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Widespread impairments in white matter and cerebrovascular integrity have been

consistently implicated in the pathophysiology of patients with small vessel disease

(SVD). However, the neural circuit mechanisms that underlie the developing progress

of clinical cognitive symptoms remain largely elusive. Here, we conducted cross-modal

MRI scanning including diffusion tensor imaging and arterial spin labeling in a

cohort of 113 patients with SVD, which included 74 patients with vascular mild

cognitive impairment (vMCI) and 39 patients without vMCI symptoms, and hence

developed multimode imaging-based machine learning models to identify markers that

discriminated SVD subtypes. Diffusion and perfusion features, respectively, extracted

from individual white matter and gray matter regions were used to train three sets of

classifiers in a nested 10-fold fashion: diffusion-based, perfusion-based, and combined

diffusion-perfusion-based classifiers. We found that the diffusion-perfusion combined

classifier achieved the highest accuracy of 72.57% with leave-one-out cross-validation,

with the diffusion features largely spanning the capsular lateral pathway of the cholinergic

tracts, and the perfusion features mainly distributed in the frontal-subcortical-limbic

areas. Furthermore, diffusion-based features within vMCI group were associated with

performance on executive function tests. We demonstrated the superior accuracy of

using diffusion-perfusion combined multimode imaging features for classifying vMCI

subtype out of a cohort of patients with SVD. Disruption of white matter integrity might

play a critical role in the progression of cognitive impairment in patients with SVD, while

malregulation of coritcal perfusion needs further study.
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INTRODUCTION

Vascular dysfunction and associated cerebral damage have been
identified as critical components of the pathophysiology of late-
life dementia, and may constitute the predominant pathological
cause of cognitive impairment in East Asia (Iadecola et al.,
2019). Patients with small vessel disease (SVD) have recently
been receiving increasing attention because of its high prevalence
(Rosenberg et al., 2016; Wardlaw et al., 2019). SVD is generally
referred to as a disorder of cerebral microvessels causing
widespread physiological and structural abnormalities including
subcortical lacunar infarcts, white matter hyperintensities

(WMH), andmicrobleeds (Pantoni, 2010; Rosenberg et al., 2016).
The pathogenesis of SVD has been attributed to a wide variety
of pathological events including vessel occlusion, leakage of
toxins, impaired vascular reactivity, decreased clearance of waste
products, oligodendrocyte dysfunction, increased oxidation, and
inflammation. These pathological events give rise to diverse

brain lesions that are able to be detected by using different
imaging modalities (Schuff et al., 2009; Duering et al., 2015;
Sun et al., 2016; Duncombe et al., 2017; Muñoz Maniega et al.,
2017), although the relationships between the imaged lesions and
clinical symptoms remain poorly understood (Wardlaw et al.,
2013, 2019). As the management of risk factors and symptom-
specific treatment could help prevent the evolution of small
vascular mild cognitive impairment (vMCI, the prodromal stage

of vascular dementia) to vascular dementia (Seo et al., 2010),
there is an urgent need to identify imaging-based biomarkers for
early diagnosis and monitoring disease progression.

Aggregated evidence obtained from case-control designs has
demonstrated associations between cognitive decline in patients
with SVD and widespread cerebral impairments of various kinds
such as cerebral perfusion and WM integrity (O’Sullivan et al.,
2001, 2004; Tuladhar et al., 2015; Shi et al., 2016; Malojcic
et al., 2017; Li et al., 2018; Liu et al., 2020; Yu et al., 2020).
For instance, with the developed three dimensional arterial
spin labeling (3D-ASL) technique, Sun and colleagues found
(Sun et al., 2016) widespread lower cerebral blood flow (CBF)
in patients with symptomatic SVD in comparison to patients
with non-symptomatic SVD, particularly where deficits in brain
perfusion in the temporal and frontal lobe, hippocampus,
thalamus, and insula were related to the degree of cognitive
impairment. Reduced CBF, impaired cerebral autoregulation,
and increased blood–brain barrier permeability were also
manifested in subcortical areas of patients with SVD (Li et al.,
2018). Region-specific malregulation of CBF has been suggested
as a critical factor in SVD-related dementia, which may be
linked to the progression of cognitive decline and hence used
to track the course of disease progression (Shi et al., 2016;
Malojcic et al., 2017). Moreover, in addition to lower perfusion-
related cortical atrophy often reported in SVD, Schuff et al.
(2009) observed a volumetric increase in subcortical WMH
associated with reduced CBF in the frontal cortex. Meanwhile,
Yu et al. (2020) reported a tight correlation of total SVD burden
score (composed of lacunes, cerebral microbleeds, and enlarged
perivascular spaces) with both global and regional CBF. Diffusion
tensor imaging (DTI) is a sensitive technique to detect subtle

