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Supramolecular materials–materials that exploit non-covalent interactions–are increasing in
structural complexity, selectivity, function, stability, and scalability, but their use in
applications has been comparatively limited. In this Minireview, we summarize the
opportunities presented by enabling technology–flow chemistry, high-throughput
screening, and automation–to wield greater control over the processes in supramolecular
chemistry and accelerate the discovery and use of self-assembled systems. Finally, we give
an outlook for how these tools could transform the future of the field.
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INTRODUCTION

Supramolecular chemistry exploits weak, reversible interactions to form complex structures from
simpler components (Lehn, 1988; Vantomme and Meijer, 2019). Two key tenets of supramolecular
chemistry are host-guest molecular recognition and self-assembly (Davis et al., 2002), which have
both become broad disciplines (Albrecht, 2007). Both concepts are ubiquitous in nature: the enzyme-
substrate complex, base stacking of DNA and assemblies of virus cages are only a few examples
(Whitesides et al., 1991). It is clear to see why chemists want to harness these principles in artificial
structures for applications such as artificial enzymes, drug delivery systems, innovative materials,
and more.

Huge progress has been made in the function, selectivity, and efficiency of artificial
supramolecular systems. The diversity of materials and structures, including those that exploit
mechanical bonds [catenanes (Gil-Ramírez et al., 2015), rotaxanes (Yang et al., 2019), knots (Fielden
et al., 2017)], host-guest interactions [macrocycle (Liu et al., 2017), cage structures (Hasell and
Cooper, 2016)], and framework or soft materials [metal-organic frameworks (MOFs) (Zhou and
Kitagawa, 2014; Jiao et al., 2019), hydrogen-bonded organic frameworks (HOFs) (Yusov et al., 2021),
supramolecular polymers (Yang et al., 2015) and gels (Weiss, 2014)], is ever-increasing, as is our
ability to design and use these structures. As such, promising applications are emerging: porous
supramolecular materials have potential in carbon capture (Huck et al., 2014), self-healing polymers
could produce materials with enhanced recyclability (Song et al., 2019), and glucose binders could
transform how diabetes is managed (Tromans et al., 2019), to name just a few.

However, the formation of supramolecular structures often presents challenges, which in turn
limits their wide-spread use. Both non-covalent reversible interactions and reversible covalent
reactions can be difficult to control due to their sensitivity to environmental conditions, and often a
multitude of possible products are formed as a result (Wu and Isaacs, 2003). Solvent effects
(Würthner, 2021) can be unpredictable and lead to unexpected outcomes (Little et al., 2014; Zhang
et al., 2015). The use of high-dilution conditions, templating strategies, long reaction times or slow
addition of reagents, and/or complex synthetic routes can help overcome these challenges (Marti-
Centelles et al., 2015), but in turn limits the scalability of the process. Predictions of which assembly
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pathway will be followed, or the likely success of the process, can
be aided using crystal engineering (Desiraju, 1997) or guided by
computation (Greenaway and Jelfs, 2020), but the targeted design
of materials with desirable properties can still be a long and
restrictive process. Discoveries have generally been made via
rational and iterative design techniques (Hong et al., 2015),
often based on known structures, trial-and-error, or even
serendipity (Winpenny, 2002; Saalfrank et al., 2008). However,
these approaches limit the scope of possible accessible materials
and leave vast areas of chemical space unexplored.

How, then, do supramolecular chemists approach these
challenges? Standard tools for the chemist–i.e., round
bottomed flasks–do not offer either fine control over
environmental parameters (concentration, diffusion and
mixing, temperature gradients), particularly on a large scale
(Nomura et al., 1996; Kuśmierek and Świątkowski, 2015), or
rapid exploration of chemical parameter space. There is therefore
a need for tools that enable: 1) greater control over the formation
of reversible and/or non-covalent interactions; 2) faster and more
extensive exploration of chemical space; and 3) scalable, efficient,
and “green” synthesis. This Minireview will explore two
complementary approaches to solving these issues: flow
chemistry and high-throughput automation, both of which fall
under the umbrella of “enabling technology.”

