CM. Rightmost, there appears to be another vesicle (arrow) with
double-leaflet membrane close to its complete fusion with the CM. (g) A vesicle close to complete fusion with CM. Note its shape, relationship
with the CM, and a relict plug in the fusion opening.
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Golenberg et al. 1990, Soltis et al. 1992, Kim et al.
2004, Collinson et al. 2005). Ultrastructures of
nuclei, mitochondria, chloroplasts, starch grains,
cell walls, and even DNA sequences have been found
in tissues of Betula, Hydrangea, Platanus, Quercus,
Magnolia, Persea, and Taxodium from this locality
(Niklas and Brown 1981, Niklas 1982, 1983,
Niklas et al. 1985, Golenberg et al. 1990,
Soltis et al. 1992, Kim et al. 2004, Collinson et al.
2005). Meanwhile, cytoplasmic relics have been seen
in various plant fossils from various regions and ages
(Poinar et al. 1996, Schönhut et al. 2004, Wang 2004,
2006, 2007, Koller et al. 2005, Ozerov et al. 2006,
Wang and Cui 2007, Wang et al. 2010, in press). The
authors (Wang et al. 2007) have reported ultrastruc-
tures preserved in the same material studied from the
Clarkia site previously. Therefore reporting further
ultrastructural details in fossil plant tissues is within
expectation and not surprising. This eliminates or
reduces the possibility of artifacts in this study. Niklas,
Golenberg, Soltis, Kim and their colleagues treat their
samples with fixatives, liquid nitrogen, dry ice, or
other agents immediately at the fossil site (Niklas
and Brown 1981, Niklas 1982, 1983, Niklas et al.
1985, Golenberg et al. 1990, Soltis et al. 1992,
Kim et al. 2004, Collinson et al. 2005), assuming
this processing helps to keep the fossil stable. How-
ever, as all structural biologists know, any processing
to one degree or another introduces artifacts. There-
fore the question of whether or not the treating
introduces artifacts in fossil tissues from the Clarkia
site went unanswered until Wang et al. (2007)
reported well preserved cells and subcellular struc-
tures in untreated material from the same locality.
The repeated presence of ultrastructures both in the
untreated (Wang et al. 2007; this report) and treated
materials (Niklas and Brown 1981, Niklas 1982,
1983, Niklas et al. 1985, Collinson et al. 2005)
together strongly suggests that the existence of ultra-
structures in these fossil tissues is real and indepen-
dent of treatment, and that previous treatments did
not introduce artifact. The fusing vesicles reported
here, and those in Wang et al. (2007), are restricted to
the epidermal cells and are completely missing in
other cells in the same sections. This contrasting
spatial distribution pattern of these vesicles implies
that embedding, staining, and other processing in this
and previous studies do not produce artifacts because
there are none. Any artifact, if it were there, would
have left traces over all the sections or tissues and not
be restricted to specific cells. Furthermore, a similar
phenomenon has been independently reported from a
different fossil material much older (30–40 Ma old)
and in different preservation (Figure 2d; Poinar et al.
1996). This further reduces the probability that our

observation and discussion are based on artifacts. One
special feature of fossil materials is that, unlike living
materials, fossil materials have been fixed by nature
and their fixation is beyond the control of human
beings. If a structure is preserved, it must have sur-
vived million-year-long diagenesis and has to be stable
and lasting; therefore, it usually will not disappear or
change in a geologically short time. If no structure is
preserved, our processing cannot repeatedly reveal the
same specific ultrastructures in the same tissues.
Therefore, the authors assume that the ultrastructures
reported here that are comparable to those in living
materials are not artifacts, but faithfully preserved
ultrastructures of the fossil plant.
Membrane fusion plays an important role in many

physiological processes in eukaryotes and thus has
been a research focus for biological studies for many
decades (Katz 1962, Palade and Bruns 1968, Lucy
1970, Takeo et al. 1973, Heuser et al. 1974, 1979,
Chandler and Heuser 1980, Heuser and Reese 1981,
Blatt et al. 1999, Blatt 2002, Cho et al. 2002, 2004,
Yang and Huang 2002, Jahn et al. 2003, Jeremic et al.
2003, Tamm et al. 2003, Taraska et al. 2003, Jahn
2004, Jena 2004, 2005a, 2005b, 2006, 2010,
Kelly et al. 2004, Chernomordik and Kozlov 2005,
Jahn and Scheller 2006, Siksou et al. 2007, He and
Guo 2009, Songer and Munson 2009, Žárský et al.
2009, Lee et al. 2010, Zhang et al. 2010). It is the key
event in cell secretion (exocytosis) because this pro-
cess could not take place without membrane fusion.
Generally, exocytosis includes several steps. First, the
secretory vesicles move to the periphery of the cell and
are guided to the CM. Second, the vesicles approach
the CM, their membranes start interacting with the
inner leaflet of the CM. Then, through the involve-
ment of Ca2+, enzymes, and proteins, an opening is
formed on the vesicle membranes and CM. Finally,
part or all the vesicle content is released into the
extracellular space (Blatt et al. 1999, Blatt 2002,
Jahn et al. 2003, Tamm et al. 2003, Jahn 2004,
Jena 2004, 2005a, 2005b, 2006, Jahn and Scheller
2006, He and Guo 2009, Žárský et al. 2009). The
mechanism behind this process has been intensively
studied recently and many enzymes, membrane pro-
teins, and lipids are found involved in it (Blatt et al.
1999, Blatt 2002, Jahn et al. 2003, Tamm et al.
2003, Jahn 2004, Jena 2004, 2005a, 2005b, 2006,

