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Abstract

Compartmental models in epidemiology characterize the spread of an infectious disease by

formulating ordinary differential equations to quantify the rate of disease progression

through subpopulations defined by the Susceptible-Infectious-Removed (SIR) scheme. The

classic rate law central to the SIR compartmental models assumes that the rate of transmis-

sion is first order regarding the infectious agent. The current study demonstrates that this

assumption does not always hold and provides a theoretical rationale for a more general

rate law, inspired by mixed-order chemical reaction kinetics, leading to a modified mathe-

matical model for non-first-order kinetics. Using observed data from 127 countries during

the initial phase of the COVID-19 pandemic, we demonstrated that the modified epidemic

model is more realistic than the classic, first-order-kinetics based model. We discuss two

coefficients associated with the modified epidemic model: transmission rate constant k and

transmission reaction order n. While k finds utility in evaluating the effectiveness of control

measures due to its responsiveness to external factors, n is more closely related to the

intrinsic properties of the epidemic agent, including reproductive ability. The rate law for the

modified compartmental SIR model is generally applicable to mixed-kinetics disease trans-

mission with heterogeneous transmission mechanisms. By analyzing early-stage epidemic

data, this modified epidemic model may be instrumental in providing timely insight into a

new epidemic and developing control measures at the beginning of an outbreak.

Introduction

In epidemic control, speedy action guided by the knowledge of pathogens is crucial. Mathe-

matical models have become essential tools for understanding infectious diseases since the

early 20th century [1]. A critical challenge in modeling epidemics is how to gain insight into

the intrinsic mechanism of disease transmission during the early stages of epidemics when

there are limited data [2,3].

The Susceptible-Infectious-Removed (SIR) model is based on a scheme that compartmental-

izes the population into susceptible (S), infectious (I), and removed (R) subpopulations [4]. Coef-

ficients and ordinary differential equations are used to quantify the transformation of subjects
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from one subpopulation to another (Fig 1). Generally, coefficients in these equations are solved

numerically or analytically, and the course of epidemics can be predicted via simulation.

Model coefficients, such as β and γ, illustrate the properties of infectious diseases by quanti-

fying the progression rates. In addition, epidemiological indices, such as the basic reproduc-

tion number R0, can be derived from these coefficients [1,5,6]. R0 is defined as the average

number of secondary cases produced by one infectious agent during the whole infectious

period in a fully susceptible population. It quantifies the transmission potential of an infectious

disease and is easy to understand conceptually. As such, R0 provides a point of reference for

other epidemics and helps detect heterogeneous conditions and populations, in which R0 may

take on different values [7].

Environmental factors (e.g., contact structure heterogeneity) and intervention measures

(e.g., social distancing and contact tracing) introduce complexity to the natural course of an

epidemic, which makes it challenging to estimate R0 [8,9]. Therefore, the effective reproduc-

tion rate Re has often been used instead. Re is a dynamic index of real-time disease status, and

when used with R0, it can provide a comparative reference [9,10].

The current study proposes a modified mathematical model based on the modified SIR

scheme. Like many previous studies, the mathematical model proposed in the current study

derives inspiration from chemical reaction kinetics [11–13], with a critical difference in that

the transmission "reaction" is not assumed to be first-order regarding the infectious popula-

tion. The modified model provides two disease-describing parameters: transmission rate con-

stant k and transmission rate order n. k responds to external intervention measures, such as

disease control measures, whereas n is conceptually linked to the intrinsic properties of the epi-

demic agent, such as the reproduction number. Fig 2 provides an overview of the current

study.

The SIR model

The differential equations in Fig 1 depict a disease progression dynamic parallel to an autocata-

lytic chemical reaction, with the subpopulations S, I, and R representing different reactive

molecular species in the reaction mixture. The disease spreading process can be treated as a

reaction converting the “reactant” S into I, where the infectious agent I is both the product and

the catalyst.

Fig 1. The SIR scheme and associated ordinary differential equations.

https://doi.org/10.1371/journal.pone.0247512.g001

Fig 2. An overview of the current study.

https://doi.org/10.1371/journal.pone.0247512.g002
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Based on reaction schemes shown in Eqs (1) and (2), the classic rate law for infectious case

number change is expressed in Eq (3):

Sþ I!k I þ I ð1Þ

I!
kr R ð2Þ

d½I�
dt
¼ k S½ � I½ � � kr I½ � ð3Þ

where [I] and [S] are the population density of the infected (or infectious) and susceptible indi-

viduals, respectively, while k and kr are the reaction rate constants, respectively, for infection

and removal.

