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Abstract

Backgrounds: There is evidence to suggest that lncRNAs are associated with distinct and diverse biological
processes. The dysfunction or mutation of lncRNAs are implicated in a wide range of diseases. An accurate
computational model can benefit the diagnosis of diseases and help us to gain a better understanding of the
molecular mechanism. Although many related algorithms have been proposed, there is still much room to improve
the accuracy of the algorithm.

Results: We developed a novel algorithm, BiWalkLDA, to predict disease-related lncRNAs in three real datasets, which
have 528 lncRNAs, 545 diseases and 1216 interactions in total. To compare performance with other algorithms, the
leave-one-out validation test was performed for BiWalkLDA and three other existing algorithms, SIMCLDA, LDAP and
LRLSLDA. Additional tests were carefully designed to analyze the parameter effects such as α, β , l and r, which could
help user to select the best choice of these parameters in their own application. In a case study of prostate cancer,
eight out of the top-ten disease-related lncRNAs reported by BiWalkLDA were previously confirmed in literatures.

Conclusions: In this paper, we develop an algorithm, BiWalkLDA, to predict lncRNA-disease association by using
bi-random walks. It constructs a lncRNA-disease network by integrating interaction profile and gene ontology
information. Solving cold-start problem by using neighbors’ interaction profile information. Then, bi-random walks
was applied to three real biological datasets. Results show that our method outperforms other algorithms in
predicting lncRNA-disease association in terms of both accuracy and specificity.

Availability: https://github.com/screamer/BiwalkLDA
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Background
It suggests that only 1.5% of genes in the human genome
were protein-coding genes, which are twice as many as
that of worm and fruit fly [1]. However, 74.7% of the
human genome is involved in the process of primary tran-
scripts [2]. It implies that non-coding RNAs play major
roles in the regulation of gene expression. The presence
or absence of some non-coding RNAs could down- or
up-regulate a cascade of gene expression, which could
be drug targets for medical therapy of a disease. Many
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researchers put efforts in to the discovery of the long
non-coding RNAs function. Recent studies have found
strong association between lncRNA and diseases. It shows
that many lncRNAs play as some functional roles in
diverse biological processes, such as cell proliferation,
RNA binding complexes, immune surveillance, neuronal
processes, morphogenesis and gametogenesis [3]. Their
dysfunction may cause various diseases. For example,
HOTAIR would induce androgen-independent (AR) acti-
vation, which plays a central role in establishing an onco-
genic cascade that drives prostate cancer progression.
It is also a causal reason for AR-mediated transcription
programs in the absence of androgen [4]. Therefore, the
prediction of lncRNA function would give us a new way to
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understand the regulation mechanism and disease pathol-
ogy. There is an urgent demand for the development of
fast and accurate algorithm to predict lncRNA-disease
association.
Many computational tools have recently been devel-