changes ofWMmicrostructural integrity, researchers have found
that cognitive disturbances in subjects with SVD were related to
abnormalities of multipleWMfibers connecting different cortical
and subcortical regions (Tuladhar et al., 2015; Liu et al., 2020).
It has been postulated that long-term hypoperfusion contributes
to impairment of WM integrity, thereby leading to subcortical–
cortical and cortical–cortical dysconnectivity, which is linked to
diverse cognitive domains, namely “disconnection syndrome”
(O’Sullivan et al., 2004). The disconnection of frontal–subcortical
circuits is believed to be the underlying mechanism of cognitive
impairment in SVD (O’Sullivan et al., 2001; Pantoni, 2010).
However, whether and how cortical perfusion and WM damage
jointly contribute to the early stage of cognitive impairment
in patients with SVD remains unclear, which holds great
implication for disease prevention and treatment.

To this end, we developed a cross-modal multimode imaging-
based machine learning approach to investigate both diffusion
and perfusion disturbances in a cohort of 113 patients with
SVD, of which 74 were SVD patients with vMCI. We
conducted a comprehensive battery of neuropsychological tests
including attention, executive function, language, and working
memory tests, and collected both DTI and ASL data from all
subjects. From the imaging data, we extracted WM diffusion
and cortical perfusion features including mean fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),
radial diffusivity (RD), and CBF within multiple regions of
interest (ROIs) defined according to widely used gray and
WM templates. Using diffusion-based, perfusion-based, and
combined diffusion-perfusion features, we trained three sets
of sparse logistic regression (SLR) classifiers to distinguish
patients with vMCI from patients with normal cognition (control
patients). Classification accuracy was evaluated using leave-
one-out cross validation (LOOCV) and statistical comparisons
were made between the three classifiers. Furthermore, we
used the partial correlations to examine associations between
the identified discriminative features and cognitive functions.
Our research objective was to characterize abnormalities in
gray matter perfusion and WM integrity, and enhance the
understanding of the pathological evolution of cognitive decline
in patients with SVD.

MATERIALS AND METHODS

Participants
One hundred and thirteen patients with SVD were recruited
from the Department of Neurology at RenJi Hospital between
August 2017 and January 2020. SVD can be defined as subcortical
WM hyperintensity on T2-weighted images with at least one
lacunar infarct, following the criteria suggested by Galluzzi
et al. (2005). Each subject underwent a standard evaluation,
including neurological examination, complete sociodemographic
and clinical data, and MRI examination. The inclusion criteria
were as follows: (1) at least 6 years for education; (2) age 50–
85 years; (3) informed consent form signed by the participant
(Galluzzi et al., 2005). The following exclusion criteria were
applied: (1) cortical and/or cortico-subcortical non-lacunar
territorial infarcts and watershed infarcts; (2) neurodegenerative
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diseases (including Parkinson’s disease and Alzheimer’s disease);
(3) signs of normal pressure hydrocephalus; (4) specific causes of
WMH (e.g., metabolic, toxic, infectious, multiple sclerosis, brain
irradiation); (5) alcoholic encephalopathy or illicit drug use; (6)
major depression [Hamilton Depression Rating Scale (HDRS) ≥
18]; (7) severe cognitive impairment (inability to perform the
neuropsychological test or undergo the whole MRI scan); (8)
MRI safety contraindications and claustrophobia (Galluzzi et al.,
2005). All patients underwent laboratory examinations to exclude
systemic or other neurological diseases.

