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Introduction
ALS is a progressive neurodegenerative disease marked by the loss of motor neurons, 
leading to muscle paralysis. Its causes remain unclear, and treatments aim to prolong life 
and manage symptoms. Clinical trials encounter challenges due to varying progression 
rates and lack of effective therapies. Diagnostic biomarkers and objective outcome mea-
sures are lacking, complicating ALS treatment [1, 2].

ALS can be familial (5% genetic) with SOD1 mutations, or sporadic (95%) with poten-
tial environmental and genetic factors. Key genes include C9orf72, SOD1, TARDBP, 
UBQLN2, and FUS. Pathogenesis involves inflammation, excitotoxicity, oxidative stress, 
and neurovascular issues, with “typical” ALS showing both upper and lower motor neu-
ron loss, and atypical forms may not [3].

The ALS Functional Rating Scale-Revised (ALSFRS-R) is a validated tool with 12 items 
across four domains (bulbar, limb/trunk, respiratory, and interventions) used to assess 
functional deficits in ALS patients. ALSFRS-R is an updated version of the original ALS-
FRS, which consisted of 10 items and assessed respiratory function with a single ques-
tion (Q10). In contrast, ALSFRS-R includes three distinct questions (Q10, Q11, Q12) 
to more thoroughly evaluate respiratory function, resulting in a maximum score of 48 
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points, compared to the 40-point maximum of the original ALSFRS. While ALSFRS-R 
is known for its reliability, some studies have noted inconsistencies in its measurement 
model across different contexts. Initially developed for clinical trials, ALSFRS-R is now 
widely used in research, clinical practice, self-assessments, and online questionnaires [4, 
5].

The ALS Functional Rating Scale (ALSFRS-R) evaluates the functional abilities of ALS 
patients in areas such as speech, swallowing, mobility, and respiratory function. Each 
category is rated on a scale from 0 to 4, where a score of 4 represents normal function, 
and 0 indicates a complete loss of ability. Lower scores correspond to greater functional 
impairment. This tool is commonly used to track disease progression and assess patient 
status over time.

Pathophysiology

Oxidative stress in ALS leads to acetylated TDP-43 aggregates, which impair RNA bind-
ing and promote the accumulation of insoluble, hyperphosphorylated TDP-43 species 
that closely resemble pathological inclusions seen in ALS. These acetylated TDP-43 
lesions have been observed in ALS patient spinal cords, linking aberrant TDP-43 acety-
lation to the pathogenesis of TDP-43 proteinopathy [6]. Aggregated TDP-43 sequesters 
specific microRNAs and mitochondrial proteins, further exacerbating mitochondrial 
dysfunction and oxidative stress, contributing to axonal degeneration and disease pro-
gression [7–9]. Mitochondrial dysfunction associated with ER-mitochondrial defects 
disrupts calcium balance, mitochondrial dynamics, and autophagy, which are essential 
to neuronal health in ALS [8]. Collectively, these mechanisms drive ALS pathology.

In this research, we draw upon the PRO-ACT database, utilizing datasets that include 
ALSFRS (R) scores, demographic information, disease duration, and clinical features 
to forecast ALS progression. By combining these varied datasets, our model provides 
a holistic perspective on the factors influencing ALS, allowing for more precise predic-
tions of disease advancement. This methodology deepens our understanding of the clini-
cal elements affecting ALS, thereby aiding in better patient management and outcomes.

Literature review
Pancotti et al. found “Onset Delta” as the top predictive feature for ALS progression. The 
FFNN + CNN model showed slightly lower error but also lower correlation in ALSFRS 
slope prediction. Shapley values improved model interpretability, and fast progressors 
were associated with significantly shorter survival [1].

Vieira et al. developed ML models to predict ALSFRS-R scores using voice and accel-
erometer data. A CNN achieved an AUC of 0.86 for speech-related scores, and acceler-
ometer models had AUCs of 0.70–0.75 for limb functions. The models, showing strong 
correlations with self-reported assessments, offer potential as objective ALS evaluation 
tools and provide insights into ALS progression and edaravone treatment effects [2].

Müller et al. used an RNN to predict breathing decline in ALS patients, based on 
ALSFRS-R question 10 scores. SHAP values identified key factors affecting breathing 
capacity, including speech and swallowing, highlighting the importance of interpretable 
models for personalized ALS care [10].

The CompALS project used dynamic Bayesian networks to predict ALS progression 
with ITIS and IT datasets. The models accurately predicted disease progression and 
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survival, assessing risk factors like onset site and FVC, providing valuable insights for 
clinical decision-making and personalized care [11].