Figure 2. Diagram showing the idealized stages of membrane
fusion during an exocytosis.
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Chernomordik and Kozlov 2005, Jahn and Scheller
2006, Siksou et al. 2007, Croteau et al. 2009, He and
Guo 2009, Songer and Munson 2009, Žárský et al.
2009, Jena 2010, Lee et al. 2010, Zhang et al. 2010).
The related electron microscopic structural studies on
living plant materials were mostly performed between
the 1960s to early 1980s (Palade and Bruns 1968,
Lucy 1970, Takeo et al. 1973, Heuser et al. 1974,
1979, Chandler and Heuser 1980). Recent progresses
are made mainly through applying molecular methods
and other new technologies (Cho et al. 2002, 2004,
Yang and Huang 2002, Jahn et al. 2003, Jeremic et al.
2003, Jahn 2004, Jena 2004, 2005a, 2005b, 2006,
2010, Kelly et al. 2004, Chernomordik and Kozlov
2005, Jahn and Scheller 2006, Siksou et al. 2007,
Croteau et al. 2009, Songer and Munson 2009,
Lee et al. 2010, Zhang et al. 2010). Chandler and
Heuser (1980) provided details about membrane
fusion through TEM observation on samples pre-
pared by quick freezing. The most detailed documen-
tation of vesicle fusion with CM was done by Palade
and Bruns (1968). They used 28 figures to document
the various stages of membrane fusion between the
vesicles and the CM. Similar omega-shaped vesicles
were also reported by Takeo et al. (1973). A recent
study on fossil material reveals glances at membrane
fusion in plant cells (Wang et al. 2007), similar to that
in another fossil material reported by Poinar et al.
(1996) in their Figure 2d. These reports are in general
agreement with what we report here. What is novel in
this report is that the membrane relationships between
the vesicles and CM are clearly shown.
Our observations find secretory vesicles in various

stages of membrane fusion: isolated in cytoplasm
(S1), tethered to CM (S2–S3), and fused with CM
(S4–S8) (Figures 1, 2).
Most importantly, the secretory vesicles in the same

cell may demonstrate various stages of fusion with the
CM (Figure 1a, e–f). The series of vesicles from
S1–S6 correspond well with the tethering, docking,
hemifusion, and fusion hypothesized by various scho-
lars. One reservation concerns the order between
S4 and S5, which may not occur in that order. It is
possible that during the membrane fusion S5 actually
precedes S4. However, this can neither be confirmed
nor rejected based on currently available data. This
direct observation of membrane behaviour during
membrane fusion using TEM is helpful for determin-
ing parameters of this process (Yang and Huang
2002), providing first-hand data for a membrane
fusion hypothesis. The so-called intermediate stage
in Figures 1c and 1e may not be sharp or conspicuous
enough. This may be due to one or both of the
following reasons. (1) Compared with the stable and
well-organized membranes that are distinct and sharp

in the images, the tethering structure and the bottom
portion of the vesicle membrane are in their re-
forming and thus unstable, therefore they naturally
appear less sharp. Thus the slightly ambiguous image
in Figures 1c and 1e may reflect the actual situation in
the cell. (2) The sectioning plane may be close to the
periphery of the connection and this may also cause the
images blurry. A similar situation can be clearly seen
in Figure 1a, in which the vesicles at the bottom right
appear blurrier than their peers in the left portion of the
same cell. Either of the above may result in blurry
image of the so-called connection between the vesicle
and CM.However, nomatter what the reason is for the
blurry appearance, the existence of such structures is a
fact and, what is important, this structure has been
hypothesized for a long time but has never before been
seen with such clarity in living plant tissues.
What is significant is that the vesicle in S5

(Figure 1f) shows the forming of a fusion opening
plug, and the relationship between membranes is
clearly shown. There are plugs in the central region
of the fusion openings in the vesicles in S5, S6, and
S8 (Figures 1e–g). These are very similar to the
diaphragms seen in the stomata of vesicles during
exocytoses in endothelium of rat tissues (Figures 1,
6, 7, 9–16, in Palade and Bruns 1968). The phenom-
enon has been noted for long time and Palade and
Bruns (1968) have described and detailed the fusion
opening during membrane fusion. Siksou et al.
(2007) also demonstrate hemifusion stages in their
Figures 7a, 7c, and 7e. However, they are limited by
the resolution of electron tomography and the mem-
brane relationship in the fusion is not shown clearly
enough. The membrane fusion seen in this present
research is unique in that the vesicle membrane is of
single leaflet (Figures 1a–g; Wang et al. 2007) and its
relationship between membrane leaflets is more
clearly demonstrated (Figures 1b, 1d, 1f). This long-
anticipated snapshot lends support to some proposed
models for membrane fusion. It appears that the vesicle
membrane and the inner leaflet of the CM interact with
each other while the outer leaflet plays a less important
role during exocytosis. This is plausible considering
that, initially, the outer leaflet of the CM is separated
from the vesicle by the inner leaflet, which is closer to
the vesicle and would naturally play a more important
role in the interaction before membrane fusion.
Figure 1f could be interpreted in another different