Neuropsychological Assessment
Neuropsychological assessments were performed within 1 week
of the MRI examination. No patients suffered any transient
ischemic attacks or strokes between the MRI examination and
the evaluation. The Montreal Cognitive Assessment (MoCA)
and Mini-Mental State Examination (MMSE) were used to
assess overall cognitive performance. Moreover, a comprehensive
battery of neuropsychological tests was designed to evaluate
four key cognitive domains as described in previous studies
(Hachinski et al., 2006; Xu et al., 2014). These tests were
as follows: (1) attention and executive function: Trail-Making
Tests A and B (TMT-A and TMT-B), Stroop color-word test
(Stroop C-T), and verbal fluency test (VFT); (2) visuospatial
function: Rey-Osterrieth Complex Figure Test (copy); (3)
language function: Boston Naming Test (30 items); (4) memory
function: auditory verbal learning test (short and long delayed
free recall). Functional ability was assessed using the Katz
basic activities of daily living (BADL) and Lawton and Brody
instrumental activities of daily living (IADL) scales. The norms
used here were based on mean scores of each measurement
from a sample of typical elderly community members in
Shanghai, China (Guo et al., 2007). Cognitive impairment
was defined as 1.5 standard deviations below the normative
mean on any neuropsychological test. The diagnostic criteria
of vMCI included: (1) subjective cognitive difficulty reported
by the patient or caregiver; (2) quantifiable cognitive decline
within one or more cognitive domains (e.g., attention-executive
function, memory, language, or visuospatial function); (3)
normal instrumental activity of daily living. Controls were
defined as SVD with no cognitive impairment, which means
the scores of patients in all neuropsychological tests were within
the normal range. After checking for the high quality of clinical
and imaging data of enrolled participants, 74 vMCI participants
and 39 age-, sex-, and education- matched controls were finally
included in this study.

MRI Acquisition
All MRI data were obtained using a 3.0 T MRI scanner (Signa
HDxt; GE HealthCare, Milwaukee, WI, USA) equipped with
an eight-channel phased array head coil. The following whole-
brain sequences were obtained: (1) The sagittal T1-weighted
images covering the whole brain were acquired by the 3D-
fast spoiled gradient recalled echo (SPGR) sequence [repetition
time (TR) = 5.6ms, echo time (TE) = 1.8ms, inversion time
(TI) = 450ms, flip angle = 15◦, slice thickness = 1.0mm,
number of slices = 156, gap = 0, field of view (FOV) = 256

× 256mm, and matrix = 256 × 256, scanning time=3′53′′];
(2) T2-fluid attenuated inversion recovery (FLAIR) sequences
(TR = 9,075ms, TE = 150ms, TI = 2,250ms, FOV = 256
× 256mm, matrix = 256 × 256, slice thickness = 2mm,
and number of slices = 66, scanning time=7′18′′); (3) DTI
(TR = 17,000ms, TE = 89.8ms, slice thickness = 2mm,
gap = 0, FOV = 256 × 256mm, number of slices = 66,
matrix = 128 × 128, and 20 diffusion-weighted directions
with b-value = 1,000 s/mm2, scanning time = 6′14′′); (4)
Pseudocontinuous ASL (pCASL) images were acquired using
3D fast spin-echo acquisition with background suppression and
with a labeling duration of 1,500ms and a post labeling delay
of 2,000ms, one control and one labeled images were acquired
(TR = 4,337ms, TE = 9.8ms, FOV = 240 × 240mm, slice
thickness = 4mm, flip angle = 155◦, NEX = 3, and number
of slices = 34 scanning time = 4′12′′). The total scanning time
is 21′39′′.

MRI Data Preprocessing
Processing of the diffusion MRI dataset was implemented
using a pipeline toolbox, PANDA v1.3.1 (https://www.nitrc.
org/ projects/panda), which is based on FMRIB’s Software
Library (FSL) tools. In the pipeline, skull-stripping with the
brain extraction tool (BET) was done to extract brain tissue
for b0 image in each subject. Eddy current-induced distortion
and head motion artifacts were corrected by registering each
raw diffusion-weighted image to the b0 image with an affine
transformation. Diffusion metrics including FA, MD, AD,
and RD were calculated within a mask created from b0
image. ASL images were post-processed at a General Electric
Company (GE) workstation, version 4.4. ASL images of each
subject were inspected for the excessive head movement
(≥2mm or 2◦), and the area outside of the brain was
excluded, then the quantitative CBF map of each subject
was calculated.