A multinational study created a predictive model for ALS outcomes using data from 
1936 patients across 14 European centers. The Royston-Parmar model, which included 
predictors like onset type and C9orf72 mutation, achieved a concordance statistic of 
0.78 and was externally validated, aiding in patient stratification and personalized man-
agement [12].

Imamura et al. developed a CNN-based model using iPSC-derived motor neurons, 
achieving 90% accuracy and an AUC of 0.97. The VGG-16 network outperformed 
human experts and traditional models, with Grad-CAM visualizations highlighting neu-
ron changes, showing CNNs’ potential for improving ALS prediction accuracy [13].

Abdul Jabbar et al. developed ML models with PRO-ACT data from 5030 ALS 
patients, using XGBoost and BLSTM, achieving AUROC values of 0.570 to 0.748. The 
models identified 21 key predictors and showed potential to reduce Phase II/III clinical 
trial sizes by 18.3%, enhancing ALS research and trial design [14].

Albert A. Taylor et al. developed predictive models for ALS progression using PRO-
ACT data from over 10,700 patients. The random forest model, with 13 predictors, 
showed superior accuracy and stability compared to pre-slope and GLM models, high-
lighting its clinical potential for improving ALS progression predictions [15].

Alberto Tena’s study analyzed speech in 45 ALS patients and 18 controls, using PCA to 
extract features like jitter and pitch. Supervised classification models effectively distin-
guished between ALS and control participants, highlighting acoustic analysis’s potential 
for diagnosing ALS-related speech changes [16].

Jahandideh et al. developed a GBM model to predict forced vital capacity (FVC) in 
ALS patients using PRO-ACT data. The model showed reliable accuracy and was vali-
dated internally and externally, with key features including “Baseline FVC” and “Days 
since baseline [17]. Below is a Table 1 comparing the related works presented in the lit-
erature review section:

Methodology
In this study, we apply an XGBoost regression model to predict ALS progression, uti-
lizing clinical features such as speech, mobility, and respiratory function. The model 
was trained and fine-tuned for high efficiency, yielding accurate predictions on the ALS 
Functional Rating Scale (ALSFRS-R).

In clinical practice, there’s rising interest in using machine learning algorithms like 
XGBoost for developing AI models. XGBoost, a boosting algorithm, is notable for refin-
ing errors from pre-existing models [18]. The Mean Squared Error (MSE) for regression 
is mathematically represented by Eq. (1):

MSE =
1

N

∑ N

i=1
(yi − ŷi)

2 � (1)

Datasets

This research utilized data sourced from the PRO-ACT database, which contains exten-
sive information on ALS patients. The datasets obtained included the ALS Functional 
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Rating Scale (ALSFRS) scores, forced vital capacity (FVC), demographic details, onset 
history, and mortality records.

Machine learning methodology

 	• Programming Language: Python
 	• Machine Learning Libraries:

 	• XGBoost: Used for implementing the gradient boosting algorithm to enhance 
prediction accuracy.

 	• Scikit-learn: Employed for model evaluation and validation, including train-test 
splitting and cross-validation.

 	• Data Analysis Libraries:

 	• Pandas: Utilized for data manipulation and analysis, allowing for efficient 
handling of the dataset.

 	• NumPy: Used for numerical computations and to facilitate array operations.
 	• Matplotlib and Seaborn: Employed for data visualization, providing insights 

through various plots and graphs.
 	• Missingno: Used for visualizing missing data patterns in the dataset.

Table 1  Comparative analysis of related works discussed in the literature review
Reference 
Number

Research Focus Methodology Key Findings Limitations

[1] ALSFRS-R factor 
analysis

EFA and CFA on 
ALSFRS-R

Four-factor model with cross-
loading items fits best

Generalizability 
limited to Dutch 
patients

[2] ALS severity 
measurement

ML models using voice 
and accelerometer data

Accurate prediction of bulbar 
and limb ALSFRS-R scores

ML models 
limited to dataset 
characteristics

[10] ALS progression 
prediction

RNNs with LSTMs; SHAP 
for explainability

Low MSE (< 0.02); key features 
identified

Explainability chal-
lenges; limited 
outcome scope

[11] ALS progression 
modeling

Dynamic Bayesian 
Networks (DBNs)