oped to predict potential lncRNA-disease association and
functional patters in biological networks [5–10]. Func-
tional patterns in biological networks. These computa-
tional methods are majorly in three categories. One of
them is based on the idea of matrix factorization. Matrix
factorization can be seen as a linear model of latent
factors. In these methods, a corresponding latent fac-
tor is generated for each lncRNA and disease. Then,
it uses a dot product of the latent factors to represent
their similarity. The objective function of matrix factor-
ization is to learn the optimal latent factors which can
minimize the prediction error. Recently, these methods
have been widely used in the prediction of lncRNA-
disease relationship. For example, MFLDA reduces the
high dimension of heterogeneous data sources into low-
rank matrices via matrix tri-factorization, which can help
to explore and exploit their intrinsic and shared structure
[11]. SIMCLDA translates the lncRNA-disease associa-
tion prediction problem into a recommendation, which
can be solved with inductive matrix completion (IMC)
[12]. However, matrix factorization may also bear the risk
of over-fitting and the problem of costing-time complex-
ity. Another type of methods is based on the idea of
"guilt-by-associate" . They are intuitively guided by the
assumption that similar disease or lncRNA have simi-
lar connection patterns. If disease (A) and lncRNA (A)
are known to be related, and disease (A) and disease
(B) are very similar. We can infer disease (B) may also
related to lncRNA (A). Obviously, the performance of
these algorithms heavily depends on the accuracy of
the similarity measures. Many "guilt-by-association" algo-
rithms have been proposed. For example, RWRlncD infers
potential human lncRNA-disease associations by imple-
menting the random walk with restart method on a
lncRNA functional similarity network [13]. IRWRLDA
predicts novel lncRNA-disease associations by integrat-
ing known lncRNA-disease associations, disease semantic
similarity, and various lncRNA similarity measures and
make prediction based on improved Random Walk with
Restart [14]. The third type of methods focus on classifi-
cation. Feature extraction was performed on the complex
network. Binary classifiers could be applied in the fol-
lowing step to predict whether there exists a connection
between lncRNAs and diseases. Another typical predic-
tion algorithm is LRLSLDA, which constructs a cost func-
tion in lncRNA and disease space and makes prediction
by combining several classifiers in the lncRNA and dis-
ease space into a single classifier [15]. LDAP predicts
potential lncRNA-disease associations by using a bagging

SVM classifier based on lncRNA similarity and disease
similarity [16].
In this paper, we proposed a novel algorithm,

BiWalkLDA, to predict potential lncRNA-disease asso-
ciations. The design of BiwalkLDA was intuitivly guided
by the assumption of "guilt-by-associate". In order to
construct more accurate similarity network, we integrate
two types of data from interaction profiles and gene
ontology. Furthermore, our method was designed to
solve the cold-start problem. BiWalkLDA uses bi-random
walks algorithm to predict lncRNA-disease association
base on a similarity network we constructed. The experi-
ments were carried out on three real datasets downloaded
from the LncRNADisease database [17]. Algorithm per-
formance were evaluated by using Leave-one-out cross
validation (LOOCV). Results show that BiWalkLDA
outperforms other four state-of-art algorithms, mean-
while it is robust on different datasets and parameters in
predicting novel lncRNA-disease associations.

Methods
Construction of disease similarity networks
Association patterns were commonly used to calculate
disease similarity [14, 18]. In that case, disease similarity
will depend on known LncRNA and disease association.
Because of the lack of these prior knowledge in lncRNA-
disease association, we considered to use gene ontology
as an additional information. Gene ontology informations
are obtained from previous work [12], which downloaded
association between genes and gene ontology terms of
human being from Ensemble database [19] and derived
disease-gene associations from DisGeNet database [20].
For each disease, we can get the corresponding GO set.
Then we use jaccard similarity to measure the similarity
between the two sets. The calculation process is shown in
the following formula:

SGO(di, dj) = |GOdi ∩ GOdj |
|GOdi ∪ GOdj |

where GOdi and GOdj are two sets of gene ontology terms
of disease di and dj, respectively. Like previous algorithms,
we also construct disease similarity networks by using
known disease and LncRNA associations. The construc-
tion process can be divided into two steps: (1) construc-
tion of an adjacencymatrixAnl×nd , where nl is the number
of lncRNA and nd is the number of diseases. Aij = 1 rep-
resent that the ith lncRNA is associated with dj, otherwise
Aij = 0. (2) With the matrix A, we referred IP(d(i)) to the
ith column of A, which is the interaction profile of disease
di. IP(d(i)) is a binary vector of length nl and represents
an association pattern of disease d(i). Then we calculate
the similarity between two diseases based on the gaussian
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linear kernel,

SGKD(di, dj) = exp(−γd||IP(d(i)) − IP(d(j))||2)
where −γd is the bandwidth of kernel which is calculated
as follow:

γd = 1/
(

1
nd

nd∑
i=1

||IP(d(i))||2
)

Here nd is the number of diseases. Up to now, we have
constructed SGKD based on known association between
lncRNA and disease and SGO based on disease-related GO
set. Then we use a simple linear model to fuse the two
similarity networks.