In chemical reaction terms, Eq (3) describes a first-order reaction kinetics in the infectious

agent I, and, in the early stages of the epidemics, leads to an exponential growth of [I] over time

t. However, it has been noted that this exponential growth trajectory does not fit real-world

data well [14–17]. Various statistical strategies have been used to address this discrepancy,

including the adoption of a time-dependent rate constant k [10,17].

The current paper draws from a more general framework pioneered by Wilson and

Worcester [18], where a transmission rate is not linearly proportional to S and I (i.e., exponen-

tial growth) but instead follows a more generally applicable rate raw. In other words, the

rate of transmission is not β[S][I] but β[S]p[I]q [19,20], where p and q are positive constants. It

has been discussed why infectious disease outbreaks do not grow exponentially [20,21]. Some

later studies have adopted this approach and incorporated p and q as “decelerating” parameters

to improve model fit [22,23]. In the current study, we provide a theoretical rationale for the

modified rate law by drawing from chemical kinetics and demonstrate the modified model

by analyzing observed data from 127 countries during the initial phase of the COVID-19 pan-

demic.

A modified mathematical model with non-first-order transmission kinetics

In a reaction rate equation, the power to which the concentration of a species is raised is

called the order of the reaction with respect to that species [24]. Reaction order is an empiri-

cal value deduced from observed data, and reaction mechanism analysis is based on it [25].

In chemical reaction terms, Eq (3) describes a first-order reaction kinetics in the infectious

agent I. While Eq (3) points to a one-to-one transmission mechanism that is appealing in its

simplicity, the reason that disease transmission may not be first-order regarding [I] is two-

fold:

1. Due to contact structure heterogeneity, multiple transmission modes are more likely, with

each having its own kinetics and reaction order. As in a chemical reaction with mixed

kinetics [26], the overall, apparent reaction order would be a moving average of the mixed

reaction orders, shifted by reaction conditions. During epidemics, movement restriction

measures (e.g., travel restrictions) could change the kinetics of disease transmission, which

is analogous to chemical reaction situations where an impediment of mass transfer changes

the kinetics in diffusion-controlled chemical reactions and, subsequently, the overall reac-

tion order [27].
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2. As depicted in the SIR scheme, disease transmission is an autocatalytic process. The kinetic

behavior of a wide range of autocatalytic systems can generally be expressed by the follow-

ing scheme (see [28]):

Aþ nB! ð1þ nÞB ð4Þ

v ¼ k½A�½B�n ð5Þ

where A is the reactant, B is the product and catalyst, and n is the order of the autocatalytic

reaction regarding B. Note that in this expression, n is not a stoichiometric coefficient as in a

mass balance reaction equation. The chemical kinetics of autocatalytic chemical reactions has

been extensively studied, with the reaction orders deduced from experimental data. Often, the

reaction turned out to be non-first-order. For example, the decomposition of nitrobenzene

derivatives manifested reaction orders (n values) ranging from 0.6 to 1.8 [29].

Available data on the COVID-19 pandemic suggest that there may be multiple transmission

modes, including one to one or one to many [30,31]. Thus, the assumption contained in Eq (3)

that the transmission is first-order with respect to [I] may not always hold and need to be made

more general. Furthermore, mechanistically, a viral transmission does not always follow the mole-

cularity [24] implied in Eq (3). To better reflect this, Eqs (1) and (2) can be modified as follows:

Sþ nI!k ðnþ 1ÞI ð6Þ

I!
kr R ð7Þ

The rate law of the number of infectious cases after this modification becomes:

d½I�
dt
¼ k S½ �½I�n � kr I½ �; ð8Þ

where reaction order n is an empirical value to be extracted from observed data. Note that Eq

(3) can be regarded as a special case of Eq (8), where disease transmission follows a first-order

reaction kinetics with n = 1.