The image registration was performed using Advanced
Normalization Tools (ANTs) (http://stnava.github.io/ANTs/).
The Johns Hopkins University International Consortium for
Brain Mapping (ICBM)-DTI-81 FA template (Mori et al., 2008)
was registered to the FA map of each individual using ANTs
deformable registration. This transformation was inversed to
warp the labels of WM regions in Johns Hopkins University
ICBM atlas to individual FA space through General Label
interpolation (WM regions listed in Supplementary Table 1).
Quality control was performed through visual inspection of the
FA map of each subject and the wrapped atlas in individual
space. The CBF maps were skull-stripped by FSL with manual
correction and then registered to 3D-T1WI structure imaging,
the 3D-T1WI images were used for image registration and
normalization into a standardized space that is consistent with
the AAL template, with a reslicing resolution of 2 × 2 × 2 mm3.
Mean values of diffusion parameter maps for eachWM label were
extracted. Moreover, the mean CBF value of GM labels in the
AAL template was obtained. A total of 308 features, including
192 diffusion features and 116 CBF features, were extracted for
each individual.
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FIGURE 1 | Research flow chart including: MRI procedures from DTI and ASL data collecting to features extracting, multimode imaging features including mean

FA/MD/AD/RD and CBF within multiple ROIs defined by widely used ICBM templates for white matter diffusion features and AAL templates for gray matter perfusion

features; A comprehensive battery of neuropsychological tests including general cognitive function, attention-executive function, visuospatial function, language and

working memory, functional ability; Three sets of sparse logistic regression (SLR) classifiers were trained using diffusion-based, perfusion-based, and

diffusion-perfusion combined features; Correlation of the final selected features with executive function.

TABLE 1 | Demographic and executive function characteristics.

vMCI Controls p-value

Number 74 39

Age (y) 65.97 ± 6.84 (50–80) 63.44 ± 7.04 (52–81) 0.066

Male (%) 57 (77.03%) 30 (76.9%) 0.610

Education (y) 10.51 ± 2.69 10.54 ± 2.47 0.962

MoCA 21.72 ± 3.43 26.33 ± 1.23 <0.001

MMSE 27.17 ± 1.98 28.49 ± 1.23 <0.001

TMT-A 99.18 ± 50.60 59.46 ± 15.10 <0.001

TMT-B 225.38 ± 87.38 150.83 ± 38.41 <0.001

Stroop C-T 126.40 ± 56.94 79.26 ± 15.36 <0.001

VFT 13.01 ± 4.00 16.12 ± 3.63 <0.001

Data represent means ± standard deviation, with the range in parentheses, if applicable. vMCI, subcortical vascular mild cognitive impairment; TMT-A, trail-making tests A; TMT-B,

trail-making tests B; Stroop C-T, stroop color-word test; VFT, verbal fluency test.

Feature Selection
A sparse logistic regression classifier (Yamashita et al., 2008) with
LOOCV was implemented to distinguish patients with vMCI
from patients with SVD with normal cognition (control) using
the combined features from the CBF and diffusion metrics.
The workflow for the SLR-based classification framework is
shown in Supplementary Figure R1. Before constructing the
SLR classification model, it is necessary to determine a subset of
discriminative features and elimination of the non-informative
features for use in classification, which was widely employed to

boost classification performance (Yahata et al., 2016; Drysdale
et al., 2017). The standard lasso (Tibshirani, 1996) with a 10 ×

10 nested feature selection (FS) method was employed to achieve
a sparse model by excluding the majority of features from the
model. Then, the SLR classifier was implemented on the basis of
the optimal features. Concretely, the whole data set was split into
10-folds using a stratified approach, to keep an equal amount of
(diagnosis and gender) combinations per fold. In each LOOCV
fold, all-but-one subjects were used to train a SLR classifier,
while the remaining subject was used for evaluation. Prior to
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FIGURE 2 | (A) ROC curves of each SLR classifier for discriminating vMCI and controls: The AUC for the combined model, a single ASL model, and a single DTI

model were 0.708, 0.559, and 0.647, respectively. (B) The discriminative gray and white matter regions for SLR classifier based on combined features. The combined