Sd = αSGO + (1 − α)SGKD
Here α is a hyperparameter that control the propor-

tion of SGKD and SGO . If α = 1, disease similarity
only be calculated base on gene ontology information.
If α = 0, disease similarity only be calculated base on
known disease-lncRNA associations. When the matrix is
sparse, it would be better to give a large α so that sim-
ilarity rewards can be obtained from geneontology. This
technique makes the algorithm more robust

Construction of lncRNA similarity network
Similar to the previous process, we calculate lncRNA
gaussian similarity based on known disease-lncRNA asso-
ciation. First, we use IP(l(i)) which is the ith row of A to
represent the interaction profile of lncRNA l(i). IP(l(i)) is
a binary vector of length nd and represents an association
pattern of lncRNA l(i). Then lncRNA gaussian similarity
was calculated base on the following formula:

SGKL(li, lj) = exp
(−γl||IP(l(i)) − IP(l(j))||2)

γl = 1/
(
1
nl

nl∑
i=1

||IP(l(i))||2
)

where γl is the bandwidth of kernel, nl is the number of
the lncRNA.

Calculation of interaction profiles for new lncRNAs
In the prediction process, if an lncRNA only knows very
few diseases associated with it, this lncRNA is difficult to
predict accurately. This is a common problem in indus-
try, such as the difficulty of recommending products to
a new user. This problem is also known as cold-start
problem. There are two ways to solve it. The first way
is to consider additional information in the definition of
node similarity. The other one is to use prior informa-
tion, e.g. diseases with many connections are more likely
to interact with a new unknown lncRNA. We had con-
sidered using additional data such as lncRNA sequence
information to measure similarity between lncRNAs. But
on the one hand, the length of lncRNA sequence is very

long(> 300 bp), and it is difficult to find an appropri-
ate algorithm to measure their similarity. On the other
hand, it is difficult for some new lncRNA to collect their
sequence information. So in this paper, we mainly deal
with the cold start problem through the second ways. We
will describe this process in detail. First, we calculate the
interaction profile for a new lncRNA using the mean of
its neighbors’ interaction profile. Taken lncRNA l(i) as an
example, the neighbors of lncRNA l(i) should be satisfied
with the following formula:

||IP(l(j)) − IP(l(i))||2 ≥

nl∑
k=1

||IP(l(k)) − IP(l(i))||2

nl
Here, nl is the number of lncRNA. In another words, if
similarity between l(i) and l(j) were larger than the mean
of the similarity, l(j) can be defined as the neighbors of l(i).
IP(l(i)) was the mean of its neighbors’ interaction profile.

IP(l(i)) =

∑
k∈N(lnci)

IP(l(k))

|N(lnci)|
HereN(lnci) is the set of the neighbors of lncRNA l(i) and
|N(lnci)| is the size of N(lnci). Notice that our approach
here is different from the traditional approach to dealing
with cold-start problem. Typically, the traditional method
uses the mean of other lncRNAs interaction profile to fill
in the new LncRNA. This is actually based on the pop-
ularity to make prediction. In contrast, BiwalkLDA uses
local topological structure to predict missing interactions.
Given a new lncRNA, we first find all its similar (or near-
est) lncRNAs, which are likely to share common disease
interactors with our node of interest. So, the key point is
the definition of similarity function. Unlike all other algo-
rithms, we assume that these lncRNAs sparsely connected
to diseases would contribute more to the given node. It
means they are likely to share common disease nodes.
For example, an inactive user didnŠt buy Harry Potter,
although the book is one of the best seller. How likely does
a new user would choose to buy the book. In our model,
new users would more likely to learn from inactive users.