To further develop the modified mathematical model, it is necessary to establish a clear def-

inition of [I]. In analogous chemical reaction terms, this is the concentration or density of

infectious agents that are active in the population at a given time. The cumulative case density

is not appropriate for this calculation, except at the beginning of an epidemic. During an epi-

demic, the infectious population is continuously filled by newly infected cases while simulta-

neously being drained by those in recovery or quarantine or who passed away. The effect of

draining on [I] must be taken into consideration. The draining starts when infected individu-

als begin to recover or get quarantined after developing symptoms. However, in the early

phase of an epidemic, almost no significant draining occurs, and consequently, kr [I] is negligi-

ble. Therefore, we can eliminate the term, kr [I] from Eq (8) and use cumulative confirmed

case density for [I].
In addition, the infected population is extremely small relative to the total population in the

early stage of an epidemic. Therefore, Eq (8) can be simplified further by approximating [S] as

a constant, and the reaction as pseudo nth order in [I]:

d½I�
dt
¼ k S½ �½I�n ¼ k0½I�n; ð9Þ

where k’ = k[S].
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Eq (9) can be mathematically solved. Integration gives the following equation:

ln½I�
ln½ð1 � n�k0�

1 � n
þ

1

1 � n
lnt n 6¼ 1

cþ k0t n ¼ 1

8
><

>:
ð10Þ

Note that Eq (10), when n is 1, becomes an exponential growth function. When n is not 1,

then population-level epidemic data can be fitted as follows:

ln½I� ¼ aþ b lnt; ð11Þ

Where a ¼ ln½ð1� nÞk0 �
1� n and b ¼ 1

1� n.

Thus, the modified SIR model shown in Eqs (10) and (11) expands the classic SIR model to

include epidemic episodes with non-first-order transmission kinetics. Critical model coeffi-

cients, such as reaction order k and reaction order n, can be obtained by fitting this model to

observed data. In the next section, we demonstrate this approach using the COVID-19 data.

Data and methods

COVID-19 data are compiled by Our World in Data (ourworldindata.org) and available at

https://github.com/owid/covid-19-data/tree/master/public/data. The data downloaded for the

current study span from January 1, 2020 to June 30, 2020 and include the number of infected

cases from 210 countries and independently administered regions. The terms, countries and

regions, are interchangeably used for simplicity in the current study. The variables included in

the data set are the number of confirmed cases, deaths, and tests conducted, as well as country-

level variables concerning the demographic, economic, health, and disease control measures

from each country.

All analyses were conducted using Python [32]. Random Forest (RF) regression analyses

were conducted using Scikit-Learn (v0.22) developed for Python. Scikit-Learn is a free soft-

ware machine learning library for the Python programming language (for more information,

https://scikit-learn.org/stable/faq.html). Data and computing codes for the analyses reported

in this article are available in an online repository [33].

Results

COVID-19 pandemic modeling

The relationship between ln[I] and ln t was examined using the COVID-19 data from 127

countries. Of the total 210 countries from the Our World Data, countries with a population

size of at least one million and with at least one confirmed case per million were included (156

countries). Of those, we excluded data from 29 countries with fewer than three cases per mil-

lion on the 14th day since the first day of one confirmed case per million for concerns of data

accuracy, thus resulting in N = 127 countries.

We defined the age of epidemic t as the number of days since the day when there was at

least one confirmed case per million population. In Fig 3, each line represents one country or

region. Starting at around t = 14 days (at ~2.6 in ln scale), the curves of many countries showed

downward bumps or inflection points. This timing coincides with the two-week isolation

period recommended for people exposed to the SARS-Cov-2 virus. Conceivably, only after

this time, the pool of infected individuals starts to be drained due to removal (i.e., recovery or

quarantine). Therefore, data from the first 14 days were used in all subsequent analyses.

The modified model in Eq (11) implies a linear relationship between ln[I] and ln t (i.e., a

power growth function between [I] and t), rather than a linear relationship between ln[I] and t
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(i.e., an exponential function). Fig 4 suggests that for most countries, a linear regression

between ln[I] and ln t would result in a nearly perfect fit.

The modified model was fitted to data from each country. The resulting R2 values were

mostly between 0.95 and 1 (Fig 5, blue). In contrast, the linear relationship between ln[I] and t
entailed by the classic exponential model was comparatively less well-fitting for the same data,

as shown by the distribution of R2 (Fig 5, orange). Both models estimated the same number of

regression coefficients (i.e., intercept and regression slope). Therefore, the R2 distributions in

Fig 5 provide comparable model fit information. The Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) were -16.66 and -15.40, respectively, for the modified

model; 8.63 and 9.89, respectively, for the classic exponential model.

Parameter estimates a and b for each country were obtained from the ln[I] ~ ln t regression:

a and b are the intercept and slope, respectively, of the regression line. The n and k’ values for

each country were then calculated from a and b values using the equations previously defined

(see Eq [11]). The transmission rate constant k for each country was further calculated by

dividing k’ by the population density [S] of that country (see Eq (9)).