Flow chemistry involves conducting a reaction in a continuous
stream in a tube or microreactor (Myers et al., 2014; Plutschack
et al., 2017). Flow processes are used extensively in industry; the
majority of commodity chemicals are continuously manufactured
(Glaser, 2015; Porta et al., 2016; Baumann et al., 2020). Flow
chemistry offers benefits such as improved safety and control of
reactions, access to a wider range of reaction conditions, easier scale-
up, and potential savings in energy use and wastage (Newman and
Jensen, 2013). Early adopters of continuous flow chemistry within
the supramolecular community usedmicrofluidic chips to influence
process outcome (Whitesides, 2006; Zhang et al., 2012; Foster et al.,
2015; Parker et al., 2015; Yu et al., 2015; Gong et al., 2016);
significant progress in flow technology has since opened a
wealth of new opportunities for the field (Arnon et al., 2016;
Fang et al., 2018; Cohen-Gerassi et al., 2020; Méndez-Ardoy
et al., 2020; Khoeini et al., 2021; Puigmarti-Luis et al., 2021).

High-throughput screening (HTS) enables reactions or processes
to be rapidly carried out in parallel, potentially running thousands of
samples simultaneously (McNally et al., 2011). Whilst HTS may
have been previously affected by a bottleneck in slower dispensing,
and analytical or data-processing steps, its growing success has been
enabled by the development of automated experimentation
platforms and technologies such as liquid and solid handling
devices, robotics, autosamplers, and data-analyst software or
scripts (Carson, 2020). It has been widely adopted within the
pharmaceutical industry (Mennen et al., 2019) and is now
finding its use in many other chemical fields.

Although both technologies have had uptake in adjacent fields,
there have been fewer reports on the use of flow or HTS in
supramolecular chemistry. To showcase the benefits of such
enabling technologies, this review will focus on the following
four steps of development that are particularly relevant to
supramolecular chemistry: enhanced process control, rapid

screening and discovery of new structures, fast and/or
automated optimisation, and facilitating scale-up (Figure 1).

ENABLING TECHNOLOGIES FOR THE
STAGES OF DEVELOPMENT IN
SUPRAMOLECULAR CHEMISTRY
Enhanced Process Control
Supramolecular chemists seek to develop materials and systems
made of multiple molecular building blocks where the whole is
“more than the sum of its parts.” Many have exploited the
reversibility of both non-covalent and dynamic covalent
systems to form multicomponent structures under
thermodynamic equilibrium (Whitesides et al., 1991; Rowan
et al., 2002; Otto and Severin, 2007; Han et al., 2010; Okesola
and Mata, 2018). Under fully reversible equilibrium conditions,
the final outcome of such processes only depends on the
molecular building blocks being used and the overall stability
of the products: the thermodynamic product is often observed,
representing the global energy minimum (Rowan et al., 2002).
However, “out-of-equilibrium” structures have recently gained
more attention (Ogi et al., 2014). For these systems, the reaction
environment has a strong influence on the assembly pathway and
the final structures obtained. Under non-equilibrium conditions,
or where diffusion is slower than the rate of reaction, the impact
of mixing efficiency or local concentration gradients can be
substantial (Sevim et al., 2018). Controlling mixing is very
difficult to achieve in a standard flask, but can be readily
achieved under flow and microfluidic conditions (Nagy et al.,
2012; Ward and Fan, 2015).

FIGURE 1 | Typical processes involved in supramolecular system
discovery and exploitation that can be enhanced using automation, flow
chemistry, and/or high-throughput screening.
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Microfluidic reactors–where reactions are carried out in channels
<1mm–offer unique control over the mixing of reagents in both
space and time (“spatio-temporal control”) (Sevim et al., 2018). The
degree of mixing can be much more finely controlled compared to
batch, ranging from extremely turbulent flow and thus fastmixing to
extremely slow: in the laminar flow regime, streams of fluids flow
parallel to each other, creating a defined liquid-liquid interface
between them (Brivio et al., 2006). Thus, specific assembly
pathways can be deliberately targeted by controlling the flow
regime, and obtaining non-equilibrium structures becomes easier
in microfluidic environments, facilitating the targeted synthesis of
materials with desired properties. Furthermore, in flow, a higher
degree of control results in greater reproducibility and a consequent
avoidance of off-target reactions due to poor mixing and local
concentration gradients.