The algorithm of Bi-randomwalk
Based on the construction of lncRNA similarity network
and disease similarity network, we use the bi-random
walk algorithm to predict potential lncRNA-disease asso-
ciations. First, I will explain the idea of bi-random walk
algorithm. BiwalkLDA mainly make prediction base on
the assumption that similar diseases or lncRNA have sim-
ilar connection patterns. For example, if we know that
lncRNA (i) is associated with disease (j) and lncRNA (i)
is very similar to lncRNA (j), it is obvious that we can
infer that lncRNA (j) may also associate with disease (j). So
far we have constructed disease similarity networks and
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lncRNA similarity networks. Bi-random walk algorithm
actually constructed a linear model based on similarity.
Suppose we want to predict the relationship between
lncRNA (i) and disease (j).

aij =
nl∑
k=1

ai,k ∗ simd(k, j)

Here aij represents the possibility that lncRNA(i) and dis-
ease(j) are related. simd(k, j) represents the similarity of
disease(k) and disease(j). So the process of calculation is
actually to traverse every disease k and add ai,k ∗ simd(k, j)
up. It can be seen as a linear model based on similarity.
Considering that we want to keep part of the original aij,
the formula can written as below:

aij = (1 − β) ∗ aij + β ∗
nl∑
k=1

ai,k ∗ simd(k, j)

Note that we need to normalize the similarity to ensure
that aij is always less than 1. The above formula is based
on disease similarity to make predictions. Similarly, we
can make predictions based on the similarity of lncRNA
and then combine the two results together to make final
prediction. So the whole process of the algorithm can be
divided into three steps: (1)First, we predict new scores
based on disease similarity and lncRNA similarity accord-
ing to random walk algorithm. (2)Then, we use the mean
of two scores as the result of this round of prediction.
(3)The two steps are repeatedly performed until maxi-
mum number of iterations. Let’s go into the details of
the algorithm. We do row normalization on both lncRNA
similarity network and disease similarity. This is because
random walk is actually a linear prediction model based
on similarity. The similarity should be normalized so that
the prediction results are between 0 and 1.

Sd(i, j) = Sd(i, j)/
√
DSd (i, i) ∗ DSd (j, j)

. Here DSd (i, i) is the sum of the ith row of Sd. Similarly, we
normalized the similarity of lncRNA as following formula:

Sl(i, j) = SGKL(i, j)/
√
DSGKL(i, i) ∗ DSGKL(j, j)

Here DSGKL(i, i) is the sum of the ith row of SGKL. Adjacent
matrix A also needs to be initialized. Scores of all known
lncRNA-disease association are set to 1/n where n is th
total number of known lncRNA and disease associations.
Scores of Other unobserved associations are set to zero.

S0ini = A
sum(A)

Here Sini represent the initial probability and the sum of
initial probabilities is 1. Because the importance of pre-
dicting results based on different similarity networks may
be different. We introduce two parameter l and r as the

numbers of maximal iterations in the left and right ran-
dom walks on these two networks. The more iterations,
the more important the prediction through this similarity
network is. The iterative process can be described by the
following formula:

Rd = βSt−1
ini ∗ Sd + (1 − β)S0ini

Rl = βSl ∗ St−1
ini + (1 − β)S0ini

Stini = Rd + Rl
2

Here Sd, Sl represent disease and lncRNA similarity net-
works. Sini represents initial score of all disease-lncRNA
association. β is the decay factor which control the degree
of retention of initial information. Rl represents the score
of random walk on the lncRNA similarity network and
Rd represents the score of random walk on the disease
similarity network. In the iterative function, we use the
averaged value of Rd and Rl as Stini in step t. This process
can be seen as a combination of lncRNA similarity and
disease similarity to make predictions. When the number
of iterations reached max(l,r), Stint is the final result which
represents the possibilities of all lncRNA-disease associa-
tion. The pseudocode of bi-randomwalk algorithm can be
seen in Algorithm 1.