A visual inspection of the distributions of n and k showed some potential outliers. We cal-

culated the multivariate Mahalanobis distance metric to assess how far each country deviates

Fig 3. COVID-19 case development from the day that reached one confirmed case per million through June 30, 2020 (N = 127 countries). Y values

correspond to the natural logarithm of the 14-day moving cumulative cases per million population per square kilometer, and X values stand for the natural

logarithm of the number of days since one confirmed case per million (0 = the first day). Filled circles indicate observed values, and the lines connecting filled

circles are interpolated lines between observed data points.

https://doi.org/10.1371/journal.pone.0247512.g003
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from the center of the multivariate normal distribution, applied Chi-square tests for all dis-

tance metric values (for df = 1, p< 0.05), and consequently removed the following seven outli-

ers: Estonia, Puerto Rico, Palestine, Jamaica, Belarus, Papua New Guinea, and Togo.

Supporting information (see the S1 Appendix in S1 File) provides a detailed coverage on outli-

ers, outlier detection methods [34], and outcomes.

Fig 6 shows the summary results after removing the seven countries identified by the multi-

variate Mahalanobis distance metric. The average transmission order n from 120 countries

was 0.33, with a standard deviation of 0.14. The average transmission rate constant k was 0.31,

with a standard deviation of 0.56.

For a chemical reaction, the reaction rate constant k is expressed by the following Arrhenius

equation:

k ¼ Ae
� Ea
RT ;

where the pre-exponential factor A is a measure of how frequently collisions occur, and the

exponential factor, e−Ea/RT, indicates the fraction of collisions with enough kinetic energy to

lead to a reaction. Hence, the rate constant k gives the rate of successful collisions [24]. Intui-

tively, the counterpart parameter k in our model is also linked to the rate of "successful" disease

Fig 4. COVID-19 case development in each country during the first 14 days since reaching one confirmed case per million population (N = 127

countries). Y values correspond to the natural logarithm of the cumulative cases per million population per square kilometer, and X values stand for the

natural logarithm of the number of days since reaching one confirmed case per million. Filled circles indicate observed values, and the lines connecting filled

circles are interpolated lines between observed data points. S1 Fig in S1 File (see Supporting information) shows fitted regression lines and observed values.

https://doi.org/10.1371/journal.pone.0247512.g004
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transmission via interactions between infectious and susceptible individuals. Country-level

differences in disease control measures, such as social distancing, as well as pre-COVID-19

conditions, would then result in noticeable country-to-country variations in k. The variance of

k provides an opportunity to use statistical modeling or machine learning techniques to dis-

cover associations of transmission rates with country-level characteristics and country-specific

disease-fighting measures.

We conducted a Random Forest (RF) analysis [35] using each country’s sociodemographic

data and disease control measures as variables to predict epidemic-defining parameters k and

n. RF uses a nonparametric, ensemble learning algorithm, which has been shown to yield sig-

nificant improvements in prediction accuracy, compared with other algorithms, especially

with a small sample with many features as we have here (see [36] for more explanations on this

method). Significantly, RF can provide the relative Gini importance of each feature in predict-

ing a dependent variable. In other words, RF can illustrate which country-level properties are

relatively more closely associated with epidemic growth rates. Such information can be critical

for formulating effective infection control strategies.

Using RF models (25 trees with an automatic selection of the number of features), country-

level features predicted k values well (training score R2 = 0.92; out-of-bag R2 = 0.49). Of all 14

features entered, we discovered that the number of COVID-19 tests conducted and population

density had the most substantial impact on k (see Fig 7; horizontal orange bars). All other

country-level features had less influence on k.

In contrast, country-specific data proved to be relatively weak predictors of n (175 trees, select-

ing a square root of the number of features), training score of R2 = 0.91 and out-of-bag R2 = 0.32).

No feature stood out as critically important in predicting n (Fig 7; horizontal blue bars).

Fig 5. Histograms and kernel density estimation plots of R2 values from the modified mathematical model (in

blue) and from the exponential model (in orange) for data from 127 countries. R2 values represent the extent to

which a dependent variable is explained by the model. R2 = 1 is the upper bound value, indicating a perfect

relationship. X-axis values represent the entire range of R2 values.

https://doi.org/10.1371/journal.pone.0247512.g005
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Fig 6. Statistics of the COVID-19 transmission rate constant k and reaction order n (N = 120 countries). The mean

and standard deviation of n and k are shown in an inserted table in Fig 6. The bivariate distribution is shown in a

scatter plot, and univariate distributions are shown on the top for k (in orange) and on the right for n (in blue).