One recent example where this has been successfully
exploited in supramolecular chemistry is the work of Numata
et al. (2015b) who were able to synthesise porphyrin microfilms
stabilized by an extended two-dimensional hydrogen bonding
network. In contrast to batch conditions which formed an
amorphous material, the use of microflow conditions enabled
the formation of regular hydrogen-bonded networks leading to
micron-sized multi-layered porphyrin sheets. This suggested
that the microsheets could only be formed following the non-
equilibrium kinetic pathway established under microflow
conditions. Microfluidic conditions have also been used to
access alternative self-assembled structures in a controlled
manner in the field of organic conductors (Puigmartí-Luis
et al., 2010), co-ordination polymers (Rubio-Martinez et al.,
2016b), covalent organic frameworks (COFs) (Rodríguez-San-
Miguel et al., 2016; Singh et al., 2018), and MOFs (Ameloot
et al., 2011), and to control the hierarchical supramolecular
assembly of perylene bisimides (Numata et al., 2015a),
nanofibers (Numata and Kozawa, 2013), and amphiphiles
(Numata et al., 2015c), with the latter enabling the formation
of energetically unfavourable self-assembled structures under
kinetic control.

Whilst control over reaction outcomes and the assembly
process is a powerful tool, it is made more powerful if it can
be rapidly applied to a wide range of systems. One potential
drawback of continuous flow is the challenge of parallelising
experiments, which currently limits throughput. HTS allows a
much faster, and arguably more efficient, exploration of a wider
chemical space, and can lead to the accelerated discovery of new
structures. Efforts to parallelise or improve the throughput of flow
experiments include microdroplet screening (Reizman et al.,
2016), continuous variation of variables coupled within inline
analysis (Aroh and Jensen, 2018), and multi-channel chip
architectures (Headen et al., 2018), and it is likely that these
approaches will become increasingly used to combine the benefits
of enhanced control with rapid screening.

Faster, Targeted Screening
Synthetic screening often results in a vast number of structures
with only a select few being suitable for the application of interest.
Fast and effective screening of the design space thus plays an
important role in identifying materials and assemblies with

desirable properties in supramolecular chemistry, and this is
where HTS can offer its services.

A typical approach to HTS involves the use of multi-well
microtiter plates and is often aided by the use of automated
robotic platforms. For example, Greenaway et al. (2018)
illustrated the advantages of employing an automated platform
for HTS alongside computational analysis in the search for new
organic cages. Overall, this led to the streamlined discovery of 33
new organic cages, with two forming bridged-catenane structures
upon recrystallization, a new cage topology, highlighting the
advantage of HTS in accelerating serendipitous discoveries. Their
automated workflow has also been employed in the discovery of
other supramolecular assemblies including an unsymmetrical
organic cage (Berardo et al., 2018) and socially self-sorted
organic pots (Greenaway et al., 2019). More recently, Cui et al.
(2019) demonstrated how automated platforms can be used for
polymorph screening, resulting in different HOFs being accessed.
Additionally, Lin et al. (2021) demonstrated how HTS can screen
for supramolecular diversification, resulting in a range of different
hierarchical self-assemblies such as thin fibrils, helical ribbons,
twisted ribbons, wide and thin ribbons, and macroscopic hydrogels.

Despite the potential advantages HTS offers, it has still not been
widely adopted in the field of supramolecular chemistry. This could
be due to factors such as the typically high initial cost of automated
platforms, or challenges in finding suitable and equally high-
throughput characterisation techniques for the supramolecular
assemblies being targeted. However, with the availability of lower
cost and open-source automated liquid handling platforms, and
with several advances having been made in the HT characterisation
of supramolecular materials (Greenaway et al., 2018; White et al.,
2020), we expect these techniques to become more widely adopted
in the field for screening and discovery of new “hits.”

Rapid Optimization
Once a “hit” has been found, the next step in the process is to
optimize for parameters such as yield, selectivity, performance,
throughput, or stability; this process can take as long as the
discovery phase. Here, enabling technologies offer the
opportunity to shorten this timeline and assist the chemist in
making key decisions to ensure the best chance of finding an
optimal supramolecular system.