CBF areas included Rolandic_oper, Supp_Motor_Area, Frontal_Sup_Medial, ParaHippocampal and Caudate of the right hemisphere as well as ParaHippocampal and

Temporal_ Sup in the left hemisphere. The combined DTI features included ACR_FA, PCR_AD, and SLF_FA of the right hemisphere as well as EC_FA and UF_FA in

the left hemisphere. SLF, superior longitudinal fasciculus; EC, external capsule; ACR, anterior corona radiata; PCR, posterior corona radiata; UF, uncinate fasciculus;

L, left; R, right.

LOOCV, the 10 × 10 nested FS was performed using lasso. In
this way, the lasso was trained on different subsamples of the
data set, to increase the stability of the selected features. The “test
set” of the outer loop FS process was kept as a testing pool for
LOOCV, whereas the 10-folds of the inner loop FS were used to
select features. Consequently, the LOOCV folds that belonged
to the same testing pool of the outer loop FS shared the same
reduced features. In the inner loop FS, the FS was completed
using Statistics and regression Toolbox of MATLAB (Mathworks
Inc. version 2014a). Features were selected using the default
setting of the lasso function. The hyperparameterλwas estimated
default by lasso. The features selected at each inner fold and λ

were combined by the union operation, to include features that
are important for any possible subsample (inner 10 folds) of

the training data set. Once the inner loop FS was executed, one
participant was taken from the testing pool of the outer loop FS,
and used as the test set of the LOOCV. The remaining samples
were used to train SLR on the features retained during the inner
loop FS.

Feature selection in each fold of the outer LOOCV was
implemented using a slightly different sample subset, which led
to a different set of selected features across folds. The “consensus”
features that were selected on 75% folds of the outer LOOCV
were defined as the discriminative features.

Sparse Logistic Regression Classification
To predict the diagnostic label from the optimal features,
we employed logistic regression as the classifier. In logistic
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TABLE 2 | Classification performance of SLR classifiers using diffusion features, CBF features, and their combined features.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC p

CBF+DTI 72.57 77.03 64.10 0.708 –

CBF 57.52 62.16 48.72 0.559 0.003

DTI 61.06 64.86 53.85 0.647 0.039

AUC, area under curve. Compared to single model with diffusion/perfusion features (p = 0.003/p = 0.039), the SLR classifier achieved the highest accuracy using combined diffusion

and perfusion features (accuracy 72.57%, sensitivity 77.03%).

TABLE 3 | Identified combined diffusion/perfusion features for discriminating vMCI and Controls.

Frequency Type Region vMCI Controls p-values

1.000 CBF Rolandic_Oper_R 49.215 55.617 0.020*

0.982 CBF Supp_Motor_Area_R 41.087 48.511 0.003*

0.761 CBF Frontal_Sup_Medial_R 37.611 40.417 0.162

0.788 CBF ParaHippocampal_L 45.680 50.681 0.020*

0.991 CBF ParaHippocampal_R 44.219 50.527 0.003*

1.000 CBF Caudate_R 34.338 35.348 0.342

0.956 CBF Temporal_Sup_L 51.629 56.769 0.094

1.000 CBF Cerebelum_4_5_R 41.420 43.792 0.342

0.938 FA Right anterior corona radiata 0.316 0.346 0.002*

0.965 AD# Right posterior corona radiata 13.612 13.125 0.142

0.982 FA Left external capsule 0.328 0.350 0.002*

1.000 FA Right superior longitudinal fasciculus 0.369 0.380 0.162

0.938 FA Left uncinate fasciculus 0.336 0.357 0.039*

#Unit is 10-4; *p< 0.05 corrected by FDR. CBF, cerebral blood flow; FA, fractional anisotropy; AD, axial diffusivity; Rolandic_Oper, rolandic operculum; Supp_Motor_Area, supplementary

motor area; Frontal_Sup_Medial, medial superior frontal gyrus; ParaHippocampal, parahippocampal; Temporal_Sup, superior temporal gyrus; FDR, false discovery rate; vMCI, subcortical

vascular mild cognitive impairment.