Predicts functional impairment 
and survival with high accuracy

Dependent on 
initial visit data

[12] ALS survival 
prediction

Royston-Parmar model, 
external validation

Identified 8 predictors, c-statistic: 
0.78, distinct survival groups

Requires medical 
doctor application

[13] ALS diagnosis 
support

Deep learning, iPSCs, 
CNN

AUC: 0.97 for classifying healthy 
vs. ALS

Requires further 
prospective 
research

[14] ALS progression 
prediction

XGBoost, BLSTM, PRO-
ACT database

AUROC: 0.570–0.748, 21 key 
predictors identified

Confidence levels 
vary

[15] ALS disease 
progression 
prediction

Random Forest (RF), 
GLM, pre-slope models

RF Model superior in predicting 
disease progression, validated 
on clinical and trial data

Potential overfit-
ting in non-RF 
models

[16] Diagnosis of bul-
bar involvement 
in ALS

Automated voice analy-
sis, SVM

Automated model (accuracy 
95.8%) outperforms human 
diagnosis

Limited to Spanish 
vowel analysis

[17] Prediction of 
vital capacity 
in ALS

Gradient boosting 
machine (GBM) with 
PRO-ACT dataset

ALS-VC model predicts vital 
capacity with RMSD of ~ 0.534, 
similar across datasets

Limited external 
validation data
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Data integration

The separate datasets were combined using ‘subject_id’ as the merging key, with an 
outer join applied to retain all records, resulting in a consolidated dataset referred to as 
‘merged_data.

Data preparation

 	• Managing Missing Data

For numeric features with missing entries, the mean was used for imputation, whereas 
categorical variables were transformed using label encoding. Records with excessive 
missing values in essential variables were removed to ensure the integrity of the dataset.

 	• Feature Selection

Selected features for modeling comprised critical clinical indicators such as disease 
duration, ALSFRS scores, and respiratory measurements. A correlation matrix was cre-
ated to analyze the interrelationships among these variables.

Feature engineering

To enhance the predictive capacity of the model, feature engineering was employed. One 
critical feature introduced was the Progression Rate, which quantifies the rate of disease 
deterioration. It was calculated as:

ProgressionRate =
48 − ALSFRS − R Total

Disease Duration

This derived feature provided valuable insight into the patient’s condition and was a key 
predictor in the regression model. Additionally, interaction terms between certain fea-
tures, such as combining respiratory function with mobility scores, were explored to 
capture complex relationships that could influence ALS progression. All features were 
scaled using z-score normalization to ensure consistency across the dataset and improve 
model performance.

Model development

 	• Choice of Model

The XGBoost regression model was chosen for its strong performance in regression 
tasks. The model was configured to use 50 estimators with a maximum depth of 6.

 	• Training and Validation

The dataset was allocated into a training set (90%) and a testing set (10%), utilizing a ran-
dom state to ensure reproducibility. Cross-validation techniques were applied to assess 
the model’s performance, resulting in a mean squared error (MSE) of 4.6225 (± 4.7155).

Model assessment
The model’s performance was assessed through mean squared error (MSE) and R² 
scores. The training dataset yielded an MSE of 0.1651 and a training R² of 0.9800, dem-
onstrating a high level of fit.
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The workflow for the XGBoost machine learning model is presented, encompassing 
data preprocessing, model training, and evaluation, thereby offering a thorough under-
standing of its methodology (see Fig. 1).

Result and discussion
Preprocessing

The preprocessing phase involved several critical steps to ensure data quality and readi-
ness for analysis. Date columns, such as Date of Birth, were converted to datetime format 
for accurate calculations of age and disease duration. Missing values in numeric columns 
were filled using the mean, while categorical variables were transformed through label 
encoding. Important features, including ALSFRS-R scores and respiratory metrics, were 
selected based on their clinical significance. Additionally, new features, such as the Pro-
gression Rate, were created to reflect the rate of disease progression. Finally, all numeric 
features underwent z-score normalization to improve model convergence and overall 
performance.

Model performance

The predictive model exhibited strong performance metrics, with a cross-validation 
mean squared error (MSE) of 4.6225 (± 4.7155). The training dataset resulted in an MSE 
of 0.1651, while the test dataset demonstrated a markedly lower MSE of 0.0073. The R² 
values further highlighted the model’s efficacy, with a training R² of 0.9800 and a test R² 
of 0.9993, indicating an exceptional fit to the data.

Figures 2 and 3 shows the actual versus predicted ALSFRS-R Total values, while the 
accompanying heatmap and swarm plot provide further insights into the model’s perfor-
mance and feature relationships.