Flow chemistry enables real-time analysis, giving
mechanistic insight that can be used to inform optimization.
Intermediates can be isolated from the reaction stream and
separately analysed to provide a better understanding of the
reaction pathway and general self-assembly processes
(Sagmeister et al., 2021). For example, recently Jones et al.
(2021) exploited this to optimise the synthesis of a
macrocyclic molecular hinge using a semi-continuous
method informed by at-line analysis. Here, the fast heat
transport possible in flow enabled a rapid temperature
change mid-synthesis, leading to a threefold increase in yield
and simultaneous reduction in reaction times.

HTS can also be used to screen many different parameters in
parallel (e.g., reagent stoichiometries, solvents, catalysts, additives,
and temperatures), and has been widely used in the pharmaceutical
industry to optimise yield and selectivity (Shevlin, 2017; Mennen
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et al., 2019). This optimisation process can also be aided by
incorporating Design of Experiments (DoE) to narrow down the
number of reactions required. In addition, microfluidic platforms
can also be employed for HTSwhich, when compared to automated
platforms andmicroplates, can significantly reduce the quantities of
reagents required for both screening and optimisations (Zhou et al.,
2020). Whilst there are very few examples of applying flow,
microfluidics, or automated platforms for high-throughput
screening in supramolecular chemistry, there is no reason why
these approaches could not be adopted for the field.

It is worth noting that whilst HTS can enable a large amount of
the design space to be investigated, it is not desirable to fully
empirically explore all precursor combinations or reaction
conditions to ensure the optimal conditions are selected. By
combining HTS and flow chemistry with machine learning
algorithms and Bayesian optimisations, and in situ analysis
techniques, this process can be streamlined by using closed-
loop autonomous screening to optimise towards a target
parameter or property (Zhou et al., 2017; Bédard et al., 2018;
Clayton et al., 2019; Clayton et al., 2020). A recent example that
highlights this in the area of supramolecular chemistry is the work
of Cronin and co-workers who used a closed-loop autonomous
“chemical robot” to explore a large combinatorial space for the
discovery of coordination architectures (Porwol et al., 2020). The

group calculated that it would take 4 × 104 experiments to fully
explore the variables chosen, and therefore proposed an
autonomous decision-making approach to explore this space
as rapidly as possible, discovering four new coordination
complexes in the process. This example highlights the
importance of decision-making in screening large parameter
spaces: the task of deciding “what to explore,” or “what to
explore next,” normally taken by the chemist, is a critical
point that determines the success or failure of the experiment
as well as how fast that point is reached. Emerging research in
algorithms for process space exploration, growing from the
established science of DoE approaches, are yielding incredible
advances in discovery speed in adjacent fields and are likely to
make a similar impact in supramolecular chemistry, especially if
suitable conditions for scale-up can also be identified.

Scale-Up
Despite the activity in the field, currently, there are only a few
supramolecular materials that are produced for commercial
purposes. The many issues surrounding the scale-up process
(e.g., large amounts of organic solvents, long reaction times,
poor reproducibility) have hindered this transition, preventing
structures from being viably used for the many promising
applications they present (Rubio-Martinez et al., 2017).

FIGURE 2 | Examples of supramolecular species and precursors and self-assembly processes that have been examined or enhanced using enabling technology
for process control (Puigmartí-Luis et al., 2010; Numata et al., 2015a; Rubio-Martinez et al., 2016b; Gong et al., 2016; Thorne et al., 2019; Puigmarti-Luis et al., 2021,
This figure contains an image of Figure 2a from Thorne et al. that has been used to make this composite figure under the terms of a Creative Commons Attribution 4.0
International License https://creativecommons.org/licenses/by/4.0/), screening (Greenaway et al., 2018), optimisation (Jones et al., 2021, The flow diagram and
crystal structures in the optimization panel have been reused from Figure 2 and 11 from https://pubs.acs.org/doi/abs/10.1021/jacs.1c02891 respectively with
permission from the ACS. Further permission related to the material excerpted should be redirected to the ACS), and scale up (Briggs et al., 2015; Rubio-Martinez et al.,
2016a).
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Continuous flow reactors are one of the latest technologies
being employed to produce supramolecular structures at scale.
Their large surface area-to-volume ratio allows more efficient
mass and heat transfer, giving safer and faster reactions.
Improvements on the reproducibility and product quality can
be obtained due to the higher level of control over the reaction.
Flow reactors also generally require less solvent compared to
traditional batch reactions, driving down the cost and waste
which are all factors that need to be considered for an
industrial scale process (Rubio-Martinez et al., 2017).