regression, a logistic function is used to define the probability of
a participant belonging to the vMCI class as follows:

P(y = 1ẑ;w) =
1

1+ exp
(

−wT ẑ
)

where y represents the diagnosis class label, that is y = 1 indicates
patients with vMCI and y = 0 indicates patients with SVD with

normal cognition (control), respectively. ẑ =
[

zT , 1
]T

∈ R
k+1 is

a feature vector with an augmented input.w ∈ R
k+1 is the weight

vector of the logistic function. A receiver operating characteristic
(ROC) curve was plotted to illustrate the classification ability of
the model at varying discrimination thresholds. The predictive
accuracy means the proportion of subjects who were correctly
classified as a vMCI or a control label. To compare the ability of
these classifiers to identify patients with vMCI, we applied the
McNemar’s test for comparing the area under the curve (AUC) of
paired ROC curves (McNemar, 1947). The research flow chart is
illustrated as Figure 1.

Statistical Analysis
All data analyses and statistics were performed using R-3.6.0
(https://www.r-project.org). The Kolmogorov-Smirnov test was
used to test the distribution of age, education, and identified
features. Standard distribution data were compared using the

t-test, and non-normally distributed data were analyzed using
the Wilcoxon rank-sum test. A Chi-square test was used to
compare the gender between the training set and the validation
set. Partial correlations of Pearson were used to assess the
associations between the identified imaging features and the
scores of attention-executive function tests independently in
vMCI and control groups, with sex, age, and education controlled
as covariates. False discovery rate (FDR) was used for multiple
comparison corrections.

RESULTS

Demographic and Cognitive
Characteristics
The demographic and cognitive characteristics of the participants
are presented in Table 1. No significant differences in age, sex,
and education were observed between the vMCI and the control
patient groups. The mean MoCA score of the vMCI group was
significantly lower than that of the control group (p < 0.01),
with 85.14% of the patients with vMCI exhibiting executive
dysfunction. The completion time for the TMT-A and TMT-B
and the reaction time in the Stroop C-T test were significantly
longer in the vMCI group than in the control group (all p< 0.01).
The VFT performance was markedly worse in the vMCI group
than in the control group (p < 0.01).
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FIGURE 3 | Correlations between discriminative features and executive function tests within vMCI group, controlled for gender, age, and education. All results were

corrected by FDR. The mean AD value of right PCR (r = 0.339, P < 0.037) and the mean FA values of the left EC (r = −0.361, P < 0.026) were significantly

associated with TMT-A; the mean FA values of the right ACR (r = −0.404, P < 0.026), left EC (r = −0.359, P < 0.026) and right SLF (r = −0.368, P < 0.026), and the

mean AD value of right PCR (r = 0.391, P < 0.026) were significantly associated with TMT-B; the mean FA values of the right ACR (r =0.377, P < 0.026) were

significantly associated with VFT.

Diffusion and Perfusion Features Predicted
Vascular Mild Cognitive Impairment
Patients
Distinct features with a frequency of ≥75% for distinguishing
patients with vMCI from control patients were selected
and used to construct SLR classifiers. The performance
results of the SLR classifiers, including both single-
mode models and a combined model with both diffusion
and perfusion features, are shown in Figure 2A and
Tables 2, 3. Compared with the single-mode models, the
SLR classifier with both diffusion and perfusion features
achieved the highest accuracy of 72.57%, with sensitivity
of 77.03%.

The classification results are shown as an ROC curve
using each classification score of subject as a threshold
in Figure 2A. The AUCs for the combined model, single
ASL model, and single DTI model were 0.708, 0.559, and
0.647, respectively.

The CBF areas in the combined model included the right
Rolandic operculum, supplementary motor area (SMA),
medial superior frontal gyrus (mSFG), parahippocampal
gyrus and caudate, and the left parahippocampal and
superior temporal gyrus (STG). The DTI features in
the combined model included the FA of the right

anterior corona (ACR) radiata, right superior longitudinal
fasciculus (SLF), left external capsule and left uncinate
fasciculus, and the AD of the right posterior corona radiata
(PCR). The combined CBF and DTI features are shown
in Figure 2B.