Algorithm 1 The specific process of bi-random walk:
Input: Disease similarity:Sd; LncRNA

similarity:SGKL; Adjacency matrix:A; l; r
Output: Final score:Stini

1: Normalizing Sd , Sl
2: S0ini = A

sum(A)

3: t = 1
4: while t <= max(l, r) do
5: if t ≤ l then
6: Rd = βSt−1

ini ∗ Sd + (1 − β)S0ini
7: end if
8: if t ≤ r then
9: Rl = βSl ∗ St−1

ini + (1 − β)S0ini
10: end if
11: Stini = Rd+Rl

2
12: end while
13: return Stini

Data andmaterials
Known lncRNA and disease associations were
downloaded from the LncRNADisease database [17],
which is commonly used as the gold standard in pre-
dicting lncRNA-disease associations question. In the
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Table 1 Detailed information for three datasets

Datasets Version No. of lncRNA No. of disease No. of interaction

Dataset1 2012 112 150 276

Dataset2 2014 131 169 319

Dataset3 2015 285 226 621

experiment, we used three databases which are down-
loaded from three different versions of 2012, 2014 and
2015 (Table 1). in 2012, experiments confirm there exists
276 interactions between 112 lncRNAs and 150 diseases.
In 2014, this number has increased to 319 interactions
between 131 lncRNAs and 169 diseases. In 2015, it
suggests that there are 621 interactions between 285
lncRNAs and 226 diseases.

Results
We use leave-one-out cross validation (LOOCV) to test
the performance of BiwalkLDA. LOOCV is a widely-
used strategy to evaluate the quality of the algorithms.
In each turn, one known association was set as a test
sample. All other lncRNA-disease association were set
to training set to train model. All associations that are
not observed will be considered as a candidate set and
will be scored by BiwalkLDA. A correspond rankList can
be generated based on the predicted results. Then true
positive rates (TPR, sensitivity) and false positive rates
(FPR, 1-specificity) can be calculated by giving different
thresholds. Based on the calculated values of TPR and
FPR, the receiver-operating characteristics (ROC) curves

can be plotted. Then we use the areas under ROC curve
(AUC) as evaluation criteria of algorithmic performance
which reflects the global prediction accuracy in different
situation. The value of AUC closed to one means a perfect
prediction, while the AUC value of 0.5 indicates purely
random performance.

The effects of parameters
The effects of α
In the section of disease similarity, we use a linear model
to fuse SGO and SGKD. Here α is a hyperparameter that
control the proportion of SGO and SGKD. If α = 1, dis-
ease similarity only be calculated base on gene ontol-
ogy information. If α = 0, disease similarity only be
calculated base on known disease-lncRNA associations.
BiWalkLDA use gene ontology information as a supple-
ment to SGKD, which makes the generalization ability of
the algorithm stronger. To test the performance of the
algorithm under different α values, we changed α from 0
to 1 and increased 0.1 per time. Then we use BiwalkLDA
to make prediction. The experimental results are shown
in Fig. 1, When α = 0.1, BiwalkLDA obtain the best
results on dataset1 and dataset2. On dataset3, it reaches
the peak when α = 0.3. It can see that small changes
in α do not have much impact on the results. Therefore,
we recommend the region of α could be set between 0.1
and 0.3 for using BiwalkLDA. The experimental results
show that the fusion of SGKD and SGO can improve
the accuracy of the algorithm. Meanwhile, the algorithm
can achieve good performance even if we only use the
GO similarity network. It indicates that the algorithm

Fig. 1 The effect of parameters α on three different data sets
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still works in the absence of disease-lncRNA association
information.