https://doi.org/10.1371/journal.pone.0247512.g006

Fig 7. Importance of features in predicting k and n by Random Forest regression analyses. Importance values are

scaled so that all blue bars add up to 1, and all orange bars add up to 1. There is no direct comparability between bars of

different colors. Nine features with Importance greater than 0.01 were plotted in Fig 7. Population density: Number of

people divided by land area, measured in square kilometers; Number of tests: Average daily tests for COVID-19 per

1,000 people; Median population age: Median age of the population, UN projection for 2020; Female smoker (%):

Share of women who smoke, most recent year available; GDP per capita: Gross domestic product at purchasing power

parity (constant 2011 international dollars); Cardiovascular disease mortality: Death rate from cardiovascular diseases

in 2017 (annual number of deaths per 100,000 people); Prevalence of diabetes: Diabetes prevalence (% of population

aged 20 to 79) in 2017; Hospital bed per thousand: Hospital beds per 1,000 people, most recent year available; Male

smoker (%): Share of men who smoke, most recent year available.

https://doi.org/10.1371/journal.pone.0247512.g007
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Discussion

The prevailing pandemic modeling approaches contain the assumption of a first-order kinetics

regarding [I], which mathematically leads to an exponential growth function. However, this

assumption is unrealistic in many cases, as demonstrated here by real data. The current study

developed a modified mathematical model (Eq (11)) derived from a different rate law (Eq (8))

with nth reaction order, which is deduced from data. The results from the analysis of COVID-

19 pandemic data suggest that this model provides a more accurate and inclusive description

of the virus transmission dynamics.

The modified mathematical model provides two parameters describing an epidemic: trans-

mission rate constant k and transmission reaction order n. When group-level heterogeneity

exists, statistic or machine learning models can uncover hidden associations between group-

specific features and outcome differences represented by k. For the COVID-19 pandemic data,

the value k of each country appears to be strongly associated with control measures such as

testing and environmental factors such as population density. Although Random Forest analy-

sis results should not be interpreted as causal inference, such information provides valuable

guidance for selecting effective disease control measures.

Transmission reaction order n, like its chemistry counterpart, appears to be more related to

the reaction mechanism and less impacted by environmental factors. We observed that the n
values of 120 different countries with very different characteristics were distributed narrowly

around a mean of 0.33 with a standard deviation of 0.14 and a coefficient of variance of 0.42

(0.14/0.33). Meanwhile, country-level features were demonstrated to be relatively weak predic-

tors of n. These findings suggest that n is a quantity pertaining to the intrinsic property of the

epidemic agent.

Furthermore, Eq (6) can be transformed into the following equivalent form:

m Sþ I!ðmþ 1ÞI; ð12Þ

where m = 1/n. The parameter m has its origin rooted in the “molecularity” of the disease

transmission “reaction” through n. For the 120 countries in this study, m values ranged from

1.64 (Ireland) to 43.65 (Gabon), with a mean of 4.50. With coefficient m, Eq (12) better illus-

trates the process of disease transmission that occurs from one infectious to many susceptible

individuals.

With traditional SIR models, data collected well into the epidemic development timeline

are needed for establishing coefficients, β and γ [37,38]. In contrast, the modified model in this

current study is uniquely suitable for extracting epidemic-defining parameters from sparse

data at the onset of an epidemic outbreak. Insights afforded by the new mathematical model

may be particularly valuable in guiding timely interventions at the most critical period of an

epidemic.

More broadly, the non-first-order transmission kinetics model provides a general theoreti-

cal framework for epidemic modeling that complements the classic SIR model, where the rate

law is implicitly assumed to be first order in the epidemic agent. In the current study, the coun-

try-level data used had a limited sample size. However, local-level data sharing similar environ-

mental characteristics or data from different epidemics may provide a further test of the

general applicability of the modified model. We also note that the range of k estimates was

large, which may reflect important heterogeneity and can be explored further in future studies.

Incomplete and noisy data might be other sources of the apparent heterogeneity, which makes

it challenging to predict full epidemic trajectories [39]. Finally, the modified SIR model shown

in the current study may be further fine-tuned and provide a building block for more elaborate

epidemic models.
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Conclusion

The present paper provides a theoretical rationale for a modified mathematical epidemic

model that removes an implicit assumption on reaction order in the classic SIR compartmental

models to be more general, flexible, and accurate. More specifically, the modified mathemati-

cal model accommodates mixed-kinetics epidemics that are non-first-order and incorporates

transmission heterogeneity. With this modified model, it is possible to derive critical epi-

demic-defining parameters early, which would be instrumental for understanding new epi-

demics and developing control measures.
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