Associations Between Executive Function
and Diffusion and Perfusion Features
In the vMCI group, correlation analysis showed that the mean
AD of the right PCR (r = 0.339, p < 0.037) and the mean FA of
the left external capsule (r=−0.361, p< 0.026) were significantly
associated with TMT-A time. The mean FA of the right ACR
(r = −0.404, p < 0.026), left external capsule (r = −0.359,
p < 0.026), and right SLF (r =−0.368, p < 0.026), and the mean
AD of the right PCR (r = 0.391, p < 0.026), were significantly
associated with the TMT-B time. The mean FA of the right ACR
(r =0.377, p < 0.026) was significantly associated with VFT,
as shown in Figure 3 and Table 4. No discriminative perfusion
feature showed a significant association with attention-executive
performance, as shown in Table 4. None of the discriminative
perfusion and diffusion features were significantly associated
with attention-executive performance within control group, as
shown in Supplementary Table 2.
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TABLE 4 | Correlations between discriminative combined diffusion/perfusion features and executive function tests in vMCI group.

Type Region TMT-A TMT-B Stroop C-T VFT

R p R p R p R p

CBF Rolandic_Oper_R 0.003 0.592 0.103 0.407 −0.043 0.534 0.058 0.522

CBF Supp_Motor_Area_R −0.183 0.242 0.037 0.547 0.052 0.522 0.144 0.293

CBF Frontal_Sup_Medial_R 0.066 0.510 0.007 0.587 −0.002 0.582 0.140 0.289

CBF ParaHippocampal_L −0.190 0.228 −0.049 0.519 0.014 0.582 0.163 0.268

CBF ParaHippocampal_R −0.161 0.263 −0.024 0.580 0.100 0.394 0.139 0.282

CBF Caudate_R 0.055 0.522 0.237 0.187 −0.084 0.456 −0.009 0.593

CBF Temporal_Sup_L −0.102 0.398 0.016 0.588 −0.031 0.560 0.146 0.300

CBF Cerebelum_4_5_R −0.160 0.256 −0.169 0.269 0.017 0.595 0.233 0.184

FA Right anterior corona radiata −0.216 0.166 −0.404 0.031* −0.181 0.238 0.377 0.015*

AD# Right posterior corona radiata 0.339 0.022* 0.391 0.015* 0.209 0.177 −0.219 0.184

FA Left external capsule −0.361 0.018* −0.359 0.015* −0.168 0.260 0.313 0.173

FA Right superior longitudinal fasciculus −0.311 0.042* −0.368 0.020* −0.219 0.200 0.221 0.207

FA Left uncinate fasciculus −0.061 0.522 −0.141 0.295 −0.137 0.280 0.070 0.504

#Unit is 10−4; *p < 0.05, corrected by FDR. The selected white matter diffusion features were significantly associated with TMT-A/TMT-B/VFT. No discriminative perfusion feature was

detected associated with attention-executive performance significantly.

DISCUSSION

Associations between cognitive decline and impairments to
anterior thalamic radiation (ACR) have been broadly reported
in SVD. Voxel-based lesion-symptom mapping studies (Duering
et al., 2011, 2014; Biesbroek et al., 2013) found that strategic
locations of WM damage within ACR were associated with
processing speed performance or executive function in SVD.
Tract-based spatial statistics study also found that diffusion
metrics along the forceps minor and ACRwere discriminative for
cognitive impairments in patients with SVD (Chen et al., 2018),
which is consistent with the present finding that ACR diffusion
abnormalities not only contributed to the classification accuracy
of patients with SVD with-/without- cognitive symptoms, but
also were significantly correlated with executive function. This
indicates the involvement of the ACR in the early stage of
cognitive decline in SVD. Furthermore, other discriminativeWM
fibers revealed in our study constituted the lateral pathway of the
cholinergic system (external capsule, uncinate fasciculus, CR, and
SLF), which radiates to the dorsal frontoparietal neocortex, the
temporal cortex, and the parahippocampal gyrus (Caruso et al.,
2019; Nolze-Charron et al., 2020). Specifically, fiber bundles that
radiated to the dorsal frontoparietal cortex were associated with
performance in the executive function tests in the vMCI group.
As a matter of a fact, cholinergic dysregulation in SVD has been
discussed extensively, including cholinergic neuronal deficits and
cholinergic denervation (Mesulam et al., 2003; Keverne et al.,
2007), decreased cerebrospinal fluid acetylcholine concentrations
(Wallin et al., 2003), and the promising effects of cholinergic
therapies (Caruso et al., 2019). In particular, a tractography
study (Liu et al., 2017) identified significantly lower FA within
cholinergic pathways (including the external capsule, cingulum,
and claustrum) in patients with vascular cognitive impairment no
dementia group. The disrupted pathways could fully explain the
executive dysfunction and partly explain the memory and global