The effects of β
β is a decay factor in bi-random walk algorithm. β deter-
mines the degree of retention of initial information in each
iteration. if β = 0, all initial information will be retained.
If β = 1, all initial information will be used to predict
new score in each turn. Obviously, it will result in a poor
performance if β is either 0 or 1 are inappropriate and
will result in a poor performance. To test the performance
of the algorithm under different β values, we increased β

rom 0 to 1 in 10 steps, and run BiwalkLDA. The value of
β was changed from 0 to 1 and increased 0.1 each time
and then using BiwalkLDA tomake prediction. The exper-
imental results are shown in Fig. 2. When 0.1≤ β ≤0.9,
the results of the algorithm varied slightly. It indicts that
BiWalkLDA is robust to β . BiWalkLDA performs the best
AUC when β = 0.8 in dataset1 and dataset2 and performs
the best AUC when β = 0.7 in dataset3. Intuitively, if the
initial data is sufficient, a smaller β is more appropriate.
Because dataset3 contains more known lncRNA-disease
associations, the optimal β in dataset3 is less than the
other dataset. Finally, we set β = 0.8 as default in three
datasets.

The effects of l and r
In bi-random walk algorithm, the parameters l and r are
used to limit the number of random walk steps in the dis-
ease and lncRNA similarity network respectively. l and r
can actually be understood as the importance of disease

similarity and lncRNA similarity. If the value of l is larger,
it means that we will predict more based on disease simi-
larity. Values of different l and r make the algorithm appli-
cable to different data. If l or r equals 0, the algorithm actu-
ally degenerates into a single randomwalk algorithm. This
means that we only make predictions through lncRNA
similarity or disease similarity alone instead of combin-
ing them. To test the performance of the algorithm under
different l and r values. We grid search the combination
of l and r in a certain range. The value of l and r were
increased from 1 to 7 and increased 1 each time. Then we
use BiwalkLDA to make prediction and calculate the AUC
values by LOOCV. The experimental results are shown in
Table 2. The experimental results show that when the val-
ues of l and r are relatively close, BiwalkLDA perform well.
This shows that prediction through lncRNA similarity and
disease similarity are equally important. Finally we set l=6
and r=6 as default in three dataset.

Comparison with other algorithms
To test the performance of the BiwalkLDA, we com-
pared BiWalkLDA with three the-state-of-art com-
putational methods (LDAP, LRLSLDA, SIMCLDA) of
lncRNA-disease association prediction in three datasets.
The results of the algorithm are measured by AUC
value and number of correctly retrieved association.
Because limited code can be used, we also compare
our algorithm with KATZHMDA which is be used
to predict disease-microbe association. LRLSLDA used
Laplacian normalization operation and construct cost
function in lncRNA and disease space. Then making

Fig. 2 The effect of parameters β on three different data sets
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prediction by minimize the cost function to obtain opti-
mal classifier [15]. LDAP fused different data source
and make prediction based on bagging SVM classifier
[16]. SIMCLDA predicted lncRNA-disease association
based on inductive matrix completion [12]. KATZHMDA
integrated known microbe-disease associations and gaus-
sian interaction profile kernel similarity for microbes and
diseases and make prediction based on katz algorithm
[21]. On dataset1, we can see that BiwalkLDA obtained
an AUC of 0.8268 which is higher than others oth-
ers(LRLSLDA:AUC=0.7217, KATZHMDA:AUC=0.6510,
LDAP:AUC=0.6987, SIMCLDA:AUC=0.7949) as shown
in Fig. 3a. In addition to AUC, we also use the num-
bers of correctly retrieved association to measure the
performance of the algorithm. If a predicted association
in the first percent k of the candidate set, this associ-
ation will be regard as a correctly retrieved association
under given threshold k. So the numbers of correctly
retrieved association can reflect the accuracy of the algo-
rithm in top k% and AUC reflects the global performance
of the algorithm. The experimental results are shown in
Fig 3b. BiWalkLDA can predict more correctly retrieved
association in Top10%. But it can also be seen that LRL-
SLDA performs better at lower thresholds in term of the
numbers of correctly retrieved association. This result
actually indicates that BiwalkLDA is more inclined to
make global optimal predictions. This phenomenon can
be explained as follows: (1)BiwalLDA processing samples
with less information separately may significantly increase
the AUC value, but it may also make incorrect predic-
tions. (2)More comprehensive sequencing results can be
obtained based on lncRNA similarity network and disease