Feature importance

Analysis of feature importance indicated that specific clinical indicators, such as disease 
duration and respiratory measurements, were pivotal in predicting ALS progression. 
These results are consistent with existing research emphasizing the significance of func-
tional measures in the progression of ALS. As shown in Fig. 4, the feature importance 
highlights the key predictors utilized in the model.

Fig. 1  Detailed workflow of model
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Fig. 3  Heatmap of predicted ALSFR-S total

 

Fig. 2  Swarm plot of predicted ALSFRS-R total
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Predicted progression

The model’s predictions showed a steady decline in ALSFRS scores over time, offering 
valuable insights into expected patient trajectories. Visualizations, including progression 
curves and heatmaps, effectively illustrated the predicted decline across various subject 
IDs, aiding in a better understanding and potential planning for patient care. The pro-
gression curve depicted in Fig. 5 illustrates the predicted trajectory of ALSFRS-R Total 
scores over time. The predicted progression curve for 10 subject IDs is illustrated in 
Fig. 6.

Below is the Table 2 comparing the results of related works with the current study.
The results of this study highlight the potential of machine learning models to predict 

ALS progression based on clinical features. The low MSE and high R² values suggest that 
the model is robust and capable of generalizing to new data, making it a useful tool for 
clinicians. The findings underscore the importance of disease duration and respiratory 

Fig. 5  Predicted ALSFRS-R total progression curve

 

Fig. 4  Feature importance of model (Rank-wise)
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function as key predictors, which is in line with prior research emphasizing the need to 
monitor these parameters in patient management.

Moreover, the visualizations produced from this analysis offer an intuitive representa-
tion of patient progression, which could prove beneficial for both healthcare providers 
and caregivers in making informed decisions. However, while the model shows consid-
erable promise, further validation with larger and more diverse datasets is necessary to 
confirm its effectiveness across various populations.

Future research should also consider incorporating additional variables, such as 
genetic markers and lifestyle factors, to enhance predictive accuracy. By continuously 
refining these models, we can improve personalized care strategies and potentially facili-
tate earlier interventions in the disease process.

Table 2  Comparison of results from related works with the current study
Reference 
Number

Previous Work Current Work

[1] ALSFRS-R factor analysis using EFA and CFA; 
best fit: four-factor model

Utilizes XGBoost for predicting ALS progression 
based on clinical features and demographic data.

[2] ML models using voice and accelerometer 
data for ALS severity

Focuses solely on predicting ALS progression 
using XGBoost based on clinical assessments.

[10] ALS progression prediction with RNNs and 
SHAP; low MSE (< 0.02)

Achieves an XGBoost MSE of 0.0073 and R² of 
0.9993, showcasing high predictive accuracy.

[11] ALS progression modeling with Dynamic 
Bayesian Networks; high accuracy

Implements XGBoost for ALS progression predic-
tion and evaluates its performance.

[12] ALS survival prediction using Royston-Parmar 
model; c-statistic: 0.78

Concentrates specifically on predicting ALS pro-
gression rather than survival outcomes.

[13] ALS diagnosis support with deep learning 
and CNN; AUC: 0.97

Emphasizes ALS progression prediction using 
XGBoost rather than diagnostic support.

[14] ALS progression prediction with XGBoost 
and BLSTM; AUROC: 0.570–0.748

XGBoost demonstrates superior performance with 
an R² value of 0.9993 in predicting ALSFRS scores.

[15] ALS disease progression prediction with RF, 
GLM, and pre-slope models; RF superior

Compares various models, highlighting XGBoost 
as the primary method for ALS progression 
prediction.

[16] Diagnosis of bulbar involvement using 
automated voice analysis and SVM; accuracy 
95.8%

Focuses exclusively on ALS progression prediction 
without diagnosing bulbar involvement.

[17] Prediction of vital capacity in ALS using GBM; 
RMSD ~ 0.534

Utilizes XGBoost to predict ALS progression, 
achieving low MSE values for high accuracy.

Fig. 6  Predicted ALSFRS-R total progression curve for selected subjects
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Conclusion
In summary, this study demonstrates the effectiveness of machine learning approaches 
in predicting ALS progression, highlighting the significance of specific clinical features. 
The model serves as a promising tool for improving patient management and care.

Future work
Looking ahead, we plan to further enhance our predictive model by leveraging advanced 
techniques, including more refined feature engineering, model optimization, and 
exploring additional machine learning approaches. Our continued efforts are focused on 
improving the precision and reliability of ALS progression predictions, with the ultimate 
goal of advancing the understanding and treatment of this complex neurodegenerative 
condition.
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