Recently, flow chemistry has been used to optimize the yield,
selectivity, and limited scale-up, of both macrocyclic (Bogdan and
James, 2010; Bogdan and James, 2011; Bedard et al., 2013; Bédard
et al., 2015; Lucke et al., 2016; Morin et al., 2019; Jones et al., 2021;
Seemann et al., 2021) and cage (Briggs et al., 2015; Kitchin et al.,
2015) supramolecular structures. For example, Bédard et al.
synthesized medicinally relevant (Marsault and Peterson, 2011)
macrocyclic lipids under continuous flow, with yields of up to
97% in short reaction times (Bedard et al., 2013). They were also
able to increase the reaction to a multigram scale for some
macrocycles; high yields were retained without the need for
re-optimisation. Similarly, Briggs et al. (2015) translated the
synthesis of porous organic cages (POCs) from batch to flow,
resulting in greatly reduced reaction times and reduced solvent
use, offering a continuous method of scale-up. It should be
acknowledged, however, that there is still significant method
development required to achieve the multi-kilo or tonne scale
needed for many industrial applications, and here collaboration
with process chemists and engineers is essential.

Flow has also assisted in the scale-up of MOFs (Munn et al.,
2015), which have promising applications in gas storage, gas
separation and heterogeneous catalysis, but are typically
produced by solvothermal batch synthesis that is challenging
on a large scale (Czaja et al., 2009). For example, Rubio-Martinez
et al. (2016a) were able to scale-up the synthesis of the aluminium
fumate (Al-Fum) MOF from a laboratory to a pilot-plant system
by more than 2 orders of magnitude giving an increased space-
time-yield (STY) of 97,159 kg m−3 day−1. Since then, significant
progress has been made towards the commercial synthesis of
MOFs; for example, a continuous hydrothermal synthesis is now
being used by Promethean Particles, who commercially produce
nine different MOFs and porous structures (Munn et al., 2015).

It is also worth noting that scale-up of supramolecular
materials has also been demonstrated under mechanochemical
continuous flow, namely using twin-screw extrusion (TSE),
which can reduce the solvent requirement for synthesis even
further. For example, bothMOFs and POCs have been formed on
scale with very little to no solvent using TSE (Crawford et al.,
2015; Egleston et al., 2020; Casaban et al., 2021). Finally, there
have also been promising developments in combining flow
reactors and microwave heating for the process intensification
of MOF formation (Laybourn et al., 2019). It is clear that the

materials chemist has a number of tools at their disposal to ensure
compounds can be made at-scale, and we anticipate this will
become more widespread in supramolecular chemistry.

CONCLUSION AND OUTLOOK

Emerging examples of the use of enabling technology in
supramolecular chemistry showcase the potential impact on
the field: from faster discovery and screening to efficient
optimisation, analysis, and scale-up (Figure 2). Commercial
flow reactors, robots and high-throughput work stations are
increasingly available alongside low-cost, home-build options
(Baas and Saggiomo, 2021), meaning these enabling
technologies are becoming more accessible to research
laboratories. It is likely that as this availability of technology
increases, it will become more integrated in research laboratory
procedures and industrial manufacturing. If these technologies
are to become mainstream, then training the chemists of the
future will become vital. Examples of pre-designed flow chemistry
experiments for potential use in undergraduate teaching
laboratories (König et al., 2013; Leibfarth et al., 2018; Kuijpers
et al., 2021) represent the acknowledgement of a changing skill set
required of graduate chemists.

It should also be noted, that whilst this review has focussed on
the benefits of enabling technology, it is now frequently coupled
with computation to carry out prior predictions and subsequent
analysis. Growing examples can already be seen of computational
predictions in areas such as organic cages (Berardo et al., 2020),
photocatalysts (Singh et al., 2015), and drug molecules (Yu et al.,
2020). The likely outlook for the future of chemistry, including
supramolecular chemistry, is a hybrid approach of automated
experimentation coupled with computation, whether that is using
computation to first narrow down the design space, or using HTS
to collect large amounts of robust data to feed into data-led
computational approaches and machine learning algorithms. It
seems certain that the benefits these tools offer will play an
increasing role in supramolecular chemistry, from screening to
scale-up.
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