Table 2 The effects of parameters l and r in dataset1

r = 1 r = 2 r = 3 r= 4 r = 5 r = 6 r=7

l = 1 0.7618 0.7230 0.6902 0.6714 0.6585 0.6448 0.6304

l = 2 0.8124 0.7890 0.7292 0.6985 0.6802 0.6702 0.6564

l = 3 0.8008 0.8214 0.8140 0.7295 0.7010 0.6838 0.6713

l = 4 0.7919 0.8092 0.8230 0.8243 0.7285 0.7000 0.6850

l = 5 0.7848 0.7989 0.8115 0.8238 0.8267 0.7269 0.6988

l = 6 0.7778 0.7911 0.8006 0.8119 0.8236 0.8268 0.7255

l = 7 0.7729 0.7834 0.7920 0.8007 0.8116 0.8233 0.8263

similarity network. This means that only samples that
meet both of these inference criteria will be given a higher
ranking. However, if one sample conforms to the simi-
larity inference of lncRNA but does not conform to the
other, it will not be given a high ranking. This problem
can be solved by using non-linear algorithm. The results
on the other two datasets are similar, so we will not dis-
cuss them one by one (Figs. 4 and 5). It can be concluded
that BiWalkLDA also achieve the best result(AUC 0.8510
in dataset2 and AUC 0.8473 in dataset3) and BiwalkLDA
is robust enough to different parameter selection.

De novo lncRNA-disease prediction
In section of disease similarity, we combine gauss sim-
ilarity and gene ontology similarity. Fusion of multiple
similarities network not only improves the performance of
the algorithm, but also strengthen generalization ability of
BiwalkLDA. To assess the performance of BiWalkLDA, we
conduct de novo lncRNA-disease association prediction
in dataset1. In the process of de novo prediction, each

Fig. 3 Comparison of predicting methods on dataset1. a Receiver operating characteristic curve of all algorithm using LOOCV (b) Number of
correctly retrieved known lncRNA-disease association for given percentage
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Fig. 4 Comparison of predicting methods on dataset2. a Receiver operating characteristic curve of all algorithm using LOOCV (b) Number of
correctly retrieved known lncRNA-disease association for given percentage

queried disease d(i) would be removed all known lncRNA-
disease association of this disease. Different computa-
tional methods were used in the prediction problem.
Notice that we still know the gene ontology information
of the disease. The experimental results are shown in
Fig 6. The performance of BiWalkLDA only has a slight
drop(AUC:0.8364) and is much higher than other algo-
rithms. The result shows that BiWalkLDA can make good
prediction even if there is absence in disease-lncRNA
association information and combining heterogeneous

data sources can deal with data missing situation. Note
that AUC of LDAP only has 0.4762. This result is lower
than random guess which AUC value is 0.5. This is
because we are actually testing the performance of the
algorithm in the absence of data. LDAP treats this prob-
lem as a classification problem and using a bagging SVM
classifier to make prediction. If there is a serious lack
of data, the features learned will be inaccurate and the
effect of classification will be poor. There are two rea-
sons for the good performance of BiwalkLDA. 1) Gene

Fig. 5 Comparison of predicting methods on dataset3. a Receiver operating characteristic curve of all algorithm using LOOCV (b) Number of
correctly retrieved known lncRNA-disease association for given percentage
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Fig. 6 Comparison of predicting methods in de novo prediction test on dataset1

ontology information was used as a supplementary data.
2) BiwalkLDA used the neighborhood information to pre-
dict connections for new unknown lncRNAs.