way. The so-called central plug in the fusion opening
is not completely isolated from but connected to other
vesicle membranes and CM, and this connection is
simply not seen in the section. If this is the case, it
implies that the central plug is surrounded by multiple
smaller pores. This is more compatible with recent
research on the structure of porosomes, in which there
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are several depressions in a pit on the CM (Cho et al.
2002, 2004, Jeremic et al. 2003, Jahn 2004, Jena
2004, 2005a, 2005b, 2006, 2010, Kelly et al.
2004). Ideally, the opening between the vesicle inte-
rior and extracellular space can be related to depres-
sions (porosome) in the pit, and central plug to central
plug in the pit. However, the currently available
evidence is not enough to validate or falsify this
interpretation. We hope that future work may shed
light on this problem.
Traditional palaeobotanists have had nothing to do

with the cytoplasm and ultrastructures within it.
However, recent progress in palaeobotany has been
repeatedly revealing ultrastructures in fossil plant cells
(Poinar et al. 1996, Poinar and Stankiewicz 1999,
Wang 2004, 2007, Koller et al. 2005, Ozerov et al.
2006, Wang and Cui 2007, Wang et al. 2010).
Various mechanisms have been proposed for the
preservation of cytoplasm ultrastructures (Niklas
and Brown 1981, Niklas 1982, 1983, Niklas et al.
1985, Poinar et al. 1996, Schönhut et al. 2004, Wang
2004, 2007, Koller et al. 2005, Ozerov et al. 2006).
One of them, proposed by Wang (2004), is lightning
fixation although it remains hypothetical due to a lack
of supporting evidence. Our observations, together
with similar independent observation by Poinar et al.
(1996) in their Figure 2d (although otherwise inter-
preted originally), implies that membrane fusion, a
quick process requiring energy from a living cell to
overcome electrostatic repulsion between two oppos-
ing membranes (Jahn 2004, Chernomordik and
Kozlov 2005, Wong et al. 2007), can be fixed by a
natural process. Although Heuser et al. (1974) have
shown partial fusion events at frog neuromuscular
junctions, the membrane relationship in the interme-
diate stage remain elusive. Exocytosis may last as long
as 10 or more minutes (Cho et al. 2002, 2004; Jena
2006, 2010), but studies show that the initiation of a
fusion opening usually takes place in a fewmilliseconds
(Monck and Fernandez 1996; Chernomordik and
Kozlov 2005). This explains the lack of sharp images
showing membrane relationship at the instant of fusion
opening forming in spite of much effort invested and
many advanced technologies applied (Katz 1962,
Palade and Bruns 1968, Lucy 1970, Takeo et al.
1973, Heuser et al. 1974, Chandler and Heuser
1980, Heuser and Reese 1981, Blatt et al. 1999, Blatt
2002, Cho et al. 2002, 2004, Jeremic et al. 2003,
Jahn et al. 2003, Tamm et al. 2003, Taraska et al.
2003, Jahn 2004, Jena 2004, 2005a, 2005b, 2006,
2010, Kelly et al. 2004, Chernomordik and Kozlov
2005, Jahn and Scheller 2006, Siksou et al. 2007, He
andGuo 2009, Songer andMunson 2009,Žárský et al.
2009, Lee et al. 2010, Zhang et al. 2010). Since the
quick freezing technique, which completes the fixation

within 2 milliseconds (Heuser et al. 1979, Chandler
and Heuser 1980), has been missing this snapshot, it
is reasonable to assume that the natural process cap-
turing this snapshot in the fossil materials must be very
brief. The only currently available candidate process
with sufficient power is lightning, which has a strong
microwave radiation that can kill plants, can reach a
temperature of up to 36,000�K within 10 microsec
(Uman 1969). This proposal is in line with the study on
microwave fixation technology, which alone may fix
biological samples in distilled water (Login andDvorak
1988). The bottom line is that, even if fixation takes
tens of minutes, it is still a rapid process in geological
terms. Before more information is available proving
that other candidate processes have such a potential,
we assume that lightning most likely is responsible for
this quick fixing. However, whether or not this is true is
hinged on a study of the effects of lightning on living
plants, which unfortunately is still lacking.

Conclusions

The membrane behaviour during the membrane
fusion has been fixed by nature in a fossil material.
Whatever the process responsible for the fixation, it is
clear that nature has done a superior job of fixation.
Studying the natural mechanism behind this phenom-
enon will help to improve our technique of preparing
good and lasting biological samples.
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