cognitive impairments. Another tractography study isolated the
external capsule as the lateral cholinergic tract and found that
diffusion metrics of both the external capsule and the overlying
SLF were correlated with executive dysfunction (Nolze-Charron
et al., 2020). Our findings are consistent with these reports, with a
broad range of lateral cholinergic tracts up and down the external
capsule being significantly related to executive dysfunction in
the early stage of cognitive decline in SVD but not the non-
symptomatic stage. Collectively, results that showed frontal fiber
dysconnectivity and potential cholinergic dysregulation shed
light on the clinical characteristics of attention and executive
dysfunction in vMCI, thereby supporting a physically active
lifestyle and cholinergic therapy as a potential effective treatment
option for vMCI (Dey et al., 2016; Strömmer et al., 2020).

Cortical perfusion abnormalities in frontal (mSFG, SMA,
Rolandic operculum), subcortical (caudate nucleus), and limbic
(parahippocampal gyrus) areas also contributed to the accuracy
of subtype classification in the present machine learning model,
although no associations with performance of cognitive tests
in these patients were found. Previous ASL studies showed
widespread significant reductions in cortical CBF in patients
with SVD with cognitive impairment (Schuff et al., 2009; Gao
et al., 2013; Sun et al., 2016), although the spatial profiles of
CBF abnormalities reported among these studies were rather
divergent. Cortical perfusion is regulated by neurovascular
coupling and a complex autoregulation system, and may not
therefore be simply related to cognitive impairment (Caruso
et al., 2019). Recent studies suggested an important role for the
autonomic nervous system in the maintenance of CBF (Hamner
et al., 2012). It was suggested that cholinesterase inhibitors
modulate cerebral vascular functions because of the possible
role of cholinergic fibers in cerebral flow regulation (Brown
and Thore, 2011). Considering the WM diffusion abnormalities
in our classification model, CBF disturbance of the frontal–
subcortical–limbic system may partly result from dysfunction
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of the lateral capsular pathway of cholinergic tracts which
needs further study. Moreover, recent study showed that cortical
perfusion abnormalities may also affect cognition through
secondary changes in subcortical myelin content (Chen et al.,
2013; Bouhrara et al., 2020). The diffusion-perfusion combined
classifier with the highest cognitive classification accuracy in this
study might suggest the interaction of gray matter perfusion and
WM integrity, which explained the cognitive outcomes.

This study had several limitations. First, because of inherent
limitations of the atlas used for WM parcellation, only the
main WM tracts were evaluated, and fibers in superficial regions
were not included in our study. Future studies of the fibers
in superficial regions may provide additional information on
vMCI. Second, the low spatial resolution of the CBF images
may have resulted in partial volume effects causing bias in
the CBF features. Third, the results were not validated on an
external dataset. Further studies using multicenter validation
datasets are needed to acquire high-level evidence. Fourth,
resting CBF only provides information for a cut-off time
point, at which CBF might still be relatively preserved or
compensated. Fifth, although detailed clinical history, imaging
analysis, and neuropsychological evaluation were used to avoid
the interference of AD, the influence of mixed dementia on this
study could not be completely excluded. Finally, compared with
the dimensionality of the features, the sample size was relatively
small. In addition, there were more males in both groups, which
may lead to biasness in results.

CONCLUSIONS

We demonstrated the superior accuracy of using diffusion-
perfusion combined multimode imaging features for classifying
vMCI subtype out of a cohort of patients with SVD. Importantly,
these findings highlight that disrupted WM integrity might play
a critical role in the progression of cognitive impairment in
patients with SVD, while malregulation of coritcal perfusion
needs further study.
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