Case studies
We conduct case study for prostate cancer to test the
performance of BiWalkLDA in predicting new lncRNA
for a certain disease. Prostate cancer (PC) is the most
commonly diagnosed malignancy and the third leading
cause of cancer death among men in developed coun-
tries. Predicting prostate cancer related lncRNA will help
us to understand the mechanism of prostate cancer and
provide a high probability set of candidate lncRNA for sci-
entist. We use dataset3 to make prediction and confirm

Table 3 Top ten reported lncRNAs for prostate cancer

Rank Name of lncRNA PMID

1 H19 PMID: 24988946

2 CDKN2B-AS1 Unconfirmed

3 MALAT1 PMID: 23845456

4 HOTAIR PMID: 26411689

5 MEG3 PMID: 26610246

6 PVT1 PMID: 21814516

7 BCYRN1 Unconfirmed

8 GAS5 PMID: 23676682

9 NEAT1 PMID: 25415230

10 UCA1 PMID: 26550172

the result by searching related paper. Prediction results
of the BiwalkLDA are showed in Table 3. It can see that
eight prostate cancer-related lncRNA(H19, MALAT1,
HOTAIR,MEG3, PVT1, GAS5, NEAT1, UCA1) in the top
ten candidates have been confirmed by previous studies.
Long non-coding RNA H19 and H19-derived microRNA-
675(miR-675) were significantly down-regulated in the
metastatic prostate cancer cell line M12 compared with
the non-meta-static prostate epithelial cell line P69 [22].
MALAT1 was up-regulated in human prostate cancer tis-
sues and cell line [23]. HOTAIR as an androgen-repressed
lncRNA is markedly up-regulated following androgen
deprivation therapies and in castration-resistant prostate
cancer [4]. MEG3 decreased significantly in prostate can-
cer tissues relative to adjacent normal tissues [24]. Region
surrounding rs378854 which is identified as a novel func-
tion prostate cancer-specific genetic variant interacts with
the MYC and PVT1 promoters [25]. GAS5 promotes the
apoptosis of prostate cell, and exonic sequence, i.e. GAS5
lncRNA, is sufficient to mediate this activity [26]. Nuclear
enriched abundant transcript 1 (NEAT1) was identi-
fied as the most significantly over-expressed lncRNA in
prostate cancer by using a combination of chromatin
immunoprecipitation (ChIP) and RNA-sequencing data
[27]. UCA1 was abnormally up-regulated in tumor tis-
sues from prostate cancer patients and patients with
high UCA1 levels had a significantly poorer prognosis
[28]. Successful predictions for prostate cancer prove that
BiWalkLDA can help us to find new relationships between
lncRNA and disease base on historical data.
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Conclusion
Many recent studies suggest that lncRNAs are strongly
associated with various complex human diseases and they
play important roles in the gene expression regulation
and post-transcription modification. Predicting lncRNA-
disease association can help understand the biological
mechanism of disease and reduce the cost of experi-
mental verification. However, discovering the relationship
between lncRNA and disease by means of computational
model is still a very challenging problem. Therefore, the
development of computational tools is much in demand.
Although many computational models have been pro-
posed. Their prediction accuracy still has a lot of room
to improve. To improve the performance of existing
algorithms, we present a novel algorithm, BiwalkLDA
based on bi-random walks for the prediction of lncRNA-
disease associations. It integrates gene ontology and inter-
action profile data together to calculate disease similar-
ity, to solve the cold-start problem by using the local
structure of lncRNAs neighbors information. Four the-
state-of-art computational methods and BiwalkLDA are
applied to predict lncRNA-disease associations on three
different datasets. Results show that BiwalkLDA is supe-
rior to every other existing algorithms in terms of both
accuracy and recall. There are still many problems to
be dealt with. Existing models are based on small-scale
datasets. Although algorithms can achieve high accuracy,
their results are often repetitive. If the dataset is too large,
the existing algorithms can not be applied to large-scale
data. In future work, we will consider to develop more
effective algorithm to solve this problem.
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